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Abstract—The advancement of Generative Artificial Intelli-
gence (AI), particularly Large Language Models (LLMs), is
reshaping the software industry by automating code generation.
Many LLM-driven distributed processing systems rely on serial
code generation constrained by predefined libraries, limiting
flexibility and adaptability. While some approaches enhance
performance through parallel execution or optimize edge-cloud
distributed processing for specific domains, they often overlook
the cost implications of deployment, restricting scalability and
economic feasibility across diverse cloud environments. This
paper presents DiCE-C, a system that eliminates these constraints
by starting directly from a natural language query. DiCE-C dy-
namically identifies available tools at runtime, programmatically
refines LLM prompts, and employs a stepwise approach—first
generating serial code and then transforming it into distributed
code. This adaptive methodology enables efficient distributed
execution without dependence on specific libraries. By leveraging
high-level parallelism at the Application Programming Interface
(API) level and managing API execution as services within a
Kubernetes-based runtime, DiCE-C reduces idle GPU time and
facilitates the use of smaller, cost-effective GPU instances. Ex-
periments with a vision-based insurance application demonstrate
that DiCE-C reduces cloud operational costs by up to 72% when
using smaller GPUs (A6000 and A4000 GPU machines vs. A100
GPU machine) and by 32% when using identical GPUs (A100
GPU machines). This flexible and cost-efficient approach makes
DiCE-C a scalable solution for deploying LLM-generated vision
applications in cloud environments.

Keywords-Cloud Computing; Large Language Models (LLMs);
Distributed systems; Code generation; Cost reduction.

I. INTRODUCTION

Advancements in Generative AI, particularly LLMs, are
reshaping how vision applications are developed and deployed.
Tools like ViperGPT [1] demonstrate how LLMs can gen-
erate application-specific vision code directly from natural
language queries. For instance, users can issue queries, such
as “detect traffic accidents” or “identify unattended objects”,
and ViperGPT automatically generates the required vision
program. Figure 1 illustrates a scenario where an operator
dynamically deploys such vision applications in real-time.
While this represents a significant leap in automation and
flexibility, deploying these applications in cloud environments
often incurs substantial cost inefficiencies.

DiCE [2] and DiCE-M [3] are existing systems that take
ViperGPT-generated serial code as their starting point and
transform it into distributed code for parallel execution. While
DiCE focuses on improving performance by exploiting API-
level parallelism for faster execution of vision applications,
DiCE-M targets marine applications using an edge and cloud
approach to balance processing across distributed resources.
However, neither system addresses the cost implications of

Figure 1: Use case scenario.

deploying these applications, particularly in cloud settings.
Additionally, both systems rely on the use of image_patch
library, which exposes only a handful APIs. This limits the
applicability to a very narrow set of applications. If additional
functions are required for an application, then it cannot be
built since image_patch does not have the necessary APIs.

In this paper, we introduce DiCE-C, a system that removes
the dependency on ViperGPT and the image_patch library.
Unlike DiCE, DiCE-C starts with the original natural language
query and dynamically discovers available tools through run-
time APIs. It programmatically constructs prompts to guide
an LLM to first generate serial code and then transform it
into distributed code, leveraging a step-by-step approach that
improves performance and accuracy. This flexibility enables
DiCE-C to adapt to diverse workflows while focusing specif-
ically on cost optimization in cloud environments.

After generating serial code, similar to DiCE, DiCE-C
identifies high-level parallelism at the API level and transforms
serial code into distributed code for efficient execution. By
leveraging a Kubernetes-based runtime, DiCE-C dynamically
manages API calls as services, allocating GPU resources only
for the duration of individual service calls. This approach
minimizes GPU idle time, allows the use of smaller, cost-
efficient GPUs, and significantly lowers operational costs in
cloud environments.

Our key contributions in this paper are:

• We identify the cost inefficiencies of deploying LLM-
generated monolithic code in cloud environments, in-
cluding GPU over-provisioning and under-utilization, and
propose solutions to optimize resource allocation and
execution to address these challenges.

• We introduce DiCE-C, which programmatically updates
LLM prompts based on runtime API documentation to
generate both serial and distributed code. This approach
enhances flexibility, adaptability, and cost efficiency by
leveraging dynamic tool discovery and resource optimiza-
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tion.
• We demonstrate, using a real-world vision-based insur-

ance application, that DiCE-C lowers cloud operational
costs by up to 72% with smaller GPUs such as A6000
and A4000 GPU machines and by 32% with identical
A100 GPU machines, both evaluated in the Hyperstack
cloud.

The rest of the paper is organized as follows. Section
2 discusses related work. In Section 3, we examine the
cost inefficiencies associated with deploying monolithic/serial
code in cloud environments. Section 4 details the design and
implementation of DiCE-C, focusing on how it generates
serial code, transforms serial code into distributed code and
then manages execution through a Kubernetes-based runtime.
Section 5 reports experimental results highlighting the cost
savings achieved by DiCE-C and showcases a prototype
system. Finally, Section 6 concludes the paper.

II. RELATED WORK

Optimizing cloud computing costs for AI-driven applica-
tions has garnered significant attention due to the increasing
adoption of resource-intensive models in production environ-
ments. Systems like CloudScale [4], SpotDNN [5], SpotLake
[6], Wang et. al [7], DEARS [8], ELASTIC [9], Saxena et.
al [10], Ahmad et. al. [11], Alelyani et. al. [12] explore
different strategies for efficient application execution in cloud
computing environment. These works focus on leveraging spot
instances, predictive scaling, and scheduling optimizations
which can minimize operational expenses. However, they
primarily target general-purpose workloads, whereas DiCE-C
is specifically designed for LLM-generated vision applications,
emphasizing API-level parallelism and distributed execution.

Kubernetes-based systems, such as Knative [13] and Kube-
flow [14], provide platforms for scalable and efficient resource
management. These frameworks offer primitives for deploying
containerized workloads but lack the ability to dynamically
adapt to the inherent parallelism of LLM-generated code.
DiCE-C bridges this gap by integrating a runtime that trans-
forms serial code into distributed code, dynamically managing
API-level services, and optimizing GPU utilization, thereby
reducing costs without requiring changes to the underlying
Kubernetes infrastructure.

Recent advances in LLMs have contributed to code gener-
ation and parallelization. Tools like DSPy [15], AutoParLLM
[16] and HPC-Coder [17] showcase the ability of LLMs to
generate efficient pipelines and parallel programs. Systems like
DiCE [2] leverage LLMs for transformation of serial code to
distributed code for faster execution. DiCE-M [3] leverages
LLMs to generate distributed code which can be executed in
an edge + cloud infrastructure for marine applications. While
these systems focus on improving performance or enabling
edge + cloud execution, DiCE-C extends this paradigm to
address cost optimization by integrating runtime-discovered
tools and adapting workloads to varying cloud configurations.

Traditional compiler-based solutions like TVM [18] and
Polyhedral [19] optimize program execution through low-level

techniques such as memory layout transformations and loop
optimizations. Although highly effective for individual tasks,
these approaches are less applicable to the distributed, API-
driven workloads targeted by DiCE-C. By focusing on high-
level parallelism and runtime adaptability, DiCE-C comple-
ments such optimizations to address the unique challenges of
cloud-based vision applications.

To the best of our knowledge, DiCE-C is the first system to
integrate dynamic LLM-driven code generation with runtime
cost optimization for vision applications, addressing the ineffi-
ciencies of monolithic code deployment and enabling scalable,
cost-efficient execution in distributed cloud environments.

III. MOTIVATION

Recent advancements in visual question answering bench-
marks, such as RefCOCO, RefCOCO+ [20], GQA [21], OK-
VQA [22], and NeXT-QA [23], have enabled tools like
ViperGPT to synthesize visual programs directly from natural
language queries using libraries such as image_patch.
These tools showcase the capability of addressing real-world
queries beyond benchmark datasets. Building on these ad-
vancements, DiCE-C eliminates the dependency on predefined
libraries and dynamically generates serial code from user
queries, enabling a wide range of applications, including the
automation of complex, labor-intensive tasks like traffic acci-
dent reporting for insurance claim processing. For example,
consider the query:

Query: In the accident scene, report the color and model
of all the cars involved in the accident and check if the cars
are damaged or overturned.

Rather than relying on monolithic code generated by
ViperGPT, DiCE-C dynamically constructs prompts based on
documentation retrieved from the runtime API. These prompts
guide an LLM to generate serial code, which is shown in Fig-
ure 2. The code utilizes AI models, such as glip [24], blip
[25], and xvlm [26] to detect cars, extract their attributes,
and evaluate their condition through API calls. Since these AI
models require GPUs for execution, sequentially running the
code on a single large GPU instance leads to inefficiencies,
including extended idle times during CPU-bound operations
and under-utilization of GPU resources for lightweight tasks.

This approach has substantial cost implications in cloud
computing environments. Large GPU instances must often be
provisioned to handle multiple AI models, even if a query only
uses a subset of these models. Such instances are expensive to
rent and may be unavailable during periods of high demand.
Additionally, idle GPU time during CPU processing further
inflates operational costs.

The code inherently offers opportunities for parallelism.
After the initial glip API call to detect cars, subsequent API
calls to query their properties (blip and xvlm) are inde-
pendent and can be executed concurrently. This parallelism
enables the use of smaller, more cost-effective GPU instances
instead of relying on a single large GPU. Refactoring the code
into a distributed format, where API calls are managed as
independent services, allows for dynamic resource allocation,
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1 import asyncio
2 import hermod
3 from PIL import Image
4

5 async def execute_query(image_filename):
6 image = Image.open(image_filename)
7

8 # Detecting cars in the image
9 cars = await hermod.call("glip", image=image,

object_name="car")
10

11 if not cars:
12 print("No cars detected in the image.")
13 return
14

15 for i, car in enumerate(cars):
16 # Crop the image to the bounding box of

each detected car
17 car_patch = image.crop((car["x"], car["y"],
18 car["x"] +

car["width"],
19 car["y"] +

car["height"]))
20

21 # Query for the color of the car
22 car_color = await hermod.call("blip",

image=car_patch, question="What is the color of
the car?")

23 # Query for the model of the car
24 car_model = await hermod.call("blip",

image=car_patch, question="What is the model of
the car?")

25 # Check if the car is damaged
26 car_damaged = await hermod.call("xvlm",

image=car_patch, object_name="car",
property="damaged")

27 # Check if the car is overturned
28 car_overturned = await hermod.call("xvlm",

image=car_patch, object_name="car",
property="overturned")

29

30 # Compile the information
31 car_info = f"Car {i+1}: Color -

{car_color.get(’answer’, ’Unknown’)}, " \
32 f"Model -

{car_model.get(’answer’, ’Unknown’)}, " \
33 f"Damaged -

{car_damaged.get(’result’, False)}, " \
34 f"Overturned -

{car_overturned.get(’result’, False)}"
35

36 print(car_info)
37

38 image_filename = "accident_scene.jpg"
39 asyncio.run(execute_query(image_filename))
40

Figure 2: Serial code generated by DiCE-C for an accident scene
query.

reduces GPU idle time, and significantly lowers operational
costs.

IV. DESIGN AND IMPLEMENTATION

Unlike existing systems such as DiCE [2] and DiCE-M
[3], which rely on ViperGPT-generated monolithic code and
are constrained by libraries like image_patch, DiCE-C
removes these limitations. By leveraging runtime APIs to dy-
namically discover available tools and programmatically con-

Figure 3: DiCE-C overview.

struct LLM prompts, DiCE-C enables flexible, cost-efficient
deployments tailored to diverse workflows.

As shown in Figure 3, DiCE-C consists of two key compo-
nents:

1) Code Generation: This includes the generation of serial
code directly from natural language queries and its sub-
sequent transformation into distributed code for parallel
execution.

2) Runtime: A Kubernetes-based runtime that ensures
cost-optimized deployment of distributed code by dy-
namically managing resources and minimizing GPU idle
time.

A. Serial Code Generation

The first phase of DiCE-C involves generating func-
tional serial code from a user-provided natural language
query. This process begins by querying the runtime API
to retrieve metadata about the available tools. Commands
such as kubectl get functions and kubectl get
functions <function-name> -o yaml provide de-
tailed documentation, including the tool’s functionality, input
parameters, and output schemas. An example runtime API
output for the glip function is shown in Figure 4.

This information is embedded into the LLM prompt along-
side the natural language query. The prompt guides the LLM
to generate serial code (in Python programming language)
tailored to the tools available in the runtime. Figure 2 shows
an example of serial code generated by DiCE-C. While
functional, this sequential code may suffer from inefficiencies
such as GPU idle time during CPU-bound operations and
underutilization when lightweight tasks run on large GPUs,
motivating the need for distributed code generation.

B. Distributed Code Generation

The second phase of DiCE-C transforms the serial code into
distributed code by exploiting API-level parallelism. Figure 5
illustrates this process. Updated prompts are constructed using
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1 $ kubectl get functions glip -o yaml
2 apiVersion: hermod.nec-labs.com/v1
3 kind: Function
4 metadata:
5 ...
6 status:
7 documentation: Finds the locations of object_name in the image. Returns a list of
8 bounding boxes.
9 parametersSchema: ’{"properties": {"image": {"format": "binary", "python_type":

10 "PIL.Image.Image", "title": "Image", "type": "string"}, "object_name": {"title":
11 "Object Name", "type": "string"}}, "required": ["image", "object_name"], "title":
12 "Parameters", "type": "object"}’
13 resultSchema: ’{"$defs": {"BoundingBox": {"properties": {"x": {"title": "X", "type":
14 "integer"}, "y": {"title": "Y", "type": "integer"}, "width": {"title": "Width",
15 "type": "integer"}, "height": {"title": "Height", "type": "integer"}}, "required":
16 ["x", "y", "width", "height"], "title": "BoundingBox", "type": "object"}}, "properties":
17 {"result": {"items": {"$ref": "#/$defs/BoundingBox"}, "title": "Result", "type":
18 "array"}}, "required": ["result"], "title": "Result", "type": "object"}’
19

Figure 4: GLIP function details obtained from runtime API.

Figure 5: Distributed code generation overview.

information from the runtime API, which enables the LLM
to identify independent API calls in the serial code and
refactor them for concurrent execution. Additionally, DiCE-C
incorporates elements from the prompt structure used in DiCE
[2], adapting them to dynamically include runtime-discovered
tools. This ensures that DiCE-C generates distributed code
tailored to the specific environment.

Figure 6 shows the distributed code generated by DiCE-C
using Python’s asyncio library. By enabling concurrent exe-
cution of independent API calls, the distributed code utilizes
multiple smaller GPU instances instead of relying on a single
large GPU. This reduces idle GPU time, improves resource
utilization, and lowers operational costs.

C. Runtime for Distributed Code Execution

The distributed code generated by DiCE-C is executed
within a Kubernetes-based runtime (Figure 7). Each API call is
treated as an independent service, allowing dynamic allocation
of GPU resources. By reserving GPUs only for the duration of
individual service calls, the runtime minimizes idle time and
enables cost-efficient execution.

The runtime architecture, shown in Figure 8, processes
requests through service queues, where each API call is
transparently mapped to a GPU running the associated AI
model. This design facilitates efficient resource sharing across
multiple workloads, further reducing the cost of cloud-based
deployments. By handling workloads dynamically, the runtime
ensures scalable and adaptable execution of vision applica-
tions.

D. Cost-Optimized Execution in DiCE-C

Figure 9 illustrates the contrast between the baseline mono-
lithic execution and DiCE-C’s distributed execution. In the
baseline, all AI models are loaded onto a single large GPU,
which remains reserved for the entire job duration. Conversely,
DiCE-C transforms the code into a distributed version, en-
abling API calls to run as independent services on smaller
GPUs. This minimizes idle GPU time and allows for dynamic
scaling based on workload demands, resulting in substantial
cost savings.

By combining serial and distributed code generation with
a runtime, DiCE-C ensures scalable and cost-efficient deploy-
ment of vision applications in cloud environments.

V. EXPERIMENTAL SETUP AND RESULTS

In this section, we evaluate the cost savings achieved by
DiCE-C compared to the baseline execution of monolithic
code in cloud computing environments. The experiments are
based on the real-world insurance application use case de-
scribed in Section III, where the task is to generate detailed
accident reports from images. We validate the correctness
of the distributed code generated by DiCE-C by manually
comparing its output with that of the serial code generated
by ViperGPT, and both outputs matched.

Figure 6 shows the distributed code generated by DiCE-C
for the insurance application use case. The code introduces
concurrency using Python’s asyncio library, enabling indepen-
dent API calls (e.g., querying color, model, damage status,
and overturned status) to execute in parallel. This distributed
execution reduces GPU idle time and allows dynamic resource
allocation for servicing the API calls, thereby achieving sub-
stantial cost savings.

A. Experimental Setup

To evaluate cost efficiency, we created a batch of 1000
vision programs (tasks) by replicating the distributed code
shown in Figure 6. Thirty different accident scene images were
generated using OpenAI’s “GPT-4o” model, and these images
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1 import asyncio
2 import hermod
3 from PIL import Image
4

5 async def get_car_details(car_patch, index):
6 try:
7 tasks = [
8 hermod.call("blip", image=car_patch, question="What is the color of the car?"),
9 hermod.call("blip", image=car_patch, question="What is the model of the car?"),

10 hermod.call("xvlm", image=car_patch, object_name="car", property="damaged"),
11 hermod.call("xvlm", image=car_patch, object_name="car", property="overturned")
12 ]
13

14 # Execute all tasks for the car patch in parallel
15 car_color, car_model, car_damaged, car_overturned = await asyncio.gather(*tasks)
16

17 # Compile the information
18 car_info = f"Car {index + 1}: Color - {car_color.get(’answer’, ’Unknown’)}, " \
19 f"Model - {car_model.get(’answer’, ’Unknown’)}, " \
20 f"Damaged - {car_damaged.get(’result’, False)}, " \
21 f"Overturned - {car_overturned.get(’result’, False)}"
22

23 return car_info
24 except Exception as e:
25 return f"Car {index + 1}: Error occurred - {str(e)}"
26

27 async def execute_query(image_filename):
28 try:
29 image = Image.open(image_filename)
30

31 # Detecting cars in the image
32 cars = await hermod.call("glip", image=image, object_name="car")
33

34 if not cars:
35 print("No cars detected in the image.")
36 return
37

38 car_tasks = []
39 for i, car in enumerate(cars):
40 # Crop the image to the bounding box of each detected car
41 car_patch = image.crop((car["x"], car["y"],
42 car["x"] + car["width"],
43 car["y"] + car["height"]))
44

45 # Collect car detail tasks
46 car_tasks.append(get_car_details(car_patch, i))
47

48 # Run all car detail tasks in parallel
49 car_info_list = await asyncio.gather(*car_tasks)
50

51 for car_info in car_info_list:
52 print(car_info)
53 except Exception as e:
54 print(f"Failed to execute query on the image: {str(e)}")
55

56 image_filename = "accident_scene.jpg"
57 asyncio.run(execute_query(image_filename))
58

Figure 6: Distributed code generated by DiCE-C.
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Figure 7: Runtime overview.

Figure 8: Runtime architecture.

were randomly assigned across the 1000 tasks. Figure 12
shows three sample images used in the experiments.

The experiments were conducted using machines in the
Hyperstack [27] cloud under two configurations:

• Identical hardware: Both the baseline and DiCE-C used
A100 GPU nodes ($2.2/hour).

• Different hardware: The baseline used A100 GPUs,
while DiCE-C utilized a combination of A6000 and
A4000 GPUs ($1.3/hour combined).

Figures 10 and 11 illustrate the execution patterns of the

Figure 9: Execution in baseline vs DiCE-C.

Figure 10: Execution of AI models in baseline.

Figure 11: Parallel execution of AI models in DiCE-C.

baseline and DiCE-C, respectively. In the baseline, API calls
are executed sequentially, whereas in DiCE-C, after the initial
API call to detect cars (using glip), the remaining API
calls (blip, xvlm) are executed concurrently. This parallel
execution allows DiCE-C to minimize GPU idle time and
optimize cloud resource usage.

B. Using Identical Hardware

We perform experiments using configurations of 1, 2, 4, 6,
and 8 identical nodes. In the case of baseline, only 1 task
runs on a machine at a time, whereas in the case of DiCE-
C, we allow 16 tasks to run simultaneously. Table I shows
the total execution time in each case and the corresponding

(a) Scene 1. (b) Scene 2. (c) Scene 3.

Figure 12: Sample accident scenes.

Figure 13: Execution pattern of first 50 tasks.
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TABLE I: COST REDUCTION (USING IDENTICAL HARDWARE).

Nodes Cost per Total Execution Total Cost Cost
minute (USD) Time (minutes) (USD) Reduction (%)

Baseline DiCE-C Baseline DiCE-C Baseline DiCE-C
1 $ 0.037 $ 0.037 141 79 $ 5.17 $ 2.90 44.0 %
2 $ 0.073 $ 0.073 75 54 $ 5.50 $ 3.96 28.0 %
4 $ 0.147 $ 0.147 36 25 $ 5.28 $ 3.67 30.6 %
6 $ 0.220 $ 0.220 26 18 $ 5.72 $ 3.96 30.8 %
8 $ 0.293 $ 0.293 17 12 $ 4.99 $ 3.52 29.4 %

TABLE II: COST REDUCTION (USING DIFFERENT HARDWARE).

Nodes Cost per Total Execution Total Cost Cost
minute (USD) Time (minutes) (USD) Reduction (%)

Baseline DiCE-C Baseline DiCE-C Baseline DiCE-C
1 $ 0.037 $ 0.022 141 68 $ 5.17 $ 1.47 71.5 %
2 $ 0.073 $ 0.043 75 35 $ 5.50 $ 1.52 72.4 %
4 $ 0.147 $ 0.087 36 17 $ 5.28 $ 1.47 72.1 %
8 $ 0.293 $ 0.173 17 8 $ 4.99 $ 1.39 72.2 %

Figure 14: CPU Load.

Figure 15: GPU Load.

cost incurred to complete the execution of a batch of 1000
tasks. We observe that on average DiCE-C saves up to 32 %
operating cost.

We further dive deeper to understand how the execution
goes in each case. Figure 13 shows the execution pattern for
the first 50 tasks when running on a single node. We observe
that in the case of baseline, the tasks start one after the other,
as expected, since only 1 job runs at a time and the latency for
execution (shown by horizontal line length) varies depending
on the image that is used. In case of DiCE-C, we clearly see
the overlap in execution across different tasks and note that
there is a slight increase in latency for each task due to the
contention of resources on the same hardware.

Overall, the execution for the batch of tasks goes faster
using DiCE-C compared to the baseline (higher throughput),

Figure 16: Prototype system for DiCE-C.

and this directly results in cost savings, since the machines
in the cloud are used for less time. Figures 14 and 15 show
the CPU and GPU load, respectively, when the batch of 1000
tasks is run on a single node. We observe that due to increased
utilization, the load is higher in the case of DiCE-C, leading
to faster completion of tasks.

C. Using Different Hardware

Table II shows the total execution time and cost reduction
when using cheaper and smaller GPUs in DiCE-C. We observe
that DiCE-C achieves an average 72 % reduction in operating
cost by using smaller and cheaper GPUs. This highlights
DiCE-C’s adaptability and efficiency in cloud computing en-
vironments.

D. Prototype system

Figure 16 shows a prototype system for DiCE-C. In this
system, the user can write a query in natural language and
behind the scenes, DiCE-C initially generates the serial code
and then transforms this code into a distributed code version,
which is then executed on a Kubernetes-based distributed
cluster. In the user interface, we show the different AI models
that are being used and the execution flow in the baseline
vs DiCE-C case. In addition, we also show the cost savings
achieved by using DiCE-C.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced DiCE-C, a cost-efficient system
for deploying vision applications in cloud environments. Un-
like prior approaches that rely on monolithic code generated
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by tools like ViperGPT, DiCE-C programmatically generates
distributed code by leveraging runtime-exposed tool documen-
tation. By dynamically managing API calls as independent
services on Kubernetes, DiCE-C reduces GPU idle time and
supports the use of smaller, cost-efficient GPUs, significantly
lowering operational expenses while preserving the correctness
and functionality of the original application.

Experimental evaluations on a real-world insurance appli-
cation demonstrated that DiCE-C achieves an average cost
reduction of 32% on identical GPU hardware and up to 72%
when using smaller GPUs. Although this work focuses on
vision applications, our future work involves incorporating
additional functions and tools support in the runtime, so that
a wide range of applications and workloads can be supported
and enabled by DiCE-C.
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