
Configuring Edge Devices That Are Not Accessible Via The Internet

Sebastien Andreo

SI CTO EAAS

Siemens AG

Erlangen, Germany

Email: Sebastien.Andreo@siemens.com

Uwe Hohenstein

FT RPD SSP

Siemens AG

Munich, Germany

Email: Uwe.Hohenstein@siemens.com

Abstract—In the context of Industrial Internet of Things and

Edge Computing, there are often computing devices that run

software on the edge device. In real industrial settings, these

computing devices are not accessible from the Internet. This

raises a problem if software components on the device require

configuration changes, such as adjusting some parameters to

customize software, restarting one or several applications that

behave badly on the device, or rotating passwords to name a

few. This paper presents a novel approach to configure

software on such computing devices. The details of the cloud-

based approach are presented and how the approach has

successfully been applied in an industrial project.

Keywords-internet of things; IoT; cloud computing;

industrial use case; configuration.

I. INTRODUCTION)

The Internet of Things (IoT) [9] is a rapidly emerging
Internet-based information service architecture where many
devices are interconnected [3][36]. Devices are equipped
with communication, sensing, computing and actuating
capabilities to collect and exchange data with their
surroundings to enable analysis, optimization and control.
Devices also perform a task in the physical world like
opening or closing a valve. Recent technological
achievements support the vision of a connected world [22].
In fact, different IoT use cases have successfully been
implemented [31].

Many traditional IoT approaches use the Cloud for
analyzing devices’ data, i.e., devices forward data to the
Cloud where intelligent analysis is performed because of the
Cloud’s high reliability, availability, unlimited scalability
and resources. However, a lot of incarnations of IoT have
increasingly challenged this approach [1] because
transmitting large amounts of data to the Cloud burdens the
network traffic. Recent approaches, such as edge [27], fog
[6][38] and osmotic computing [33], thus target at processing
and putting more data intelligence and decision making pro-
cesses [16][18][37] at the edge of the network, i.e., near the
devices [28][30]. Filtering and pre-processing data occurs
before submission to the Cloud, thus decreasing the volume
of data and reducing the network traffic [25].

In these cases, computing devices run some installed
software on the hardware. However, in real industrial
settings, devices are deployed in remote and hard-to-reach
environments. As a consequence, devices do not allow any
access from the Internet due to strong security requirements.

This raises a problem. Usually, software requires some
configuration, which might change from time to time. For
example, software is mostly designed in a generic manner to
satisfy several customers or deployments. Thus, running the
generic software needs some configuration during startup to
customize software accordingly. Only then a customer-
specific implementation can be avoided.

Changes of the configuration will also occur during
operation. For example, transferring data to the Cloud in the
context of edge devices requires credentials to access Cloud
services, e.g., a Cloud storage, such as AWS S3 storage. This
does not seem to be a problem at a first glance. But security
policies in industrial contexts require an expiration and
periodic password rotation. That is, renewed passwords must
then be passed to the device at runtime in order to avoid
downtime.

In general, further parameters for the software have often
to be adjusted, e.g., thresholds, according to changing system
behavior or environment. Similarly, if a software component
behaves badly, restarting it might become necessary from the
outside, maybe after changing some parameters to remedy a
component. And finally, there are often scheduled jobs that
require a modifiable Cron specification for periodic tasks.

Hence, a configuration of devices and their components
is indispensable. But any kind of such configuration is a
problem if the device and components running on that device
are not accessible via the internet – as in the case of
industrial settings.

One possible solution is to securely log into the
computing device and to configure locally and directly. This
requires advanced access from outside, e.g., by the Common
Remote Service Platform [8] – if possible at all. Without a
remote login, configuration must be done directly at the
device's location, i.e., usually at the plant’s site.

The main contribution of this paper is to tackle these
configuration issues. Hence, Section II presents a novel
approach to control and configure software on edge devices
that are not accessible by the Internet. Details about the
organization of software are presented in Section III, before
Section IV applies and evaluates the approach in a real
industrial context with corresponding use cases. In Section
V, we compare the presented approach with other work done
in the literature. Finally, Section VI summarizes the works
and gives an outlook about future work.

108Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

II. APPROACH

In the context of Industrial Internet of Things and Edge
Computing, there are computing devices that run some
installed software on the hardware. This paper targets at
allowing for externally provided configurations. In the
following, we use the following terms:

• Computing Device (CD): Can be any device, such as
a computer, an industrial PC, industrial boxes, such
as Siemens X300 box, or a RaspberryPi. A CD
might also be part of embedded hardware.

• Device Component (DC): A piece of software that
runs in a computing device to fulfill a certain task
within the computing device. In modern IoT
architectures, these DCs typically run in
virtualization, especially Docker containers.

• Configuration: Some data required by a device
component DC to adjust its behavior, for instance, to
set some thresholds, credentials, and time intervals,
or to trigger actions, such as enforcing a restart.

The proposed solution to allow for an external
configuration is as follows.

There is a new component ConfigurationManager-
Backend (CMB) running on a separate computer (maybe
hosted in the Cloud). The CMB keeps configurations and
possesses a publicly available but secured service. Dedicated
users can send configuration data to the CMB service for a
Device Component on a CD by means of an API; the CMB
persists the configuration data internally. Furthermore, CMB
can also be asked for configurations. Thus, CMB is a REST
service that offers a GET operation to retrieve configuration
data and a POST and PUT to store and update
configurations. The CMB is responsible for several CDs.

Another component ConfigurationHandler (CH) is
installed on the DC to periodically pull configuration data
from the CMB by using a GET request. The GET request
works in such a way that each request from CH to CMB
returns NOT MODIFIED (e.g., code 304 for HTTP/REST)
whenever a configuration has not been changed at the CMB
(this can be determined by using the ETAG mechanism and
the lastModified timestamp); otherwise, a package with all
configurations for the CD is returned. There is a CH for each
CD. Each CH obtains credentials to access the CMB REST
API to get only its configurations. The credentials are
changed periodically and passed to CH using the mechanism
explained below.

The configuration itself is stored as a zipped file
package.zip and organized as follows:

• There is a directory for each device component
named like the DC. It is assumed that each DC
possesses a unique name or identifier.

• Several files can be put in such a component's
directory; the format can be json or XML.

The following is a sample package.zip:
 |- bulk-transfer

 |- x.json
 |- y.json
 |- db-inserter
 |- z.json

The first level of the hierarchy determines the compon-
ents, here bulk-transfer and db-inserter. And files
x.json and y.json contain configurations for the DC bulk-
transfer. Further configuration files can be added at any time.

As already explained, CH calls the CMB service
periodically, particularly initially after a restart of CH.
Whenever a successful response is received, the packaged
data is analyzed by CH and internally distributed to all
device components DC running on the computing device
CD. The communication between CH and components is
done by means of a message queue, e.g., supporting MQTT.
That is, having received a configuration change, CH splits
the configuration package.zip into parts according to the
returned package structure so that individual configuration
files for each DC are extracted. The contents of all the files
belonging to the same DC are merged to one file.

CH keeps the latest configuration state for each DC in an
internal storage. If something has changed for a component
compared to the last state (determined by using a hash key or
similar), CH puts a message into the message queue with a
topic /configuration/<DC> that identifies the DC being
supposed to receive it. Otherwise, the configuration will not
be pushed since nothing has changed for the respective
component.

Each device component listens to incoming configuration
changes in the message queue concerning itself (identified by
its topic /configuration/<DC>). It takes the message
payload, i.e., its configuration part. Afterwards, the DC can
react according to the new configuration, for instance,
adjusting some parameters or performing a certain action.
Figure 1 illustrates the approach for such a periodic
configuration update.

Figure 1. Periodic configuration update.

This is the typical scenario of notifying DCs about
configuration changes. Another scenario is important for
restarting components. After a restart of a device component
DC, the DC might have missed some configuration changes
that occurred during downtime. Hence, DC is enabled to ask
for its latest configuration explicitly. Therefore, the DC can
publish a corresponding message to the message queue with

109Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

a topic /request/<DC>. CH listens to topic /request/#, i.e.,
all those topics (due to “#”) starting with /request, and
reacts by issuing a request to the CMB service and behaving
as described before. Figure 2 illustrates the procedure.

Figure 2. Explicit configuration update.

In case the CMB service is unreachable by CH (e.g., due
to network problems), the latest version of a configuration as
stored in CH is issued if explicitly asked for a configuration
by a DC. Once CMB is reachable again, the usual
mechanism works as described before.

Indeed, there is some monitoring of the overall system to
detect any issues as early as possible and sending alerts to
responsible persons.

Using a message queue has the advantage that all the
components do not need to be known in advance or have
been registered somewhere. In other terms, new components
can be added by using the mechanism immediately. If a
component mentioned in the package does not exist, a
message is published to the message queue but nothing else
happens due to the lack of a consuming DC.

The Cloud is beneficial for CMB due to global
accessibility and high reliability, but not mandatory for this
approach.

Compared to other approaches mentioned in Section V,
advantages are:

• A computing device can be secured by not being

accessible from the Internet while still obtaining

configuration changes.

• Moreover, the configuration can be done at any time

and outside of the computing device CD, independent

of its location.

III. ORGANIZATION OF SOFTWARE

The common parts for letting a DC request a
configuration at startup and listening to request changes can
be placed in a common piece of code so that all the DCs can
share the logic (e.g., by inheritance).

The following are some code snippets in python,
however, omitting some details, such as proper exception
handling.

There is a superclass (indicated in python by ABC) with
the common code to be shared with every component:

class Component(ABC):

 def __init__(self, broker_url:str, broker_port:int):

 initialize message queue mqtt;

 set component_name and topic;

 on_message = lambda msg: self.on_msg(msg)

 subscribe to message queue with topic and on_message

 as callback;

 def on_msg(self, msg):

 payload = json.loads(msg.payload.decode('UTF-8'))

 def start_listening(self):

 self.mqtt_client.broker_client.loop_start()

 def stop_listening(self):

 self.mqtt_client.broker_client.loop_stop()

 @abstractmethod

 def update_configuration(self):

 pass # to be implemented by every derived class

 def request_configuration(self):

 data = { "component": self.component_name }

 self.mqtt_client.publish(message=json.dumps(data),

 topic='/request' + self.component_name)

on_message is a callback function that is used to
subscribe to the message queue with a particular topic.
Functions start_listening and stop_listening start and stop
listening to a specific topic in the message queue, resp.
update_configuration is an abstract function that must be
implemented in a component to react on received
configuration changes.

Every component has to be derived from this superclass
as follows.

class SpecificComponent(Component):

 def main(): # will run in a docker container

 super().__init__(broker_url, broker_port)

 self.start_listening()

 self.request_configuration() # get first configuration for
 # start-up

 def update_configuration(self,payload):

 if 'config_a' in payload:

 react on payload['config_a']

 if 'config_b' in payload:

 react on payload['config_b']

Here, SpecificComponent runs in a docker container, which
executes the main function. Invoking start_listening starts
listening on configuration changes. During start-up of the
component, a configuration is requested by
request_configuration. Any configuration change will
automatically invoke update_configuration, where
component-specific behavior is implemented how to react.

110Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

IV. EVALUATION IN AN INDUSTRIAL CONTEXT

This section discusses the evaluation of the approach in
an industrial context by using a concrete application.

A. Industrial Context

Indeed, there are many different industrial IoT projects
within our company. However, it turned out that many of
them have similar requirements and follow the same
behavioral scheme. As one important characteristic, there is
no internet access to the devices. Moreover, there is a strong
need to deploy project-specific applications at the edge.

This leads to one common architecture to be set up
several times in industrial projects. The overall generic
approach follows the Lambda [23] architecture and is based
upon container technology. Indeed, IoT applications are
increasingly deployed using containers [24].

The common use case is to gather data from IoT devices.
Data is processed and used twofold.

First, there are several calculations of key performance
indicators (KPIs) that are resource-consuming and run on a
daily schedule producing some kind of daily analysis and
summary. For these applications, a component like a batch
layer [23] is sufficient. That is, data is regularly pushed into
the Cloud, and analysis and calculating KPIs is then
performed in the Cloud using the submitted data. Calculated
KPIs and any detected anomalies are visualized in
dashboards. Further applications in this context are
predictive maintenance etc. since they also have higher needs
on compute power.

Second, other use cases behave in the sense of a speed
layer [23] and require data in real-time to immediately react
on events in the data, e.g., to control a device. Those
applications typically run at the edge in the sense of edge
computing.

The overall common architecture consists of several
components running in Docker containers. Each component
has a dedicated task to fulfil.

At first, a Connector abstracts from various industrial
protocols, such as OPCUA, MODBUS, or BACNET to get
sensor data from devices. Hence, this is a central component
to handle all the various protocols and their heterogeneity for
receiving data from devices. The Web-of-Things [34],
particularly the concept of thing description, is the basis for
this component; it keeps the information about the device
and its protocol and handles data access.

The Connector sends data to a Forwarder component
immediately by means of an efficient protocol like web
sockets. The Forwarder then puts the received data into a
message queue with a particular topic.

Using a message queue has the reason to let other
application-specific components immediately consume
events from the message queue, similar to the speed layer in
the Lambda architecture [23].

An Inserter listens to the message queue by subscribing
to the topics used by the Forwarder. It stores the received
data in a timeseries database, such as InfluxDB. Again, other
application-specific components are enabled to read data
from the database.

The BulkTransfer component transfers a bulk of sensors’
data from the timeseries database to the Cloud regularly in a
configurable interval, e.g., every hour. This means the data
for, e.g., the last hour is then transported. This scheduled job
is reasonable for Cloud-based analysis and algorithms that
do not require streamed data [23].

The rationale behind this architecture, especially using a
message queue and a timeseries database, is to allow for
project-specific components to be plugged in. Depending on
a particular project, further application-specific components
can be deployed to consume and process data directly and
immediately from the message queue or timeseries database.
Those applications can also store data there to be processed
by others or being transferred to the Cloud. Application-
specific components are especially used for controlling
devices.

This is quite a generic and flexible approach. Various
configurations are possible in this architecture for dedicated
scenarios due to keeping components exchangeable.

B. Application

We applied the configuration approach successfully to
achieve several configurations being explained below.

As mentioned previously, the Inserter listens to the
message queue and stores the received data in a timeseries
database. From a performance point of view, it is not
reasonable to store record by record. Hence, a bulk approach
gathers data until a certain number of records have been
received or a certain time threshold has been passed; it then
stores the bulk of records. The time threshold is reasonable
in order to avoid that records are not stored for a longer
period of time because of incomplete bulks. Both the bulk
size and the time threshold are configurable for the Inserter
to adjust to specific loads using our approach.

Next, the BulkTransfer runs periodically as some kind of
Cron job to move bulks of data from the timeseries database
to the Cloud. Here, the schedule is configurable. Intervals
can be configured according to how often data is processed
in the Cloud by means of a Cron schedule. Moreover, the
BulkTransfer requires S3 credentials to access the Cloud
storage. Due to key rotation, the credentials are periodically
changed in the Cloud. New secrets can now be updated so
that BulkTransfer becomes able to submit data to the Cloud
storage.

There are also some more general applications of
configurations. Having several components and containers in
a device, the communication between them, for instance IP
addresses and ports, are timeseries database at startup.
Similarly, several configurations for the timeseries database
and message queue are configurable. Also, the logging level
can be changed at runtime. This turned out to be very
important since the logging level can be increased for
debugging purposes and reset after having detected issues.

In the architecture, a thing description (TD) plays an
important role, particularly to describe the sensors.
Whenever new sensors are delivered by a device, via
OPCUA or MODBUS connectors, the software components
become aware of new sensors by receiving the enhanced TD

111Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

with new sensors by means of configuration. Hence, data
from new sensors can be processed immediately.

It could happen that a container behaves badly. A
configuration parameter is used to enforce a restart, maybe
with changing parameters.

Further configurations are used for bypassing
components. For instance, the Inserter can be configured to
directly forward data to the Cloud, then skipping the
BulkTransfer and allowing for data processing in a streamed
manner in the Cloud. However, due to our experiences, this
is only useful for smaller amounts of data due to higher costs
for the IoT solutions of Cloud vendors.

V. RELATED WORK

There are many reference architectures for IoT, edge, and
fog computing [2][4][5][11][13][14][17][19][25][35] in the
literature. They provide generic taxonomies for the
components of IoT platforms and differentiate several
functional components, such as device, sensor, actuator, and
gateway. Reference architectures then pose components in
three [39] or more layers [12]. They all have in common to
pay no attention on how to configure components properly.

State-of-the-art reviews, such as [32] – despite discussing
so far unsolved challenges in the field of edge applications –
also do not mention configuration problems, especially in
case of unreachable devices as a challenge.

Several approaches could benefit from such an approach
despite not mentioning configuration issues. For example,
Stankovski et al. [26] proposed a distributed self-adaptive
architecture for container-based technologies to ensure the
QoS for time-critical applications. Monitoring data is used to
allocate required resources for each container; end-users,
application developers and/or administrators can define
operational strategies to handle resources in a better manner.
Indeed, these strategies are a form of configuration.

CloudScale is a monitoring system proposed by [21]. The
system analyses the performance of distributed applications
at runtime, thereby adopting user-specified scaling policies
for provisioning and de-provisioning of virtual resources.
Policies are again another type of configuration.

Olorunnife et al [24] evaluate various approaches for
failure recovery for IoT applications. Monitoring the output
of IoT applications. Their approach automatically diagnoses
faults with IoT devices and gateways; and effectively
manages and re-configures container-based IoT software to
achieve a minimal downtime upon the detection of software
failures. This technique can particularly be applied to
scenarios where IoT software is deployed in embedded or
hard to reach scenarios, i.e., with difficult or no physical
access. But this approach merely focuses on automatic
recovery without any interaction from the outside.

VI. CONCLUSIONS

In this paper, we discuss the problem of configuring
devices that are unreachable from the Internet in the context
of Internet-of-Things (IoT).

We motivate the need for configurations by presenting
typical examples such as Cron schedules for running
periodical jobs, parameters or thresholds for components,

changing credentials because of password rotation to name a
few. Especially the latter one is required in industrial settings
due to high security requirements where passwords must be
renewed regularly. These kinds of configurations are usually
indispensable for an effective operation in industrial
contexts. However, if devices are unreachable by the
Internet, operators have to perform configurations at the
device site causing efforts and costs.

The approach that is pursued to solve this issue is
discussed in detail. There is mainly a central service running
in the Cloud to keep configurations. New configurations can
be submitted to that service. Each IoT device is equipped
with a component that polls the central service periodically
about configuration changes and distribute configurations to
the components running in that device

 We evaluate the approach in a real industrial application
where several types of configurations are required.

Our future work will evaluate even more complex
scenarios, such as enabling or disabling components in the
architecture at runtime. We also want to investigate the
impact of the approach on the overall system performance.
Moreover, we want to tackle further industrial issues for IoT
devices, such as enhancing fault tolerance by self-healing
and monitoring.

REFERENCES

[1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aled-hari, and M.
Ayyash, “Internet of Things: A Survey on Enabling Technologies
Protocols and Applications”, IEEE Communications Surveys
Tutorials, Vol. 17 (4), pp. 2347-2376, June 2015, ISSN 1553-877X.

[2] M. Aazam, I. Khan, A. Alsaffar, and E. Huh, “Cloud of Things:
Integrating Internet of Things and Cloud Computing and the Issues
Involved”, Int. Bhurban Conf on applied sciences and technology.

[3] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A
Survey”, Computer Networks 2010, Vol. 54 (15), pp. 2787–2805.

[4] M. Bauer, M. Boussard, N. Bui, J. C. De Loof, C. Magerkurth, S.
Meissner, A. Nettsträter, J. Stefa, M. Thoma, and J. W. Walewski,
“IoT Reference Architecture. In: Enabling Things to Talk: Designing
IoT solutions with the IoT Architectural Reference Model”, Springer
Berlin Heidelberg 2013.

[5] S. Biswas and S. Misra, “Designing of a Prototype of e-Health
Monitoring System”, IEEE Int. Conf on Research in Computational
Intelligence and Communication Networks (ICRCICN) 2015, pp.
267–272.

[6] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, “Fog Computing: A
Platform for Internet of Things and Analytics”, Big Data and Internet
of Things: A roadmap for smart environments, pp. 169–186.
Springer.

[7] B. Costa, J. Bachiega, R. Carvalho, M. Rosa, and A. Araujo,
“Monitoring Fog Computing: A Review, Taxonomy, and Open
Challenges”, Computer Networks Vol. 215, Elsevier 2022, pp. 1–30.

[8] “Remote Services – For the High-Performance Operation of Your
Plant”, https://www.siemens.com/global/en/products/services /digital-
enterprise-services/field-maintenance-services/remote-services.html)
[retrieved: March, 2025].

[9] B. Dorsemaine, J.-P. Gaulier, J.-P. Wary, N. Kheir, and P. Urien,
“Internet of Things: a Definition & Taxonomy”, 9th Int. Conf on
Next Generation Mobile Applications, Services and Technologies,
ISBN 978-1-4799-8660-6/15, 2015.

[10] K. Fatema, V. Emeakaroha, P. Healy, J. Morrison, and T. Lynn, “A
Survey of Cloud Monitoring Tools: Taxonomy, Capabilities and
Objectives”, Journal of Parallel and Distributed Computing
2014, Vol. 74 (10), pp. 2918–2933.

112Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

https://www.siemens.com/global

[11] J. Guth, U. Breitenbucher, M. Falkenthal, F. Leymann, and L.
Reinfurt, “Comparison of IoT Platform Architectures: A Field Study
Based on a Reference Architecture”, Cloudification of the Internet of
Things (CIoT) 2016, pp. 1–6.

[12] J. Guth, U. Breitenbücher, M. Falkenthal , P. Fremantle, O. Kopp, F.
Leymann, and L. Reinfurt , “A Detailed Analysis of IoT Platform
Architectures: Concepts, Similarities, and Differences”, Internet of
Everything: Algorithms, Methodologies, Technologies and
Perspectives, Springer 2018, pp. 81-101.

[13] J. Gubbi, R. Buyya, and S. M. P. Marusic, “Internet of Things (IoT):
A Vision, Architectural Elements, and Future Directions”, Future
Generation Computer Systems 2013, Vol. 29 (7), pp. 1645–1660.

[14] S. A. S. Haller, M. Bauer, and F. Carrez, “A Domain Model for the
Internet of Things”, Proc. of IEEE Int. Conf on Green Computing and
Communications and IEEE Internet of Things and IEEE Cyber
Physical and Social Computing. IEEE (2013).

[15] B. Hazarika and T. J. Singh, “Survey paper on Cloud Computing &
Cloud Monitoring: Basics”, SSRG Int. Journal on Comput. Science
Engineering 2015, Vol. 2 (1), pp. 10-15, ISSN:2348–8387.

[16] J. Kua, G. Armitage, P. Branch, and J. But, “Adaptive Chunklets and
AQM for Higher-Performance Content Streaming”, ACM
Transactions on Multimedia Computing, Communications, and
Applications (TOMM) 2019, Vol. 15, pp. 1–24

[17] J. Kim, J. Lee, J. Kim, and J. Yun, “M2M Service Platforms: Survey,
Issues, and Enabling Technologies”, IEEE Communications Surveys
& Tutorials 2014, Vol. 16 (1), pp. 61–76.

[18] J. Kua, S. H. Nguyen, G. Armitage, and P. Branch, “Using Active
Queue Management to Assist IoT Application Flows in Home
Broadband Networks”, IEEE Internet of Things Journal 2017, Vol 4
(5), pp. 1399–1407.

[19] S. Krco, B. Pokric, and F. Carrez, “Designing IoT and
Architecture(s)”, In: Proc. of the IEEE World Forum on Internet of
Things (WF-IoT). IEEE (2014).

[20] S. Karumuri, F. Solleza, S. Zdonik, and N. Tatbul, “Towards
Observability Data Management at Scale”, ACM SIGMOD Record,
Vol. 49, pp. 18–23.

[21] P. Leitner, C. Inzinger, W. Hummer, B. Satzger, and S. Dustdar,
“Application-level Performance Monitoring of Cloud Services Based
on the Complex Event Processing Paradigm”, Proc. of 5th IEEE Int.
Conf. on Service-Oriented Computing and Applications (SOCA’12).
IEEE, Taipei, Taiwan, pp. 1–8.

[22] I. Lee and K. Lee, “The Internet of Things (IoT): Applications,
Investments, and Challenges for Enterprises”, Business Horizons
2015, Vol. 58 (4), pp. 431–440.

[23] N. Marz: “How to Beat the CAP Theorem”, 13 October 2011.
http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html
[retrieved: March, 2025].

[24] K. Olorunnife, K. Lee, and J. Kua, “Automatic Failure Recovery for
Container-Based IoT Edge Applications”, Electronics 2021, Vol. 10.

[25] V. Prasad, M. Bhavsar, and S. Tanwar, “Influence of Montoring: Fog
and Edge Computing”, Scalable Computing: Practice and Experience
2019, Vol. 20 (2), pp. 365-376.

[26] V. Stankovski, J. Trnkoczy, S. Taherizadeh, and M. Cigale,
“Implementing Time-Critical Functionalities with a Distributed
Adaptive Container Architecture”, Proc. of 18th Int. Conf. on
Information Integration and Web-based Applications and Services
(iiWAS2016). ACM, Singapore, pp. 455–459.

[27] W. Shi and S. Dustdar, “The promise of Edge Computing”,
Computer, Vol. 49 (5), pp. 78–81, May 2016.

[28] K. Saharan and A. Kumar, “Fog in Comparison to Cloud: A Survey”,
Int. Journal of Computer Applications, Vol. 122 (3), 2015.

[29] E. Solaiman, R. Ranjan, P. P. Jayaraman, and K. Mitra, “Monitoring
Internet of Things Application Ecosystems for Failure”, IT
Professional 2016, Vol. 18 (5), pp. 8–11.

[30] M. Satyanarayanan, P. Simoens, Y. Xiao et al., “Edge Analytics in
the Internet of Things”, IEEE Pervasive Computing 2015, Vol. 14 (2),
pp. 24–31.

[31] A. Srinivasa and D. Siddaraju, “A Comprehensive Study of
Architecture, Protocols and Enabling Applications in Internet of
Things (IoT)”, Int. Journal of Science & Technology Research 2019,
Vol. 8, Issue 11.

[32] S. Taherizadeh, A. Jones, I. Taylor, Z. Zhao, and V. Stankowski,
“Monitoring Self-Adaptive Applications within Edge Computing
Frameworks: A State-of-the-Art Review”, Journal of Systems and
Software 2018, Vol 136, pp. 19-38.

[33] M. Villari, M. Fazio, S. Dustdar, O. Rana, and R. Ranjan, “Osmotic
Computing: a New Paradigm for Edge/Cloud Integration”, IEEE
Cloud 2016.

[34] Web of Things in a Nutshell.
https://www.w3.org/WoT/documentation [retrieved: March, 2025]

[35] L. D. Xu, W. He, and S. Li, “Internet of things in industries: A
survey”, IEEE Transactions on Industrial Informatics Vol. 10 (4).

[36] F. Xia, L. T. Yang, L. Wang, and A. Vinel, “Internet of Things”, Int.
Journal of Communication Systems 2012, Vol. 25 (9), pp. 1101–
1102.

[37] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang,
“A Survey on the Edge Computing for the Internet of Things”, IEEE
Access 2018, Vol 6, pp. 6900–6919.

[38] S. Yi, C. Li, and Q. Li, “A Survey of Fog Computing: Concepts,
Applications and Issues”, Proc. of Workshop on Mobile Big Data.
(Mobidata 2015), pp. 37–42.

[39] L. Zheng, H. Zhang, W. Han, X. Zhou, J. He, Z. Zhang, Y. Gu, and J.
Wang, “Technologies, Applications, and Governance in the Internet
of Things”, Internet of Things – Global Technological and Societal
Trends. River Publishers (2009).

113Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html
https://www.w3.org/WoT/documentation

