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Abstract—Task offloading in Mobile Edge Computing (MEC)
is a critical mechanism that enables resource-constrained mobile
devices to delegate computational tasks to proximate edge servers
for processing. One of the core benefits of task offloading in MEC
is the significant reduction in latency. Unlike traditional cloud
computing, where data must travel to remote data centers for
processing, MEC leverages edge servers positioned at the periph-
ery of the network, close to end users. However, task offloading
is not without its challenges. Critical issues, including network
reliability, security, data privacy, and effective task scheduling,
must be addressed to provide efficient offloading processes. This
paper presents a novel latency-aware task offloading mechanism
for MEC environments. The proposed mechanism dynamically
adapts to latency variations to optimize task placement and
migration across edge servers. Unlike traditional approaches, the
mechanism operates without prior knowledge of task charac-
teristics, enabling real-time task submission and execution. The
mechanism employs a migration policy that minimizes latency by
reassigning tasks in the waiting queue based on latency changes
caused by mobile device movement, reducing the negative impact
of such variations on system performance. To evaluate the
effectiveness of the mechanism, a simulation environment was
developed to model MEC scenarios. The simulation considered
varying task loads and dynamic latency conditions to emulate
real-world operations. Results demonstrate that the proposed
mechanism achieved an improvement in key performance met-
rics, including latency, waiting time, and makespan time.

Keywords-task offloading; dynamic mechanism; latency-aware;
MEC.

I. INTRODUCTION

Task offloading in Mobile Edge Computing (MEC) is a
critical mechanism that enables resource-constrained mobile
devices to delegate computational tasks to proximate edge
servers for processing. This approach can bridge the gap
between the resource limitations of mobile devices and the
increasing computational demands of modern applications,
such as Augmented Reality (AR) and video processing [1].
By offloading tasks to edge servers located closer to the
end user, MEC reduces latency, enhances energy efficiency,
and ensures better utilization of computational resources, thus
paving the way for seamless user experiences and efficient
system operations.

The proliferation of smart devices and the emergence of
data-intensive applications have introduced new challenges
in mobile computing. Mobile devices, while portable and
versatile, often suffer from limited battery life, computational
power, and storage capacity. Task offloading addresses these
challenges by transferring computational tasks to edge servers,
which are equipped with greater processing power and are

located at the network edge, closer to users. This minimizes
the delay caused by communication with distant cloud servers
and alleviates the burden on mobile devices, thereby extending
their operational lifespan and improving their performance [2].

Task offloading in MEC is typically categorized into full
offloading and partial offloading [3]. In full offloading, the
entire computational task is sent to the edge server, leaving
the mobile device to act primarily as an input/output interface.
This is especially beneficial for highly complex applications
where local execution is infeasible due to resource constraints.
Partial offloading, on the other hand, involves splitting the task
into smaller components, with some parts processed locally
and others offloaded. This approach is ideal for tasks that can
be parallelized or for scenarios where network conditions or
server availability may not support full offloading.

The process of task offloading in MEC involves several key
components, including task partitioning, offloading decision-
making, and resource allocation [4]. Task partitioning deter-
mines how the task is divided into smaller subtasks, while
offloading decisions are made based on parameters such as
network bandwidth, device resources, latency requirements,
and energy consumption. Resource allocation ensures that
edge servers have the capacity to handle offloaded tasks
efficiently without overloading the system.

One of the core benefits of task offloading in MEC is
the significant reduction in latency. Unlike traditional cloud
computing, where data must travel to remote data centers
for processing, MEC leverages edge servers positioned at the
periphery of the network, close to end users. This proximity
reduces the round-trip time for data transmission, enabling
real-time processing and low-latency responses [5]. Further-
more, by shifting computational tasks away from mobile
devices, task offloading helps conserve battery life, a critical
consideration for mobile users.

However, task offloading in MEC is not without its chal-
lenges. Critical issues, including network reliability [6], secu-
rity [7], data privacy [8], and effective task scheduling, must
be systematically dealt with to enable seamless and secure
offloading processes. Furthermore, dynamic environmental
factors, such as fluctuating network conditions and varying
server workloads, necessitate the development of adaptive and
intelligent offloading strategies. In this study, we propose a
novel task offloading mechanism that incorporates awareness
of dynamic network conditions to optimize the placement and
migration of tasks across edge servers. The proposed approach
aims to minimize latency, waiting time, and makespan, thereby
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enhancing overall system efficiency.
The reminder of this paper is organized as follows. Section

II presents related works. Our mechanism is proposed and
discussed in Section III. The results of employing our novel
mechanism is presented and analyzed in Section IV. The paper
concludes with future directions for research in Section V.

II. RELATED WORK

Task offloading in edge computing has been extensively
explored, particularly in the context of IoT and its impact on
network efficiency. For instance, the study in [9] discusses
the significant traffic generated by real-time data management
in edge networks with full offloading capacity. The authors
propose an algorithm to detect node faults, manage deadlines,
and improve data handling efficiency in centralized systems,
reducing bandwidth use and scheduling delays.

Edge and cloud server performance comparisons by the
authors in [10] highlight the efficiency of edge servers in
resource utilization, while cloud servers excel in cost and delay
reduction. To handle offloading inefficiencies, they propose
an algorithm, which minimizes delays, optimizes resource
allocation, and enables parallel task execution, enhancing
system responsiveness.

The use of heuristic algorithms is detailed by the researchers
in [11], who introduce an approach based greedy policy for
resolving task offloading challenges. It integrates MEC to
address latency issues in computation-intensive tasks, optimiz-
ing task management and resource efficiency while mitigating
battery life concerns. However, this work pays little attention
to changes of latency during run time.

Decentralized architectures for edge computing are explored
in [12], which introduces a hierarchical edge cloud model.
This architecture addresses limitations of traditional cloud
computing, improving scalability, fault tolerance, and data
recovery, particularly for applications requiring high mobility
and low latency.

Improved Quality of Service (QoS) in edge computing is
a recurring theme. For instance, the authors in [13] advocate
for predictive systems using collaborative filtering to prevent
delays. The results of this study demonstrate that QoS can
be improved using machine learning approaches. In addition,
the study in [14] proposes a reliable pooling approach to
address task distribution and overhead costs. These approaches
enhance system reliability and optimize resource usage.

A novel model for resource-efficient edge computing tai-
lored for smart IoT applications is introduced [15]. A hybrid
device-based computation offloading method was developed
to optimize resource usage. The primary objective of this
research is to enable diverse smart IoT device users to min-
imize cloud resource consumption while adhering to QoS
constraints. A key advantage of the proposed approach lies in
its ability to enhance the algorithm’s performance, particularly
in terms of resource efficiency [16].

The authors in [17] propose a dynamic time-sensitive
scheduling algorithm that integrates the First-Come, First-
Served (FCFS) policy with priority-aware scheduling. How-

Figure 1. System Model

ever, the proposed mechanism assumes prior knowledge of
tasks to enable prioritization based on their deadline require-
ments.

Overall, the literature highlights the potential in MEC
to mitigate latency, optimize task scheduling, and enhance
fault tolerance. However, challenges such as dynamic network
conditions necessitate further research to refine adaptive and
intelligent offloading mechanisms.

Algorithm 1 Initial Placement - DM Mechanism
1: get task, nodeList
2: mknmin = maximumV alue
3: foreach node in nodeList do
4: mkntmp = Makespan(task, node) //equation 1
5: if mkntmp < mknmin then
6: mknmin = mkntmp

7: nodeselected = node
8: end if
9: end for

10: place(nodeselected,task)
11: update nodeList

III. PROPOSED MECHANISM

This section introduces a Dynamic Mechanism (DM) de-
signed to offload tasks from devices to edge servers within the
MEC environment. The proposed mechanism is aware latency
variations during runtime that dynamically adapting assigns
and migrates tasks without prior knowledge of tasks before
their submission with an aim to improve performance. The
mechanism allows tasks to be submitted at any point during
runtime.

Figure 1 illustrates the system model of a Mobile Device
(MD) that offloads a task to a manager module within the MEC
environment. The manager finds an edge server, to be called
node, to execute this task. This selection plays an important
rule to improve the QoS of the system. Algorithm 1 shows an
initial placement process to select a suitable node (node) to
host a recently submitted task (task). The process selects a
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Figure 2. Migrate Process - DM Mechanism

node with a minimum makespan time (mkn). It is calculated
as:

mkn(task, node) = l + wt(node) + et(task, node) (1)

where l denotes the latency of this node which means the
time required to send the response from this node to the MD
which offloaded. wt(node) refers to the total waiting time for
this task before it can be executed, it is calculated as:

wt(node) =

∑t
i=1(taskt.length)

nodecpu
(2)

where nodecpu refers to the processing power of node. It
is measured in Million Instructions Per Second (MIPS) [18].
et(task, node) denotes the execution time and is given as [19]:

et(node) =
task.length

nodecpu
(3)

task.length refers to the processing length of a task which
is measured in Million Instructions (MI) [20]. In our system,
we assume that when an MD moves from one location to
another, the latency between the MD and nodes changes (i.e.,
latency can increase or decrease). This change in latency can
significantly impact the overall makespan time of tasks. To
address this, the DM mechanism incorporates a migration
policy designed to account for latency variations. The migra-
tion policy is illustrated in Figure 2. When an MD relocates,
the manager module is updated with the MD’s new location,
and it subsequently updates all nodes with the recent latency
changes.

The DM mechanism then calculates the mkn value for
each task in the waiting list across all nodes. If a node is

TABLE I. SIMULATION CONFIGURATION

Parameter Value
Latency:

Initial value 1-10 ms
Value during runtime 1-100 ms

Update time 1 - 100 ms
Node Specifications:

RAM 128 MB
CPU 1GB, 1.5GB, 2 GB and 2.5GB

Number of nodes 10
Tasks:

Processing length (5, 10, 20, 100) × 103 MIPS
Number of Tasks 1000

identified that can execute a task with a lower mkn than the
current assigned node, the manager migrates the task to that
node. It is important to note that the DM mechanism applies
this migration policy only to tasks that have not yet started
execution (i.e., tasks in the waiting list). Tasks already in
execution are excluded from this process in order to avoid
the impact of migration overhead.

IV. EVALUATION

This section presents the results obtained from testing the
proposed mechanism in a simulation environment. It begins
with a discussion of the simulation settings and concludes with
an analysis of the results.

A. Experiment Configurations

We extended the simulation tool DesktopCloudSim [21]
to simulate the MEC environment. DesktopCloudSim, which
is based on the widely-used cloud simulation framework
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Figure 3. Average Latency
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Figure 4. Average Latency (Tasks < 200)

Figure 5. Waiting Time

Figure 6. Makespan Time
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TABLE II. RESULTS SUMMARY.

Metric DM Mechanism FCFS Mechanism
Latency 50 ms 53 ms

Waiting Time 830 ms 938 ms
Makespan Time 898 ms 1010 ms

CloudSim [22], was selected due to its adaptability and
extensibility for edge computing scenarios. To evaluate the
performance of the proposed mechanism, the simulation was
configured with detailed specifications for tasks and edge
servers, ensuring an accurate representation of the MEC envi-
ronment.

Table I presents the configuration of the simulation. It details
the initial latency between MDs and nodes, where the latency
varies randomly during runtime to simulate the movement of
MDs between different locations. The table also specifies the
configuration and number of nodes utilized in this study, as
well as the total number of tasks submitted to evaluate the DM.
The experiment begins with a single task and incrementally
increases the number of tasks in each run with one, then two,
and continuing up to 1,000 tasks. The length of each task is
assigned randomly and is measured in MIPS.

To minimize measurement errors in our simulation tools,
we generated tasks randomly, as stated in Table I. These tasks
were integrated into the simulation tool in exactly the same
way for all evaluated mechanisms. Furthermore, we used a
large dataset of 1,000 tasks to further reduce measurement
errors in the simulation.

B. Results

Figure 3 demonstrates that the DM mechanism outper-
formed the FCFS mechanism in terms of average latency as the
number of tasks exceeded 200. However, for task counts below
200, the FCFS mechanism performed better than the proposed
DM mechanism, as illustrated in Figure 4. This behavior can
be attributed to the smaller number of tasks, resulting in fewer
tasks in the waiting queue before the MD moves. Since the
DM mechanism migrates tasks in the waiting list based on
latency changes, any variation in node latency for a task in
execution leads to significantly higher latency.

Regarding waiting time, the average waiting time for tasks
was approximately 901 ms under the FCFS mechanism, com-
pared to about 829 ms under the DM mechanism. Figure 5
highlights the trend of increasing waiting time as the number
of tasks grows.

For makespan time, the DM mechanism achieved an average
of 472 ms per task, whereas the FCFS mechanism recorded
an average of 487 ms. These results indicate that the DM
mechanism reduced the makespan time by approximately 3%.
Figure 6 presents a comparison of the makespan results for
both mechanisms across the experiment.

Table II presents a summary of the results of this paper,
comparing the DM and FCFS mechanisms in terms of latency,
waiting time, and makespan time (average values). The results
indicate that the DM mechanism consistently outperforms

FCFS across all three metrics, demonstrating superior effi-
ciency in task scheduling.

V. CONCLUSION AND FUTURE WORK

Task offloading in MEC presents significant challenges,
particularly in managing network reliability and latency varia-
tions. To address these issues, this paper proposed a novel task
offloading mechanism that dynamically incorporates latency
awareness to optimize task placement and migration across
edge servers. The experimental results demonstrated that the
proposed mechanism effectively reduces latency, waiting time,
and makespan compared to the FCFS mechanism, thereby
improving overall system performance.

The future directions for this research are twofold. First,
the mechanism will be extended to support the migration of
tasks that have already commenced execution. This extension
will require a comprehensive evaluation of the associated
overheads and their impact on system performance. Second,
the focus will shift toward exploring additional performance
factors, such as load balancing and power consumption of edge
servers. These aspects are crucial for enhancing the scalability
and energy efficiency of MEC systems.
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