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Abstract—In the context of Industrial Internet of Things and 

Edge Computing, there are often computing devices that run 

software on the edge device. In real industrial settings, these 

computing devices are not accessible from the Internet. This 

raises a problem if software components on the device require 

configuration changes, such as adjusting some parameters to 

customize software, restarting one or several applications that 

behave badly on the device, or rotating passwords to name a 

few. This paper presents a novel approach to configure 

software on such computing devices. The details of the cloud-

based approach are presented and how the approach has 

successfully been applied in an industrial project. 
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industrial use case; configuration. 

I.  INTRODUCTION) 

The Internet of Things (IoT) [9] is a rapidly emerging 
Internet-based information service architecture where many 
devices are interconnected [3][36]. Devices are equipped 
with communication, sensing, computing and actuating 
capabilities to collect and exchange data with their 
surroundings to enable analysis, optimization and control. 
Devices also perform a task in the physical world like 
opening or closing a valve. Recent technological 
achievements support the vision of a connected world [22]. 
In fact, different IoT use cases have successfully been 
implemented [31]. 

Many traditional IoT approaches use the Cloud for 
analyzing devices’ data, i.e., devices forward data to the 
Cloud where intelligent analysis is performed because of the 
Cloud’s high reliability, availability, unlimited scalability 
and resources. However, a lot of incarnations of IoT have 
increasingly challenged this approach [1] because 
transmitting large amounts of data to the Cloud burdens the 
network traffic. Recent approaches, such as edge [27], fog 
[6][38] and osmotic computing [33], thus target at processing 
and putting more data intelligence and decision making pro-
cesses [16][18][37] at the edge of the network, i.e., near the 
devices [28][30]. Filtering and pre-processing data occurs 
before submission to the Cloud, thus decreasing the volume 
of data and reducing the network traffic [25]. 

In these cases, computing devices run some installed 
software on the hardware. However, in real industrial 
settings, devices are deployed in remote and hard-to-reach 
environments. As a consequence, devices do not allow any 
access from the Internet due to strong security requirements.  

This raises a problem. Usually, software requires some 
configuration, which might change from time to time. For 
example, software is mostly designed in a generic manner to 
satisfy several customers or deployments. Thus, running the 
generic software needs some configuration during startup to 
customize software accordingly. Only then a customer-
specific implementation can be avoided. 

Changes of the configuration will also occur during 
operation. For example, transferring data to the Cloud in the 
context of edge devices requires credentials to access Cloud 
services, e.g., a Cloud storage, such as AWS S3 storage. This 
does not seem to be a problem at a first glance. But security 
policies in industrial contexts require an expiration and 
periodic password rotation. That is, renewed passwords must 
then be passed to the device at runtime in order to avoid 
downtime.  

In general, further parameters for the software have often 
to be adjusted, e.g., thresholds, according to changing system 
behavior or environment. Similarly, if a software component 
behaves badly, restarting it might become necessary from the 
outside, maybe after changing some parameters to remedy a 
component. And finally, there are often scheduled jobs that 
require a modifiable Cron specification for periodic tasks. 

Hence, a configuration of devices and their components 
is indispensable. But any kind of such configuration is a 
problem if the device and components running on that device 
are not accessible via the internet – as in the case of 
industrial settings.  

One possible solution is to securely log into the 
computing device and to configure locally and directly. This 
requires advanced access from outside, e.g., by the Common 
Remote Service Platform [8] – if possible at all. Without a 
remote login, configuration must be done directly at the 
device's location, i.e., usually at the plant’s site.  

The main contribution of this paper is to tackle these 
configuration issues. Hence, Section II presents a novel 
approach to control and configure software on edge devices 
that are not accessible by the Internet. Details about the 
organization of software are presented in Section III, before 
Section IV applies and evaluates the approach in a real 
industrial context with corresponding use cases. In Section 
V, we compare the presented approach with other work done 
in the literature. Finally, Section VI summarizes the works 
and gives an outlook about future work. 
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II. APPROACH 

In the context of Industrial Internet of Things and Edge 
Computing, there are computing devices that run some 
installed software on the hardware. This paper targets at 
allowing for externally provided configurations. In the 
following, we use the following terms: 

• Computing Device (CD): Can be any device, such as 
a computer, an industrial PC, industrial boxes, such 
as Siemens X300 box, or a RaspberryPi. A CD 
might also be part of embedded hardware. 

• Device Component (DC): A piece of software that 
runs in a computing device to fulfill a certain task 
within the computing device. In modern IoT 
architectures, these DCs typically run in 
virtualization, especially Docker containers. 

• Configuration: Some data required by a device 
component DC to adjust its behavior, for instance, to 
set some thresholds, credentials, and time intervals, 
or to trigger actions, such as enforcing a restart. 

The proposed solution to allow for an external 
configuration is as follows. 

There is a new component ConfigurationManager-
Backend (CMB) running on a separate computer (maybe 
hosted in the Cloud). The CMB keeps configurations and 
possesses a publicly available but secured service. Dedicated 
users can send configuration data to the CMB service for a 
Device Component on a CD by means of an API; the CMB 
persists the configuration data internally. Furthermore, CMB 
can also be asked for configurations.  Thus, CMB is a REST 
service that offers a GET operation to retrieve configuration 
data and a POST and PUT to store and update 
configurations. The CMB is responsible for several CDs. 

Another component ConfigurationHandler (CH) is 
installed on the DC to periodically pull configuration data 
from the CMB by using a GET request. The GET request 
works in such a way that each request from CH to CMB 
returns NOT MODIFIED (e.g., code 304 for HTTP/REST) 
whenever a configuration has not been changed at the CMB 
(this can be determined by using the ETAG mechanism and 
the lastModified timestamp); otherwise, a package with all 
configurations for the CD is returned. There is a CH for each 
CD. Each CH obtains credentials to access the CMB REST 
API to get only its configurations. The credentials are 
changed periodically and passed to CH using the mechanism 
explained below. 

The configuration itself is stored as a zipped file 
package.zip and organized as follows: 

• There is a directory for each device component 
named like the DC. It is assumed that each DC 
possesses a unique name or identifier. 

• Several files can be put in such a component's 
directory; the format can be json or XML. 

The following is a sample package.zip: 
  |- bulk-transfer   

        |- x.json   
     |- y.json    
  |- db-inserter  
     |- z.json    

The first level of the hierarchy determines the compon-
ents, here bulk-transfer and db-inserter. And files 
x.json and y.json contain configurations for the DC bulk-
transfer. Further configuration files can be added at any time. 

As already explained, CH calls the CMB service 
periodically, particularly initially after a restart of CH. 
Whenever a successful response is received, the packaged 
data is analyzed by CH and internally distributed to all 
device components DC running on the computing device 
CD. The communication between CH and components is 
done by means of a message queue, e.g., supporting MQTT. 
That is, having received a configuration change, CH splits 
the configuration package.zip into parts according to the 
returned package structure so that individual configuration 
files for each DC are extracted. The contents of all the files 
belonging to the same DC are merged to one file. 

CH keeps the latest configuration state for each DC in an 
internal storage. If something has changed for a component 
compared to the last state (determined by using a hash key or 
similar), CH puts a message into the message queue with a 
topic /configuration/<DC> that identifies the DC being 
supposed to receive it. Otherwise, the configuration will not 
be pushed since nothing has changed for the respective 
component. 

Each device component listens to incoming configuration 
changes in the message queue concerning itself (identified by 
its topic /configuration/<DC>). It takes the message 
payload, i.e., its configuration part. Afterwards, the DC can 
react according to the new configuration, for instance, 
adjusting some parameters or performing a certain action. 
Figure 1 illustrates the approach for such a periodic 
configuration update.  

 

 

Figure 1.  Periodic configuration update. 

This is the typical scenario of notifying DCs about 
configuration changes. Another scenario is important for 
restarting components. After a restart of a device component 
DC, the DC might have missed some configuration changes 
that occurred during downtime. Hence, DC is enabled to ask 
for its latest configuration explicitly. Therefore, the DC can 
publish a corresponding message to the message queue with 
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a topic /request/<DC>. CH listens to topic /request/#, i.e., 
all those topics (due to “#”) starting with /request, and 
reacts by issuing a request to the CMB service and behaving 
as described before. Figure 2 illustrates the procedure. 

 

 

Figure 2.  Explicit configuration update. 

In case the CMB service is unreachable by CH (e.g., due 
to network problems), the latest version of a configuration as 
stored in CH is issued if explicitly asked for a configuration 
by a DC. Once CMB is reachable again, the usual 
mechanism works as described before. 

Indeed, there is some monitoring of the overall system to 
detect any issues as early as possible and sending alerts to 
responsible persons. 

Using a message queue has the advantage that all the 
components do not need to be known in advance or have 
been registered somewhere. In other terms, new components 
can be added by using the mechanism immediately. If a 
component mentioned in the package does not exist, a 
message is published to the message queue but nothing else 
happens due to the lack of a consuming DC. 

The Cloud is beneficial for CMB due to global 
accessibility and high reliability, but not mandatory for this 
approach. 

Compared to other approaches mentioned in Section V, 
advantages are: 

• A computing device can be secured by not being 

accessible from the Internet while still obtaining 

configuration changes. 

• Moreover, the configuration can be done at any time 

and outside of the computing device CD, independent 

of its location.  

III. ORGANIZATION OF SOFTWARE 

The common parts for letting a DC request a 
configuration at startup and listening to request changes can 
be placed in a common piece of code so that all the DCs can 
share the logic (e.g., by inheritance).  

The following are some code snippets in python, 
however, omitting some details, such as proper exception 
handling. 

There is a superclass (indicated in python by ABC) with 
the common code to be shared with every component: 
 

class Component(ABC): 

   def __init__(self, broker_url:str, broker_port:int): 

       initialize message queue mqtt; 

       set component_name and topic; 

       on_message = lambda msg: self.on_msg(msg) 

       subscribe to message queue with topic and on_message    

         as callback; 

    def on_msg(self, msg): 

         payload = json.loads(msg.payload.decode('UTF-8')) 

    def start_listening(self): 

        self.mqtt_client.broker_client.loop_start() 

    def stop_listening(self): 

        self.mqtt_client.broker_client.loop_stop() 

   @abstractmethod 

    def update_configuration(self): 

        pass #  to be implemented by every derived class 

    def request_configuration(self): 

        data = { "component": self.component_name } 

        self.mqtt_client.publish(message=json.dumps(data), 

                                  topic='/request' + self.component_name) 

 

on_message is a callback function that is used to 
subscribe to the message queue with a particular topic. 
Functions start_listening and stop_listening start and stop 
listening to a specific topic in the message queue, resp. 
update_configuration is an abstract function that must be 
implemented in a component to react on received 
configuration changes. 

Every component has to be derived from this superclass 
as follows.  
 

class SpecificComponent(Component): 

    def main():  # will run in a docker container 

  super().__init__(broker_url, broker_port) 

        self.start_listening() 

        self.request_configuration() # get first configuration for 
                                                       #  start-up 

    def update_configuration(self,payload): 

        if 'config_a' in payload: 

            react on payload['config_a'] 

        if 'config_b' in payload: 

            react on payload['config_b'] 

 

Here, SpecificComponent runs in a docker container, which 
executes the main function. Invoking start_listening starts 
listening on configuration changes. During start-up of the 
component, a configuration is requested by 
request_configuration. Any configuration change will 
automatically invoke update_configuration, where 
component-specific behavior is implemented how to react. 
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IV. EVALUATION IN AN INDUSTRIAL CONTEXT 

This section discusses the evaluation of the approach in 
an industrial context by using a concrete application. 

A.  Industrial Context 

Indeed, there are many different industrial IoT projects 
within our company. However, it turned out that many of 
them have similar requirements and follow the same 
behavioral scheme. As one important characteristic, there is 
no internet access to the devices. Moreover, there is a strong 
need to deploy project-specific applications at the edge. 

This leads to one common architecture to be set up 
several times in industrial projects. The overall generic 
approach follows the Lambda [23] architecture and is based 
upon container technology. Indeed, IoT applications are 
increasingly deployed using containers [24]. 

The common use case is to gather data from IoT devices. 
Data is processed and used twofold.  

First, there are several calculations of key performance 
indicators (KPIs) that are resource-consuming and run on a 
daily schedule producing some kind of daily analysis and 
summary. For these applications, a component like a batch 
layer [23] is sufficient. That is, data is regularly pushed into 
the Cloud, and analysis and calculating KPIs is then 
performed in the Cloud using the submitted data. Calculated 
KPIs and any detected anomalies are visualized in 
dashboards. Further applications in this context are 
predictive maintenance etc. since they also have higher needs 
on compute power.  

Second, other use cases behave in the sense of a speed 
layer [23] and require data in real-time to immediately react 
on events in the data, e.g., to control a device. Those 
applications typically run at the edge in the sense of edge 
computing. 

The overall common architecture consists of several 
components running in Docker containers. Each component 
has a dedicated task to fulfil. 

At first, a Connector abstracts from various industrial 
protocols, such as OPCUA, MODBUS, or BACNET to get 
sensor data from devices. Hence, this is a central component 
to handle all the various protocols and their heterogeneity for 
receiving data from devices. The Web-of-Things [34], 
particularly the concept of thing description, is the basis for 
this component; it keeps the information about the device 
and its protocol and handles data access. 

The Connector sends data to a Forwarder component 
immediately by means of an efficient protocol like web 
sockets. The Forwarder then puts the received data into a 
message queue with a particular topic. 

Using a message queue has the reason to let other 
application-specific components immediately consume 
events from the message queue, similar to the speed layer in 
the Lambda architecture [23].  

An Inserter listens to the message queue by subscribing 
to the topics used by the Forwarder. It stores the received 
data in a timeseries database, such as InfluxDB. Again, other 
application-specific components are enabled to read data 
from the database. 

The BulkTransfer component transfers a bulk of sensors’ 
data from the timeseries database to the Cloud regularly in a 
configurable interval, e.g., every hour. This means the data 
for, e.g., the last hour is then transported. This scheduled job 
is reasonable for Cloud-based analysis and algorithms that 
do not require streamed data [23]. 

The rationale behind this architecture, especially using a 
message queue and a timeseries database, is to allow for 
project-specific components to be plugged in. Depending on 
a particular project, further application-specific components 
can be deployed to consume and process data directly and 
immediately from the message queue or timeseries database. 
Those applications can also store data there to be processed 
by others or being transferred to the Cloud. Application-
specific components are especially used for controlling 
devices.  

This is quite a generic and flexible approach. Various 
configurations are possible in this architecture for dedicated 
scenarios due to keeping components exchangeable.  

B. Application 

We applied the configuration approach successfully to 
achieve several configurations being explained below.  

As mentioned previously, the Inserter listens to the 
message queue and stores the received data in a timeseries 
database. From a performance point of view, it is not 
reasonable to store record by record. Hence, a bulk approach 
gathers data until a certain number of records have been 
received or a certain time threshold has been passed; it then 
stores the bulk of records. The time threshold is reasonable 
in order to avoid that records are not stored for a longer 
period of time because of incomplete bulks. Both the bulk 
size and the time threshold are configurable for the Inserter 
to adjust to specific loads using our approach. 

Next, the BulkTransfer runs periodically as some kind of 
Cron job to move bulks of data from the timeseries database 
to the Cloud. Here, the schedule is configurable. Intervals 
can be configured according to how often data is processed 
in the Cloud by means of a Cron schedule. Moreover, the 
BulkTransfer requires S3 credentials to access the Cloud 
storage. Due to key rotation, the credentials are periodically 
changed in the Cloud. New secrets can now be updated so 
that BulkTransfer becomes able to submit data to the Cloud 
storage. 

There are also some more general applications of 
configurations. Having several components and containers in 
a device, the communication between them, for instance IP 
addresses and ports, are timeseries database at startup. 
Similarly, several configurations for the timeseries database 
and message queue are configurable. Also, the logging level 
can be changed at runtime. This turned out to be very 
important since the logging level can be increased for 
debugging purposes and reset after having detected issues. 

In the architecture, a thing description (TD) plays an 
important role, particularly to describe the sensors. 
Whenever new sensors are delivered by a device, via 
OPCUA or MODBUS connectors, the software components 
become aware of new sensors by receiving the enhanced TD 
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with new sensors by means of configuration. Hence, data 
from new sensors can be processed immediately. 

It could happen that a container behaves badly. A 
configuration parameter is used to enforce a restart, maybe 
with changing parameters.  

Further configurations are used for bypassing 
components. For instance, the Inserter can be configured to 
directly forward data to the Cloud, then skipping the 
BulkTransfer and allowing for data processing in a streamed 
manner in the Cloud.  However, due to our experiences, this 
is only useful for smaller amounts of data due to higher costs 
for the IoT solutions of Cloud vendors. 

V. RELATED WORK 

There are many reference architectures for IoT, edge, and 
fog computing [2][4][5][11][13][14][17][19][25][35] in the 
literature. They provide generic taxonomies for the 
components of IoT platforms and differentiate several 
functional components, such as device, sensor, actuator, and 
gateway. Reference architectures then pose components in 
three [39] or more layers [12]. They all have in common to 
pay no attention on how to configure components properly. 

State-of-the-art reviews, such as [32] – despite discussing 
so far unsolved challenges in the field of edge applications – 
also do not mention configuration problems, especially in 
case of unreachable devices as a challenge.  

Several approaches could benefit from such an approach 
despite not mentioning configuration issues. For example, 
Stankovski et al. [26] proposed a distributed self-adaptive 
architecture for container-based technologies to ensure the 
QoS for time-critical applications. Monitoring data is used to 
allocate required resources for each container; end-users, 
application developers and/or administrators can define 
operational strategies to handle resources in a better manner. 
Indeed, these strategies are a form of configuration. 

CloudScale is a monitoring system proposed by [21]. The 
system analyses the performance of distributed applications 
at runtime, thereby adopting user-specified scaling policies 
for provisioning and de-provisioning of virtual resources. 
Policies are again another type of configuration. 

Olorunnife et al [24] evaluate various approaches for 
failure recovery for IoT applications. Monitoring the output 
of IoT applications. Their approach automatically diagnoses 
faults with IoT devices and gateways; and effectively 
manages and re-configures container-based IoT software to 
achieve a minimal downtime upon the detection of software 
failures. This technique can particularly be applied to 
scenarios where IoT software is deployed in embedded or 
hard to reach scenarios, i.e., with difficult or no physical 
access. But this approach merely focuses on automatic 
recovery without any interaction from the outside. 

VI. CONCLUSIONS 

In this paper, we discuss the problem of configuring 
devices that are unreachable from the Internet in the context 
of Internet-of-Things (IoT).  

We motivate the need for configurations by presenting 
typical examples such as Cron schedules for running 
periodical jobs, parameters or thresholds for components, 

changing credentials because of password rotation to name a 
few. Especially the latter one is required in industrial settings 
due to high security requirements where passwords must be 
renewed regularly. These kinds of configurations are usually 
indispensable for an effective operation in industrial 
contexts. However, if devices are unreachable by the 
Internet, operators have to perform configurations at the 
device site causing efforts and costs. 

The approach that is pursued to solve this issue is 
discussed in detail. There is mainly a central service running 
in the Cloud to keep configurations. New configurations can 
be submitted to that service. Each IoT device is equipped 
with a component that polls the central service periodically 
about configuration changes and distribute configurations to 
the components running in that device  

 We evaluate the approach in a real industrial application 
where several types of configurations are required. 

Our future work will evaluate even more complex 
scenarios, such as enabling or disabling components in the 
architecture at runtime. We also want to investigate the 
impact of the approach on the overall system performance. 
Moreover, we want to tackle further industrial issues for IoT 
devices, such as enhancing fault tolerance by self-healing 
and monitoring.  

REFERENCES 

[1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aled-hari, and M. 
Ayyash, “Internet of Things: A Survey on Enabling Technologies 
Protocols and Applications”, IEEE Communications Surveys 
Tutorials, Vol. 17 ( 4), pp. 2347-2376, June 2015, ISSN 1553-877X. 

[2] M. Aazam, I. Khan, A. Alsaffar, and E. Huh, “Cloud of Things: 
Integrating Internet of Things and Cloud Computing and the Issues 
Involved”,  Int. Bhurban Conf on applied sciences and technology. 

[3] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A 
Survey”, Computer Networks 2010, Vol. 54 (15), pp. 2787–2805. 

[4] M. Bauer, M. Boussard, N. Bui, J. C. De Loof, C. Magerkurth, S. 
Meissner, A. Nettsträter, J. Stefa, M. Thoma, and J. W. Walewski, 
“IoT Reference Architecture. In: Enabling Things to Talk: Designing 
IoT solutions with the IoT Architectural Reference Model”, Springer 
Berlin Heidelberg 2013. 

[5] S. Biswas and S. Misra, “Designing of a Prototype of e-Health 
Monitoring System”, IEEE Int. Conf on Research in Computational 
Intelligence and Communication Networks (ICRCICN) 2015, pp. 
267–272. 

[6] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, “Fog Computing: A 
Platform for Internet of Things and Analytics”, Big Data and Internet 
of Things: A roadmap for smart environments, pp. 169–186. 
Springer. 

[7] B. Costa, J. Bachiega, R. Carvalho, M. Rosa, and A. Araujo, 
“Monitoring Fog Computing: A Review, Taxonomy, and Open 
Challenges”, Computer Networks Vol. 215, Elsevier 2022, pp. 1–30. 

[8] “Remote Services – For the High-Performance Operation of Your 
Plant”, https://www.siemens.com/global/en/products/services /digital-
enterprise-services/field-maintenance-services/remote-services.html) 
[retrieved: March, 2025]. 

[9] B. Dorsemaine, J.-P. Gaulier, J.-P.  Wary, N. Kheir, and P. Urien, 
“Internet of Things: a Definition & Taxonomy”, 9th Int. Conf on 
Next Generation Mobile Applications, Services and Technologies, 
ISBN 978-1-4799-8660-6/15, 2015. 

[10] K. Fatema, V. Emeakaroha, P. Healy, J. Morrison, and T. Lynn, “A 
Survey of Cloud Monitoring Tools: Taxonomy, Capabilities and 
Objectives”, Journal of Parallel and Distributed Computing 
2014, Vol. 74 (10), pp. 2918–2933. 

112Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

https://www.siemens.com/global


[11] J. Guth, U. Breitenbucher, M. Falkenthal, F. Leymann, and L. 
Reinfurt, “Comparison of IoT Platform Architectures: A Field Study 
Based on a Reference Architecture”,  Cloudification of the Internet of 
Things (CIoT) 2016, pp. 1–6. 

[12] J. Guth, U. Breitenbücher, M. Falkenthal , P. Fremantle, O. Kopp, F. 
Leymann, and L. Reinfurt , “A Detailed Analysis of IoT Platform 
Architectures: Concepts, Similarities, and Differences”, Internet of 
Everything: Algorithms, Methodologies, Technologies and 
Perspectives, Springer 2018, pp. 81-101. 

[13] J. Gubbi, R. Buyya, and S. M. P. Marusic, “Internet of Things (IoT): 
A Vision, Architectural Elements, and Future Directions”, Future 
Generation Computer Systems 2013, Vol. 29 (7), pp. 1645–1660. 

[14] S. A. S. Haller, M. Bauer, and F. Carrez,  “A Domain Model for the 
Internet of Things”, Proc. of IEEE Int. Conf on Green Computing and 
Communications and IEEE Internet of Things and IEEE Cyber 
Physical and Social Computing. IEEE (2013). 

[15] B. Hazarika and T. J. Singh, “Survey paper on Cloud Computing & 
Cloud Monitoring: Basics”, SSRG Int. Journal on Comput. Science 
Engineering 2015, Vol. 2 (1), pp. 10-15, ISSN:2348–8387. 

[16] J. Kua, G. Armitage, P. Branch, and J. But, “Adaptive Chunklets and 
AQM for Higher-Performance Content Streaming”, ACM 
Transactions on Multimedia Computing, Communications, and 
Applications (TOMM) 2019, Vol. 15, pp. 1–24 

[17] J. Kim, J. Lee, J. Kim,  and J. Yun, “M2M Service Platforms: Survey, 
Issues, and Enabling Technologies”, IEEE Communications Surveys 
& Tutorials 2014, Vol. 16 (1), pp. 61–76. 

[18] J. Kua, S. H. Nguyen, G. Armitage, and P. Branch, “Using Active 
Queue Management to Assist IoT Application Flows in Home 
Broadband Networks”, IEEE Internet of Things Journal 2017, Vol 4 
(5), pp. 1399–1407.  

[19] S. Krco, B. Pokric, and F. Carrez, “Designing IoT and 
Architecture(s)”, In: Proc. of the IEEE World Forum on Internet of 
Things (WF-IoT). IEEE (2014). 

[20] S. Karumuri, F. Solleza, S. Zdonik, and N. Tatbul, “Towards 
Observability Data Management at Scale”, ACM SIGMOD Record, 
Vol. 49, pp. 18–23. 

[21] P. Leitner, C. Inzinger, W. Hummer, B. Satzger, and S. Dustdar, 
“Application-level Performance Monitoring of Cloud Services Based 
on the Complex Event Processing Paradigm”, Proc. of 5th IEEE Int. 
Conf. on Service-Oriented Computing and Applications (SOCA’12). 
IEEE, Taipei, Taiwan, pp. 1–8. 

[22] I. Lee and K. Lee, “The Internet of Things (IoT): Applications, 
Investments, and Challenges for Enterprises”, Business Horizons 
2015, Vol. 58 (4), pp. 431–440. 

[23] N. Marz: “How to Beat the CAP Theorem”, 13 October 2011. 
http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html 
[retrieved: March, 2025]. 

[24] K. Olorunnife, K. Lee, and J. Kua, “Automatic Failure Recovery for 
Container-Based IoT Edge Applications”, Electronics 2021, Vol. 10. 

[25] V. Prasad, M. Bhavsar, and S. Tanwar, “Influence of Montoring: Fog 
and Edge Computing”, Scalable Computing: Practice and Experience 
2019, Vol. 20 (2), pp. 365-376. 

[26] V. Stankovski, J. Trnkoczy, S. Taherizadeh, and M. Cigale, 
“Implementing Time-Critical Functionalities with a Distributed 
Adaptive Container Architecture”, Proc. of 18th Int. Conf. on 
Information Integration and Web-based Applications and Services 
(iiWAS2016). ACM, Singapore, pp. 455–459.  

[27] W. Shi and S. Dustdar, “The promise of Edge Computing”, 
Computer, Vol. 49 (5), pp. 78–81, May 2016. 

[28] K. Saharan and A. Kumar, “Fog in Comparison to Cloud: A Survey”, 
Int. Journal of Computer Applications, Vol. 122 (3), 2015. 

[29] E. Solaiman, R. Ranjan, P. P. Jayaraman, and K. Mitra, “Monitoring 
Internet of Things Application Ecosystems for Failure”, IT 
Professional 2016, Vol. 18 (5), pp. 8–11.   

[30] M. Satyanarayanan, P. Simoens, Y. Xiao et al., “Edge Analytics in 
the Internet of Things”, IEEE Pervasive Computing 2015, Vol. 14 (2), 
pp. 24–31. 

[31] A. Srinivasa and D. Siddaraju, “A Comprehensive Study of 
Architecture, Protocols and Enabling Applications in Internet of 
Things (IoT)”, Int. Journal of Science & Technology Research 2019, 
Vol. 8, Issue 11. 

[32] S. Taherizadeh, A. Jones, I. Taylor, Z. Zhao, and V. Stankowski, 
“Monitoring Self-Adaptive Applications within Edge Computing 
Frameworks: A State-of-the-Art Review”, Journal of Systems and 
Software 2018,  Vol 136, pp. 19-38. 

[33] M. Villari, M. Fazio, S. Dustdar, O. Rana, and R. Ranjan, “Osmotic 
Computing: a New Paradigm for Edge/Cloud Integration”, IEEE 
Cloud 2016. 

[34] Web of Things in a Nutshell. 
https://www.w3.org/WoT/documentation [retrieved: March, 2025] 

[35] L. D. Xu, W. He, and S. Li, “Internet of things in industries: A 
survey”, IEEE Transactions on Industrial Informatics Vol. 10 (4). 

[36] F. Xia, L. T. Yang, L. Wang, and A. Vinel, “Internet of Things”, Int. 
Journal of Communication Systems 2012, Vol. 25 (9), pp. 1101–
1102. 

[37] W. Yu, F. Liang, X. He, W. G. Hatcher, C.  Lu, J. Lin, and X. Yang, 
“A Survey on the Edge Computing for the Internet of Things”, IEEE 
Access 2018, Vol 6, pp. 6900–6919.  

[38] S. Yi, C. Li, and Q. Li, “A Survey of Fog Computing: Concepts, 
Applications and Issues”, Proc. of Workshop on Mobile Big Data. 
(Mobidata 2015), pp. 37–42. 

[39] L. Zheng, H. Zhang, W. Han, X. Zhou, J. He, Z. Zhang, Y. Gu, and J. 
Wang, “Technologies, Applications, and Governance in the Internet 
of Things”, Internet of Things – Global Technological and Societal 
Trends. River Publishers (2009). 

 

 

 

 

 

 

   

113Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html
https://www.w3.org/WoT/documentation

