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Abstract—Kubernetes has become a widespread orchestrator
for cloud workloads but with increasing demand for compute the
need arises to also access HPC environments that are operated
via batch schedulers such as Slurm. A number of solutions for
combining Slurm and Kubernetes are available, which can be
categorized further based on the interaction between Slurm and
Kubernetes that they provide. In this paper, we consider the use
case of utilizing an existing Slurm cluster to run Kubernetes
workloads. For this, we introduce a new solution called Kind
Slurm Integration (KSI) based on Kind and rootless Podman and
compare it based on performance, usability and maintainability
to the existing solutions Bridge Operator and High-Performance
Kubernetes (HPK). We found that Bridge Operator provides
native performance as it effectively submits Slurm jobs through
a Kubernetes interface and that HPK provides good performance
by creating almost feature complete Kubernetes clusters on top
of Apptainer. KSI on the other hand is able to provide fully
functional Kubernetes clusters inside Slurm jobs but lacks behind
in network performance. Overall, we conclude that more work
is needed to run Kubernetes workloads under Slurm without
missing out on features or performance.
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I. INTRODUCTION

Kubernetes has established itself as a widespread solution for
orchestration of cloud workloads [1][2] and is used for various
workloads including service computing, running large amounts
of micro services, as well as batch jobs, such as data analytics
or machine learning. However, batch jobs would fit better into
HPC environments where powerful high-performance compute
and networking resources are available. HPC workloads are
commonly scheduled using a batch scheduler such as Slurm [3]
but Kubernetes itself can also be used for scheduling HPC jobs
using a batch scheduler such as Volcano [4] and have already
been scaled to large clusters using appropriate workarounds [5].
Nevertheless, while Kubernetes brings a large array of features,
its virtualization layers incur a performance overhead compared
to bare metal performance [6], which one could achieve with
Slurm.

Users might want to bring their Kubernetes workloads into
Slurm-based HPC environments to benefit from the reduced
overhead compared to a regular Kubernetes cluster or to
gain access to additional compute hardware, which could
also include specialized hardware only available in HPC
environments. Rewriting Kubernetes workloads to be executable
in Slurm may require significant effort and expertise with
the scheduling systems. However, various approaches and
implementations exist for combining Slurm and Kubernetes
enabling users to dynamically move workloads between cloud
and HPC environments.

As there have been various efforts to combine Kubernetes and
Slurm, we consider the definition by Wickberg of Schedmd [7]
who defines four categories from the perspective of Slurm for
such approaches.

• Over: The entire Kubernetes environment exists within a
Slurm job and is therefore temporary as it is fully removed
once the job completes.

• Distant: Compute nodes are part of either a Kubernetes or
a Slurm cluster and may be moved between the clusters.

• Adjacent: Slurm and Kubernetes utilize some form of
plugins or bridging tools to cooperate but can still be used
individually.

• Under: Kubernetes runs a Slurm cluster within its own
environment across one or more pods.

Given the above use case of running Kubernetes jobs in an
existing Slurm environment, this fits the Over or Adjacent
model. After investigating existing solutions that implement
either of these models we found various approaches that provide
the Adjacent model but no system for having a Kubernetes
cluster running within a Slurm job as described in the
Over model. Therefore, we present Kind Slurm Integration
(KSI) [8], an implementation of the Over model based on Ku-
bernetes in Docker (Kind) [9]. We systematically evaluate and
compare KSI to existing solutions including Bridge Operator
by IBM [10], WLM-Operator by Sylabs [11], kube-slurm
by Kalen Peterson [12] and High-Performance Kubernetes
(HPK) [13].

Our evaluation consists of a review of the state of the respec-
tive projects with regard to features and maintainability as well
as a performance analysis to determine the overhead incurred
by the respective approach. For this purpose, we benchmarked
the solutions based on workload startup time, CPU compute
performance, memory throughput, storage throughput, network
latency and network throughput, and compared the results
to bare metal. We found that not all of the implementations
listed above were able to pass a minimal functionality test. For
those that passed, no significant differences in CPU compute
performance, memory throughput and storage throughput were
found. While our own solution, KSI, is outperformed by the
others in terms of startup time and network performance, it still
provides the most complete support for Kubernetes features
compared to the others.

Overall this paper contributes a systematic evaluation of
existing approaches that implement the Adjacent or Over
model to combine Slurm and Kubernetes, the design and
implementation of a proof-of-concept for KSI and a final
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overview of the features and limitations of the evaluated
approaches. The work shown in this paper is based on the
master’s thesis of one of the authors [14].

The remainder of the paper is organized as follows: In
Section II the various implementations for integrating Slurm
and Kubernetes are discussed. The methods for benchmarking
and comparing the solutions as well as the design of KSI are
discussed in Section III. The results of the evaluation are given
in Section IV. Finally, Section V provides the conclusion and
outlook for future work.

II. RELATED WORK

To properly distinguish various approaches for combining
Slurm and Kubernetes, we discuss the four models along with
notable examples. We also cover related approaches that do not
use either Slurm or Kubernetes and then have a more in-depth
look at the implementations, which we evaluated in this paper.

A. Models for Integrating Slurm and Kubernetes

The four categories for combining Slurm and Kubernetes
defined by Wickberg of Schedmd [7] are Over, Distant,
Adjacent and Under as defined in Section I.

a) Distant model: Notable implementations include [15]
and [16], which both implement systems for dynamically
changing the partitioning of a node pool between a Kubernetes
and Slurm cluster.

b) Under model: Contributions have been made in
[17], [18] and [19], in which Slurm is being run as a set
of Kubernetes pods. A significant project in this category is
Slinky [20] by Schedmd who had created a Slurm Kubernetes
bridge implementation as a proof-of-concept before creating
Slinky. The proof-of-concept implementation followed the
Adjacent model, was not functional and has since then been
removed from public access.

c) Adjacent model: Approaches in this category are
relatively diverse in their approaches including Bridge Op-
erator [10], WLM-Operator [11] and HPK [13]. Each of these
approaches is discussed in more detail in Subsection II-C.

d) Over model: There are no notable implementations of
this model except for KSI [8], which is presented in detail in
Subsection III-B.

B. Other Approaches for Integrating HPC and Cloud

While this work focuses on combining Slurm and Kubernetes
it should be noted that there are alternative approaches to
running HPC workloads through a cloud interface. For example,
as mentioned in Section I, Volcano [4] is an extension for
the Kubernetes scheduler, which implements features such as
batch and gang scheduling. This enables the execution of batch
workloads as shown in [21][22].

Another notable approach is hpc-connector [23] presented in
[16], which enables the submission of jobs through an arbitrary
cloud interface to be executed via Slurm. This approach can
be considered similar to Bridge Operator but is not bound to
Kubernetes but also lacks deeper integration with any specific
cloud platform to enable advanced features.

Finally, there is [24] who integrated TORQUE [25] with
Kubernetes, enabling scheduling of HPC workloads through
Kubernetes to TORQUE similar to the Adjacent model.

C. Implementations for Adjacent Slurm and Kubernetes

1) WLM-Operator: Sylabs Inc. had developed the WLM-
Operator [26] and Singularity-CRI [27] with Singularity-CRI
providing a Kubernetes-compatible implementation of the
Container Runtime Interface for Singularity [11]. The WLM-
Operator implements a Kubernetes operator that is able to
interface with Slurm such that Slurm nodes become visible in
Kubernetes as virtual nodes.

Moreover, it provides a Custom Resource Definition (CRD)
in Kubernetes called SlurmJob, which enables the submission of
Slurm jobs through Kubernetes. When submitting a SlurmJob,
a dummy pod is created in Kubernetes and the actual job is
submitted to Slurm to be run in a Singularity container. The
results are then collected through another pod via a shared
storage before closing the dummy pod once the job completes.

However, on December 30th 2020, both WLM-Operator and
Singularity-CRI projects have been archived with no further
development planned.

2) Bridge Operator: IBM had developed Bridge Opera-
tor [28] in order for a Kubernetes cluster to be able to access ex-
ternal compute resources including Slurm clusters [10]. Bridge
Operator implements a Kubernetes operator and provides the
BridgeJob CRD, which accepts all the details required to launch
a Slurm job including the remote URL of a Slurm cluster, what
resources to request and a remote storage configuration.

For each BridgeJob, the Bridge Operator starts a monitoring
pod and submits the job to Slurm. The monitoring pod regularly
updates a Kubernetes ConfigMap with the current status and
fetches the job output. The creators of Bridge Operator have
also demonstrated how to run Kubeflow workloads through
BridgeJobs [29], however, as these jobs are converted to Slurm
jobs, the Kubernetes pods are not directly being run in Slurm.

3) HPK: HPK [30] is presented in [13] and [31] as a way
to run Kubernetes workloads on Slurm through Apptainer [32].
It is deployed as a single Apptainer container that runs the
Kubernetes control plane and a custom implementation of
virtual Kubelet [33], which presents an entire Slurm cluster
as a single node in the cluster. Whenever a new pod is to be
scheduled, it submits a job through Slurm for the pod to be
started as a container using Apptainer.

For the container networking to function, it relies on Flanneld
service [34] to be installed on the nodes and the Flannel-
CNI plugin [35] to be installed for Apptainer. However, only
headless services without cluster IPs are supported as the
additional layer of load balancing is not possible with the used
networking stack. Moreover, the command kubectl exec,
which is used to execute commands inside Kubernetes pods,
is not supported.

4) Kube-Slurm: The kube-slurm project [12] provides a tool
for controlling Kubernetes resources using Slurm jobs. When
deploying, Slurm and Kubernetes must both be installed on the
same set of nodes with kubectl available on all nodes. Once

101Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization



deployed, users can submit Slurm jobs, which get scheduled
by the tool as Kubernetes pods onto the nodes selected by the
Slurm scheduler.

The deployment can also be completed with the Under
model by having Slurm run within Kubernetes but still using
Slurm to schedule the pods. Nevertheless, due to the way the
access is provided to the Slurm scheduler, all users receive the
same access to the Kubernetes cluster making this approach
unfit for multi-user setups with potentially malicious users.

III. METHODOLOGY

This work focuses on approaches for combining Kubernetes
and Slurm that allow running workloads on an existing Slurm
cluster following the Over or Adjacent model and investigates
the suitability of the existing solutions. For that purpose we
define the following research questions:

RQ1 Can workloads be submitted using Kubernetes tooling,
e.g., kubectl?

RQ2 Can workloads be scheduled and executed on machines
managed by an existing Slurm cluster without root access?

RQ3 Can workloads be executed across multiple machines in
parallel?

RQ4 What is the performance overhead imposed by the tool?
RQ5 Is the tool easy to operate for the end user?
RQ6 Is the tool well maintained?
RQ1, RQ2 and RQ3 define the functional requirements. For
a solution to be a valid approach for utilizing a Slurm cluster
through Kubernetes, it should answer yes to at least RQ1
and RQ2 with a yes to RQ3 being desirable but not strictly
required. Notably, these requirements do not include whether
a solution must be able to run Kubernetes workloads or if it
may run Slurm workloads through a Kubernetes interface. For
example, Bridge Operator accepts Slurm workloads submitted
through Kubernetes while HPK takes Kubernetes workloads
submitted through a Kubernetes interface, with both executing
the workloads on a Slurm cluster. Moreover, the distinction
between the Over and Adjacent model breaks down to whether
the deployment requires an existing component, such as a
Kubernetes cluster, to be running before the Slurm job that
will handle the target workload is submitted.

RQ4 is concerned with the performance cost of a given
solution. Depending on the architecture and optimization a
given implementation may cost additional compute power or
delay the start of workloads, which should be minimal for an
application to fully harvest the power of HPC machines.

RQ5 and RQ6 cover the usability and maintainability of
a given software providing an indication for the viability in
productive use.

While RQ1, RQ2 and RQ3 can be answered as yes or no
questions, RQ4, RQ5 and RQ6 require a graded answer. We
use a three point scoring from + (positive) over o (average)
to - (negative) to be able to quickly compare the results for
multiple implementations. + is the best score, which is given
if the implementation fulfills the requirements without any
significant drawbacks. o is the middle score, which indicates

that some limitations apply and - is the lowest score, which
applies if significant shortcomings exist.

A. Selection of Implementations to Evaluate

In Section II-C we had introduced the WLM-Operator,
Bridge Operator, HPK and Kube-Slurm. Before starting our
evaluation we performed a minimal functionality test and
found that the latest version of WLM-Operator is no longer
functional on recent operating systems. Despite our best efforts
and reaching out to Sylabs, we were unable to reproduce the
minimal examples in the repository. Therefore, WLM-Operator
can be considered retired and we will not further consider it.

Kube-Slurm requires the installation of a Kubernetes cluster
on all nodes as part of its deployment, which violates RQ2
that it must be able to operate without root access. Therefore,
we will not further consider Kube-Slurm.

This only leaves HPK and Bridge Operator as viable targets
for further evaluation along with KSI, which is introduced in
the next section. However, when testing Bridge Operator we
ran into a number of issues, which we reported on Github and
created a pull request [36] with our code adjustments.

B. Kind Slurm Integration (KSI) Design

Our main objectives of designing another approach for
combining Slurm and Kubernetes were that it should follow
the Over model and support all Kubernetes features. Following
the Over model, KSI can be run strictly inside Slurm jobs
without relying on external components. This was important to
us, as our use case involved a multi-user HPC system in which
the users of KSI would not be able to deploy a control plane
outside of Slurm jobs as it is required by HPK. Moreover, as
we could not find any existing projects employing the Over
model, we consider this a research gap.

We utilized rootless Kind [9] via its experimental Podman
support to create a script that receives a Kubernetes workload,
initializes a cluster inside a Slurm job, executes the workload
and then closes the cluster as the Slurm job ends. Before
settling on rootless Kind, we also considered Minikube [37],
K3D [38] and Usernetes [39] but found rootless Kind to be the
most suitable.

Kind [40] was developed with local development and au-
tomatic testing of Kubernetes in mind. It can deploy a fully
functional Kubernetes cluster on a single node by deploying a
"node" image, which internally runs another container runtime
from which all containers belonging to the cluster are run. From
the perspective of the host system, only a single container is
running for the control plane node of the cluster. Moreover, by
deploying multiple "node" images on the same host, Kind can
simulate a multi-node cluster.

For operating KSI inside of Slurm jobs without access to root
permissions, which are required for regular container operation,
we employ rootless Kind [9]. Rootless Kind relies on a container
runtime, in our case Podman, which uses Cgroups v2 features
to run rootless containers. Besides Cgroups v2, Podman also
relies on the shadow-utils package, which provides subuids
and subgids for user namespaces.
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However, Kind itself is not designed for multi-node clusters
across multiple physical machines or VMs, so in order to
achieve RQ3, we would require a tool such as Kilo [41]
or Liqo [42]. With these it is possible to aggregate multiple
Kubernetes cluster into a single cluster by representing each
cluster as a virtual Kubelet in the main cluster. With this KSI
could be deployed across a number of nodes in a multi-node
Slurm job and all the worker nodes would use Kilo or Liqo
to register with the cluster on the main node, which in turn
would be able to schedule work across all nodes. When using
this approach, each node has to run KSI and initialize its own
Kubernetes cluster, which includes running all control plane
components, before joining together via Kilo or Liqo to form
a single cluster. We have not implemented this feature for the
version of KSI under evaluation in this paper, but expect that
the same overhead, in terms of CPU and memory consumption
by the control plane components that applies to a single node
running KSI, would then also apply to each individual node
in such a multi-node setup.

In order to deploy KSI, the nodes must provide a recent
Linux operating system with support for Cgroups v2, rootless
Podman must be set up, as well as slirp4netns [43], to provide
networking for rootless Podman. Since the experiments for this
work have concluded, Podman 5.0 [44] was released, which
uses pasta [45] as its default rootless network driver instead
of slirp4netns. Workloads can be configured and embedded
via run-workload.sh, which sets up the Kubernetes
cluster when submitted via Slurm. srun -N1 /bin/bash
run-workload.sh example-workload.sh would set
up a single node cluster and then run the workload described
in example-workload.sh. The workload script should
internally use kubectl to create the required Kubernetes
resources and then wait for the workload to finish. Upon
completion of the workload script, the cluster is stopped and
removed such that the Slurm job is also closed.

The produced KSI code, documentation and workload
examples are released under the GPL-3.0 license on Github [8].

C. Performance Evaluation

To assess the performance overhead to answer RQ4 we have
broken down our benchmarking into the following factors:

• Startup time: Measured with a dummy workload
• CPU compute performance: Measured with Sysbench [46]
• Memory throughput: Measured with Stream [47]
• Storage throughput: Measured with Fio [48]
• Network latency: Measured with Netperf [49]
• Network bandwidth: Measured with iPerf3 [50]

We consider these as representative factors for user workloads
that might be run through any of the tools under study.

As the bare metal baseline we run the benchmarks through
Slurm without Kubernetes. All benchmarks were run on two
machines with hardware specifications as shown in Table I.
On the nodes we used software versions as shown in II. The
Kubernetes version v1.27.3 is the most recent version at the
time of the experiments and was used for the external cluster
for the Bridge Operator as well as by KSI. HPK, however, is

TABLE I. HARDWARE SPECIFICATIONS OF THE BENCHMARK MACHINES.

CPU Intel(R) Xeon(R) CPU E5-2695 v3
CPU Sockets 2
Cores per socket 14
Threads per core 2
Total threads 56
RAM 24 DIMMs DDR4 16 GB 1866 MHz
Total RAM 384.00 GB
Storage 1 Verbatim Vi550 S3 SATA Revision 3.2 SSD
Total storage 128.00 GB
Network interface QLogic BRCM 10G/GbE 2+2P 57800-t rNDC

pinned to v1.25.0 in its code base. Furthermore, we disabled
SELinux, swap and write caching to more clearly measure the
respective factors.

TABLE II. SOFTWARE VERSIONS OF THE BENCHMARK MACHINES.

Linux OS CentOS Stream 9
Slurm 23.02.5
Podman 4.6.1
slirp4netns 1.2.2-1
Kind 0.20.0
Kubectl v1.28.2
Kubernetes v1.27.3
HPK Kubernetes v1.25.0
shadow-utils 2:4.9-8

D. Project State Evaluation

Evaluating the maintainability and usability of software has
been studied extensively [51][52] with many tools and methods
having been proposed. For this work, in order to answer RQ5
and RQ6, we have to consider what methods to employ.

In order to grade usability we consider the state of the
available documentation as well as the difficulty of setting
up and operating the respective tools for an assumed non-
expert user based on our own experience of working with
the tools during this study. For grading maintainability we
reviewed the state of the code bases based on its complexity,
whether it has been kept up-to-date and how well issues are
being addresses. Moreover, we consider that a code base that
does a comparatively simple job while relying on more well
maintained dependencies is itself more maintainable than a
larger code that has more moving parts that may require
maintenance.

We acknowledge that more sophisticated methods are avail-
able but consider our approach sufficient to compare three
projects on a three point grading schema.

IV. RESULTS

The commit hashes of the implementation versions used in
our tests are as follows:

• Bridge Operator: 56334fa57caf2de28df6ff76df8a6e6232021421
• HPK: a902acbf2436e8a85a4620fddfa5745523f443d4

• KSI: 780ef3a0562ad4bb12611f9ef43fa743fe0277d0

A. Functional Requirements

For all Bridge Operator, HPK and KSI, the answer to RQ1,
RQ2 and RQ3 is yes with the exception that KSI requires
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an additional integration with Kilo, Liqo or a similar tool to
support multi-node execution, which has not been implemented
yet.

B. Project State

a) Bridge Operator: When submitting a workload through
Bridge Operator, it requires the user to create an instance of
the CRD BridgeJob. With that no understanding of Slurm by
the user is required. However, the available documentation for
Bridge Operator is limited with some examples not working
such that a patch was required to make it work [36]. While the
project itself depends only on the Slurm REST API giving it a
stable foundation, the project itself seems abandoned with no
activity after late 2022. Due to this, we rate it o in both usability
and maintainability. We would have rated + for usability if
the examples were all functional and for maintainability if the
project was actively being maintained.

b) HPK: Similar to Bridge Operator, HPK can be
controlled directly through kubectl without additional un-
derstanding of Slurm by the user. Nevertheless, while its
documentation is also limited, after we had completed our
experiments [30] was released along with v0.1.2 of HPK
containing a number of bug fixes. This shows that the project
is being actively developed, moreover, when we ran into issues,
we quickly received community support from the maintainers.
With this we rate the maintainability as + and the usability
as o because in addition to the points mentioned above, HPK
does not support certain Kubernetes features, most notably
kubectl exec and services, such that users need to work
around these limitations.

c) KSI: Unlike the other two tools, KSI is started via
Slurm as it has no active component outside of the Slurm job.
Its usage is documented with several examples and it depends
on Podman and Kind, which are both well maintained projects.
The project delivers a feature complete Kubernetes cluster via
a set of scripts making it both usable and maintainable so
we rate KSI + for both factors. However, as KSI is our own
creation, we cannot claim that this evaluation is unbiased and
should be regarded as such.

C. Performance

The benchmarking scripts, as well as the raw test data, are
available online [53]. Each benchmark was repeated 10 times
to minimize random error with the standard deviation shown
in the graphs.

TABLE III. WORKLOAD STARTUP TIME, LOWER IS BETTER.

Integration Approach Startup Time [s]
bare metal 0.141
Bridge Operator 2.725
HPK 2.497
KSI 53.921

1) Startup Time: The startup delays given in Table III have
negligible standard deviation and show that Bridge Operator
and HPK start a workload in 2 to 3 seconds while KSI requires
almost one minute. This result is as expected since Bridge

Operator and HPK already have an active Kubernetes cluster
running before they submit their Slurm job while KSI has to
set up a Kubernetes cluster from scratch. Considering that HPC
workloads often run for multiple hours, one minute extra start
up time is not great but acceptable. Due to this we rate Bridge
Operator and HPK with + and KSI with o.

Figure 1. CPU compute perfor-
mance results using Sysbench.

Figure 2. Memory throughput results
using Stream.

2) Compute Performance: Figure 1 shows that Bridge Op-
erator and bare metal are effectively on the same performance
level while HPK and KSI are slightly lower than bare metal
(2.7% and 3.4%, respectively). The difference arises due to
the virtualization overhead and additional active components
running for HPK and KSI but is overall negligible such that
we rate all approaches with +.

3) Memory Performance: Figure 2 shows similar to Figure 1
only minor differences for HPK and KSI due to the additional
active components and virtualization such that we also rate all
with + here.

Figure 3. Storage throughput results using Fio and sequential operations.

Figure 4. Storage throughput results using Fio and randomized operations.
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4) Storage Performance: The sequential read and write
shown in Figure 3 shows a similar pattern as the random read
and write shown in Figure 4 with Bridge Operator being on
the same level as bare metal and HPK and KSI lacking behind.
More specifically HPK is about 11% slower in sequential and
5% slower in random reading and KSI is overall 17% slower
in reading and 13% slower in writing than bare metal. These
differences can also be attributed to the additional virtualization
and overall resource consumption. While 17% slower reading
is not good we rate it still as acceptable so HPK and KSI are
rated as o and Bridge Operator as +.

Figure 5. Network latency results using Netperf.

Figure 6. Network bandwidth results using iPerf3.

5) Network Performance: For these benchmarks, the re-
spective tool executed a workload containing a test client that
executed the network benchmark against a server running on
the other of the two nodes in our test setup. What is shown as
the bare metal latency and throughput are therefore the latency
and peak throughput between the two nodes. Figure 5 shows
network latency with all solutions on the same level except
for KSI, which is 42% slower than bare metal. In Figure 6 the
network throughput is even worse for KSI with HPK already
being 21% slower than bare metal, KSI is 93.5% slower. As KSI
operates via rootlesss Podman, it uses slirp4netns as its driver,
which according to the Podman documentation [54] results in
degraded performance compared to rootful Podman networking.
Since our experiments concluded, pasta had replaced slirp4netns
as the default network driver for rootless Podman, which
promises better performance but initial tests could not show

a significant overall improvement [55]. Our ratings are + for
Bridge Operator, o for HPK and - for KSI.

D. Evaluation

TABLE IV. PROJECT ASSESSMENT REGARDING QUALITY REQUIREMENTS.
* SELF-EVALUATION OF KSI IS NOT UNBIASED.

Project RQ4 RQ4 RQ4 RQ4 RQ5 RQ6
Startup Comp. Storage Net. Usab. Maintainab.

B-O + + + + o o
HPK + + o o o +
KSI o + o - +∗ +∗

Table IV summarizes the ratings we have assigned through-
out this section with Startup, Compute, Storage and Network
performance all aiming at RQ4 and Usability and Maintain-
ability aiming at RQ5 and RQ6, respectively.

Bridge Operator has shown performance close or identical
to bare metal, which is as expected since it effectively submits
a Slurm job through Kubernetes and does not start additional
software in that Slurm job. This brings some limitations as
it is not actually running a given workload using Kubernetes.
Nevertheless, it has presented itself as a valid approach for
extending a Kubernetes cluster via access to a Slurm cluster.

HPK provides a good middle ground for running Kubernetes
jobs on Slurm with some performance deficiencies compared
to bare metal. If WLM-Operator would be functional, we
would have probably seen similar performance to HPK as
WLM-Operator is based on Singularity and HPK is based on
Apptainer and both projects still share the majority of their
implementation. While HPK does not support all Kubernetes
features, e.g., services and kubectl exec are not supported,
it provides a solid choice for natively running Kubernetes
workloads through Slurm.

KSI is functionally the most complete Kubernetes environ-
ment within a Slurm job and requires no external parts to
be started and kept running outside of it. This comes with
performance costs, as KSI shows the weakest performance in
all benchmarks, especially in startup time and networking.
The slow startup time is understandable as KSI has to
bootstrap the Kubernetes control plane and cannot rely on
an existing Kubernetes cluster. For network performance, KSI
relies on slirp4netns, which is known for causing performance
degradation [54]. While other network drivers are available they
are necessarily a silver bullet to resolve this issue [55].

All the projects suffer from being either only proof-of-
concept implementations, not having being maintained or not
being properly documented such that none of them provide
a production ready solution for running Kubernetes inside of
Slurm jobs.

V. CONCLUSION AND FUTURE WORK

In this paper, we analyzed the state of solutions for
combining Slurm and Kubernetes with the goal to enable
dynamic computation between either environment. We focused
on a subset of the available solutions to support our use case
of running Kubernetes workloads on an existing Slurm cluster.
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For this purpose, we introduced our own solution KSI,
which is based on Kind and rootless Podman and is able
to deploy a fully functional Kubernetes cluster inside a Slurm
job. From the available solutions we took a closer look at
Bridge Operator, HPK and KSI and found that they fulfill our
functional requirements, except for KSI, for which multi-node
support has not been implemented yet. We further evaluated
their performance and reviewed the state of their respective
implementations.

We found that Bridge Operator delivers effectively bare
metal performance equal to directly running a job through
Slurm as this is effectively what Bridge Operator does. HPK
established itself as a middle ground solution, providing an
almost fully functional Kubernetes cluster inside a Slurm job
with minor performance overhead. On the other hand, our
solution KSI showed slightly higher overhead compared to
HPK and significantly less network throughput. With this KSI
provides the most feature complete Kubernetes clusters but
should not be considered for workloads that significantly rely
on network throughput compared to other factors. Still, if a
user’s workload relies on Kubernetes networking features such
as services, from the evaluated solutions, only KSI can support
this.

We conclude that the problem of running Kubernetes inside
Slurm workloads is not fully solved as it either comes at the cost
of performance or reduced feature sets with only unmaintained
or proof-of-concept solutions available.

The next steps for KSI include evaluating different network
drivers to mitigate its biggest short coming and to extend it
to support multi-node workloads while exploring alternative
approaches based on Minikube, K3D or Usersnetes.

REFERENCES

[1] “CNCF Annual Survey 2023”, CNCF, Apr. 9, 2024, [Online].
Available: https://www.cncf.io/reports/cncf-annual- survey-
2023/ (visited on 2024.12.30).

[2] “9 Insights on Real-World Container Use | Datadog”, [Online].
Available: https://web.archive.org/web/20230318234844/https://
www.datadoghq.com/container-report/ (visited on 2024.12.30).

[3] A. B. Yoo, M. A. Jette, and M. Grondona, “SLURM: Simple
Linux Utility for Resource Management”, in Job Scheduling
Strategies for Parallel Processing, D. Feitelson, L. Rudolph,
and U. Schwiegelshohn, Eds., Berlin, Heidelberg: Springer,
2003, pp. 44–60, ISBN: 978-3-540-39727-4. DOI: 10.1007/
10968987_3.

[4] “Volcano-sh/volcano”, Volcano, Dec. 30, 2024, [Online].
Available: https : / /github.com/volcano- sh /volcano (visited
on 2024.12.30).

[5] “Scaling Kubernetes to 7,500 Nodes”, Jan. 2021, [Online].
Available: https://openai.com/blog/scaling-kubernetes-to-7500-
nodes/ (visited on 2021.02.12).

[6] A. M. Beltre, P. Saha, M. Govindaraju, A. Younge, and
R. E. Grant, “Enabling hpc workloads on cloud infrastructure
using kubernetes container orchestration mechanisms”, in 2019
IEEE/ACM International Workshop on Containers and New
Orchestration Paradigms for Isolated Environments in HPC
(CANOPIE-HPC), Nov. 2019, pp. 11–20. DOI: 10 . 1109 /
CANOPIE-HPC49598.2019.00007.

[7] T. Wickberg, “Slurm and/or/vs Kubernetes”, Dec. 30, 2024,
[Online]. Available: https://slurm.schedmd.com/SC23/Slurm-
and-or-vs-Kubernetes.pdf (visited on 2024.12.30).

[8] S. Metje, “Kubernetes Slurm Integration based on Kind”, 2023,
[Online]. Available: https://github.com/soerenmetje/kind-slurm-
integration.

[9] “Kind – Rootless”, [Online]. Available: https://kind.sigs.k8s.
io/docs/user/rootless/ (visited on 2024.12.30).

[10] B. Lublinsky, E. Jennings, and V. Spišaková, “A kubernetes
‘bridge’ operator between cloud and external resources”, in
2023 8th International Conference on Cloud Computing and
Big Data Analytics (ICCCBDA), 2023, pp. 263–269. DOI: 10.
1109/ICCCBDA56900.2023.10154770.

[11] Staff, “Introducing HPC Affinities to the Enterprise: A New
Open Source Project Integrates Singularity and Slurm via
Kubernetes”, Sylabs, May 7, 2019, [Online]. Available: https://
sylabs.io/2019/05/introducing-hpc-affinities-to-the-enterprise-
a-new-open-source-project-integrates-singularity-and-slurm-
via-kubernetes/ (visited on 2024.12.30).

[12] K. Peterson, “Kalenpeterson/kube-slurm”, Aug. 17, 2024,
[Online]. Available: https://github.com/kalenpeterson/kube-
slurm (visited on 2024.12.30).

[13] A. Chazapis, F. Nikolaidis, M. Marazakis, and A. Bilas,
“Running kubernetes workloads on HPC”, in High Performance
Computing, A. Bienz, M. Weiland, M. Baboulin, and C. Kruse,
Eds., ser. Lecture Notes in Computer Science, Cham: Springer
Nature Switzerland, 2023, pp. 181–192, ISBN: 978-3-031-
40843-4. DOI: 10.1007/978-3-031-40843-4_14.

[14] S. Metje, Running Kubernetes Workloads on Rootless HPC
Systems using Slurm, GRO.data, Jan. 9, 2024. DOI: 10.25625/
GDFCFP.

[15] F. Liu, K. Keahey, P. Riteau, and J. Weissman, “Dynamically
negotiating capacity between on-demand and batch clusters”,
in Proceedings of the International Conference for High
Performance Computing, Networking, Storage, and Analysis,
ser. SC ’18, Dallas, Texas: IEEE Press, Nov. 11, 2018, pp. 1–11.

[16] B. Wu, M. Hu, S. Qin, and J. Jiang, “Research on fusion
scheduling based on Slurm and Kubernetes”, in International
Conference on Algorithms, High Performance Computing,
and Artificial Intelligence (AHPCAI 2024), vol. 13403, SPIE,
Nov. 18, 2024, pp. 476–485. DOI: 10.1117/12.3051639.

[17] G. Zervas, A. Chazapis, Y. Sfakianakis, C. Kozanitis, and A. Bi-
las, “Virtual clusters: Isolated, containerized HPC environments
in kubernetes”, in High Performance Computing. ISC High
Performance 2022 International Workshops, H. Anzt, A. Bienz,
P. Luszczek, and M. Baboulin, Eds., ser. Lecture Notes in
Computer Science, Cham: Springer International Publishing,
2022, pp. 347–357, ISBN: 978-3-031-23220-6. DOI: 10.1007/
978-3-031-23220-6_24.

[18] T. Menouer, N. Greneche, C. Cérin, and P. Darmon, “Towards
an Optimized Containerization of HPC Job Schedulers Based
on Namespaces”, in Network and Parallel Computing, C. Cérin,
D. Qian, J.-L. Gaudiot, G. Tan, and S. Zuckerman, Eds., Cham:
Springer International Publishing, 2022, pp. 144–156, ISBN:
978-3-030-93571-9. DOI: 10.1007/978-3-030-93571-9_12.

[19] C. Cérin, N. Greneche, and T. Menouer, “Towards Pervasive
Containerization of HPC Job Schedulers”, in 2020 IEEE 32nd
International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD), Sep. 2020, pp. 281–288.
DOI: 10.1109/SBAC-PAD49847.2020.00046.

[20] “SlinkyProject/slurm-operator”, SlinkyProject, Dec. 26, 2024,
[Online]. Available: https://github.com/SlinkyProject/slurm-
operator (visited on 2024.12.30).

[21] P. Liu and J. Guitart, Fine-grained scheduling for containerized
HPC workloads in kubernetes clusters, Nov. 21, 2022. DOI:
10.48550/arXiv.2211.11487. arXiv: 2211.11487[cs].

[22] D. Medeiros, J. Wahlgren, G. Schieffer, and I. Peng, “Kub: En-
abling elastic HPC workloads on containerized environments”,
in 2023 IEEE 35th International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD),

106Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

https://www.cncf.io/reports/cncf-annual-survey-2023/
https://www.cncf.io/reports/cncf-annual-survey-2023/
https://web.archive.org/web/20230318234844/https://www.datadoghq.com/container-report/
https://web.archive.org/web/20230318234844/https://www.datadoghq.com/container-report/
https://doi.org/10.1007/10968987_3
https://doi.org/10.1007/10968987_3
https://github.com/volcano-sh/volcano
https://openai.com/blog/scaling-kubernetes-to-7500-nodes/
https://openai.com/blog/scaling-kubernetes-to-7500-nodes/
https://doi.org/10.1109/CANOPIE-HPC49598.2019.00007
https://doi.org/10.1109/CANOPIE-HPC49598.2019.00007
https://slurm.schedmd.com/SC23/Slurm-and-or-vs-Kubernetes.pdf
https://slurm.schedmd.com/SC23/Slurm-and-or-vs-Kubernetes.pdf
https://github.com/soerenmetje/kind-slurm-integration
https://github.com/soerenmetje/kind-slurm-integration
https://kind.sigs.k8s.io/docs/user/rootless/
https://kind.sigs.k8s.io/docs/user/rootless/
https://doi.org/10.1109/ICCCBDA56900.2023.10154770
https://doi.org/10.1109/ICCCBDA56900.2023.10154770
https://sylabs.io/2019/05/introducing-hpc-affinities-to-the-enterprise-a-new-open-source-project-integrates-singularity-and-slurm-via-kubernetes/
https://sylabs.io/2019/05/introducing-hpc-affinities-to-the-enterprise-a-new-open-source-project-integrates-singularity-and-slurm-via-kubernetes/
https://sylabs.io/2019/05/introducing-hpc-affinities-to-the-enterprise-a-new-open-source-project-integrates-singularity-and-slurm-via-kubernetes/
https://sylabs.io/2019/05/introducing-hpc-affinities-to-the-enterprise-a-new-open-source-project-integrates-singularity-and-slurm-via-kubernetes/
https://github.com/kalenpeterson/kube-slurm
https://github.com/kalenpeterson/kube-slurm
https://doi.org/10.1007/978-3-031-40843-4_14
https://doi.org/10.25625/GDFCFP
https://doi.org/10.25625/GDFCFP
https://doi.org/10.1117/12.3051639
https://doi.org/10.1007/978-3-031-23220-6_24
https://doi.org/10.1007/978-3-031-23220-6_24
https://doi.org/10.1007/978-3-030-93571-9_12
https://doi.org/10.1109/SBAC-PAD49847.2020.00046
https://github.com/SlinkyProject/slurm-operator
https://github.com/SlinkyProject/slurm-operator
https://doi.org/10.48550/arXiv.2211.11487
https://arxiv.org/abs/2211.11487 [cs]


ISSN: 2643-3001, Oct. 2023, pp. 219–229. DOI: 10 .1109/
SBAC-PAD59825.2023.00031.

[23] “PRIMAGE / hpc-connector · GitLab”, GitLab, Feb. 22, 2023,
[Online]. Available: https://gitlab.com/primageproject/hpc-
connector (visited on 2025.01.02).

[24] N. Zhou et al., “Container orchestration on HPC systems
through Kubernetes”, Journal of Cloud Computing, vol. 10,
no. 1, p. 16, Feb. 22, 2021, ISSN: 2192-113X. DOI: 10.1186/
s13677-021-00231-z.

[25] G. Staples, “TORQUE resource manager”, in Proceedings of the
2006 ACM/IEEE Conference on Supercomputing, ser. SC ’06,
New York, NY, USA: Association for Computing Machinery,
Nov. 11, 2006, 8–es, ISBN: 978-0-7695-2700-0. DOI: 10.1145/
1188455.1188464.

[26] “Sylabs/wlm-operator”, Sylabs Inc., Nov. 5, 2024, [Online].
Available: https://github.com/sylabs/wlm-operator (visited on
2025.01.02).

[27] “Sylabs/singularity-cri”, Sylabs Inc., Mar. 1, 2024, [Online].
Available: https://github.com/sylabs/singularity-cri (visited on
2025.01.02).

[28] B. Lublinsky, E. Jennings, and V. Spišaková, “A Kubernetes
’Bridge’ operator between cloud and external resources”, Jul. 6,
2022, arXiv: 2207 . 02531 [cs], [Online]. Available: http :
/ / arxiv. org / abs / 2207 . 02531 (visited on 2025.01.02), pre-
published.

[29] “Bridge-Operator/kubeflow at main · IBM/Bridge-Operator”,
[Online]. Available: https://github.com/IBM/Bridge-Operator/
tree/main/kubeflow (visited on 2025.01.02).

[30] “CARV-ICS-FORTH/HPK”, Computer Architecture and VLSI
Systems (CARV) Laboratory, Dec. 26, 2024, [Online]. Avail-
able: https://github.com/CARV-ICS-FORTH/HPK (visited on
2025.01.02).

[31] A. Chazapis, E. Maliaroudakis, F. Nikolaidis, M. Marazakis,
and A. Bilas, “Running Cloud-native Workloads on HPC with
High-Performance Kubernetes”, Sep. 25, 2024, arXiv: 2409.
16919 [cs], [Online]. Available: http://arxiv.org/abs/2409.
16919 (visited on 2025.01.02), pre-published.

[32] “Apptainer/apptainer”, The Apptainer Container Project,
Dec. 30, 2024, [Online]. Available: https://github.com/apptainer/
apptainer (visited on 2025.01.02).

[33] “Virtual-kubelet/virtual-kubelet”, virtual kubelet, Feb. 24, 2025,
[Online]. Available: https://github.com/virtual-kubelet/virtual-
kubelet (visited on 2025.02.24).

[34] “Flannel-io/flannel”, flannel-io, Feb. 25, 2025, [Online].
Available: https://github.com/flannel- io/flannel (visited on
2025.02.25).

[35] “Flannel-io/cni-plugin”, flannel-io, Jan. 31, 2025, [Online].
Available: https://github.com/flannel-io/cni-plugin (visited on
2025.02.25).

[36] “Fix #2 #3 #6 by soerenmetje · Pull Request #4 · IBM/Bridge-
Operator”, [Online]. Available: https://github.com/IBM/Bridge-
Operator/pull/4 (visited on 2025.01.02).

[37] “Kubernetes/minikube”, Kubernetes, Jan. 2, 2025, [Online].
Available: https://github.com/kubernetes/minikube (visited on
2025.01.02).

[38] “K3d-io/k3d”, k3d, Jan. 2, 2025, [Online]. Available: https:
//github.com/k3d-io/k3d (visited on 2025.01.02).

[39] “Rootless-containers/usernetes”, rootless-containers, Dec. 30,
2024, [Online]. Available: https : / / github . com / rootless -
containers/usernetes (visited on 2025.01.02).

[40] “Kind”, [Online]. Available: https://kind.sigs.k8s.io/ (visited
on 2025.02.21).

[41] L. S. Marín, “Squat/kilo”, Dec. 24, 2024, [Online]. Available:
https://github.com/squat/kilo (visited on 2025.01.02).

[42] “Liqotech/liqo”, LiqoTech, Dec. 27, 2024, [Online]. Available:
https://github.com/liqotech/liqo (visited on 2025.01.02).

[43] “Rootless-containers/slirp4netns”, rootless-containers, Feb. 23,
2025, [Online]. Available: https : / / github . com / rootless -
containers/slirp4netns (visited on 2025.02.25).

[44] “Releases · containers/podman”, GitHub, [Online]. Available:
https : / /github.com/containers /podman/releases (visited on
2025.02.25).

[45] “Passt - Plug A Simple Socket Transport”, [Online]. Available:
https://passt.top/passt/about/ (visited on 2025.02.25).

[46] A. Kopytov, “Akopytov/sysbench”, Jan. 2, 2025, [Online].
Available: https : / / github . com / akopytov / sysbench (visited
on 2025.01.02).

[47] J. Hammond, “Jeffhammond/STREAM”, Dec. 24, 2024, [On-
line]. Available: https://github.com/jeffhammond/STREAM
(visited on 2025.01.02).

[48] J. Axboe, “Flexible I/O Tester”, 2022, [Online]. Available:
https://github.com/axboe/fio (visited on 2025.01.02).

[49] “HewlettPackard/netperf”, Hewlett Packard Enterprise, Dec. 10,
2024, [Online]. Available: https://github.com/HewlettPackard/
netperf (visited on 2025.01.02).

[50] “Esnet/iperf”, ESnet: Energy Sciences Network, Jan. 2, 2025,
[Online]. Available: https://github.com/esnet/iperf (visited on
2025.01.02).

[51] L. Ardito, R. Coppola, L. Barbato, and D. Verga, “A Tool-
Based Perspective on Software Code Maintainability Metrics:
A Systematic Literature Review”, Scientific Programming,
vol. 2020, no. 1, p. 8 840 389, 2020, ISSN: 1875-919X. DOI:
10.1155/2020/8840389.

[52] K. A. Dawood et al., “Towards a unified criteria model for
usability evaluation in the context of open source software
based on a fuzzy Delphi method”, Information and Software
Technology, vol. 130, p. 106 453, Feb. 1, 2021, ISSN: 0950-5849.
DOI: 10.1016/j.infsof.2020.106453.

[53] S. Metje, “Soerenmetje/kubernetes-slurm-evaluation”, Jun. 28,
2024, [Online]. Available: https: / /github.com/soerenmetje/
kubernetes-slurm-evaluation (visited on 2025.01.02).

[54] “Podman/docs/tutorials/performance.md at main · contain-
ers/podman”, GitHub, [Online]. Available: https://github.com/
containers/podman/blob/main/docs/tutorials/performance.md
(visited on 2025.01.03).

[55] “Rootless network performance (pasta vs slirp4netns) ·
containers/podman · Discussion #22559”, GitHub, [Online].
Available: https://github.com/containers/podman/discussions/
22559 (visited on 2025.01.03).

107Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

https://doi.org/10.1109/SBAC-PAD59825.2023.00031
https://doi.org/10.1109/SBAC-PAD59825.2023.00031
https://gitlab.com/primageproject/hpc-connector
https://gitlab.com/primageproject/hpc-connector
https://doi.org/10.1186/s13677-021-00231-z
https://doi.org/10.1186/s13677-021-00231-z
https://doi.org/10.1145/1188455.1188464
https://doi.org/10.1145/1188455.1188464
https://github.com/sylabs/wlm-operator
https://github.com/sylabs/singularity-cri
https://arxiv.org/abs/2207.02531
http://arxiv.org/abs/2207.02531
http://arxiv.org/abs/2207.02531
https://github.com/IBM/Bridge-Operator/tree/main/kubeflow
https://github.com/IBM/Bridge-Operator/tree/main/kubeflow
https://github.com/CARV-ICS-FORTH/HPK
https://arxiv.org/abs/2409.16919
https://arxiv.org/abs/2409.16919
http://arxiv.org/abs/2409.16919
http://arxiv.org/abs/2409.16919
https://github.com/apptainer/apptainer
https://github.com/apptainer/apptainer
https://github.com/virtual-kubelet/virtual-kubelet
https://github.com/virtual-kubelet/virtual-kubelet
https://github.com/flannel-io/flannel
https://github.com/flannel-io/cni-plugin
https://github.com/IBM/Bridge-Operator/pull/4
https://github.com/IBM/Bridge-Operator/pull/4
https://github.com/kubernetes/minikube
https://github.com/k3d-io/k3d
https://github.com/k3d-io/k3d
https://github.com/rootless-containers/usernetes
https://github.com/rootless-containers/usernetes
https://kind.sigs.k8s.io/
https://github.com/squat/kilo
https://github.com/liqotech/liqo
https://github.com/rootless-containers/slirp4netns
https://github.com/rootless-containers/slirp4netns
https://github.com/containers/podman/releases
https://passt.top/passt/about/
https://github.com/akopytov/sysbench
https://github.com/jeffhammond/STREAM
https://github.com/axboe/fio
https://github.com/HewlettPackard/netperf
https://github.com/HewlettPackard/netperf
https://github.com/esnet/iperf
https://doi.org/10.1155/2020/8840389
https://doi.org/10.1016/j.infsof.2020.106453
https://github.com/soerenmetje/kubernetes-slurm-evaluation
https://github.com/soerenmetje/kubernetes-slurm-evaluation
https://github.com/containers/podman/blob/main/docs/tutorials/performance.md
https://github.com/containers/podman/blob/main/docs/tutorials/performance.md
https://github.com/containers/podman/discussions/22559
https://github.com/containers/podman/discussions/22559

	Introduction
	Related work
	Models for Integrating Slurm and Kubernetes
	Other Approaches for Integrating HPC and Cloud
	Implementations for Adjacent Slurm and Kubernetes
	WLM-Operator
	Bridge Operator
	HPK
	Kube-Slurm


	Methodology
	Selection of Implementations to Evaluate
	Kind Slurm Integration (KSI) Design
	Performance Evaluation
	Project State Evaluation

	Results
	Functional Requirements
	Project State
	Performance
	Startup Time
	Compute Performance
	Memory Performance
	Storage Performance
	Network Performance

	Evaluation

	Conclusion and Future Work

