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Abstract—The paper describes a low-code programming model
and environment for automating sensor data processing pipelines
for the smart water management domain. We identify visual flow-
based programming and rule-based approaches as two promising
avenues for building low-code programming models in this
domain, but likewise identified a total of five problems faced
by these approaches when applied to the domain. We propose
a solution that tackles those problems, both as a high-level
vision (combining the visual flow-based programming approach
with rule-based approach, where each approach is applied for
the programming tasks they are best suited for) and as a
concrete design of a low-code programming model. We sketch
our implementation, and discuss its limitations.

Keywords-flow-based programming; rule-based programming;
visual programming; low-code; sensors; internet of things.

I. INTRODUCTION

Low-code programming enables process automation by
users that would otherwise not be able to automate their
processes. In this paper, we describe a low-code programming
model and environment for automating sensor data processing
pipelines for the water management domain. Automating the
decision making process can save time, but also reduces
mistakes in tedious manual tasks [1]. Our goal is to provide
the conceptual model and practical tools to enable domain
experts (that do not need to be computer programmers) to
define, reason about, and maintain software solutions that help
them make accurate, timely decisions for managing surface
water, sewer, and rainfall drainage infrastructure.

It is generally accepted that the flow-based programming
paradigm [2] lends itself very well to the task of expressing
data processing pipelines, and simultaneously lends itself well
to visual programming. Many popular tools exist for visually
developing and deploying data processing applications (e.g.,
Node-RED [3], NoFlo [4], etc.). Despite its advantages, we
argue that it falls short at expressing common aspects of those
pipelines. Non-trivial logic (e.g., aggregation and correlation)
are better expressed as logical deductions in declarative rule-
based programming paradigm. We found that a straightforward
translation of traditional logic rules to a visual flow-based
platform does not offer a satisfying solution in our water
management scenarios.

The crux of our argument is as follows: if the goal of a
visual low-code programming model is to be accessible by do-
main experts who are non-expert programmers, then the model
should enable these domain experts to express the necessary
logic with the least amount of friction. In this paper, we show

that no single paradigm excels at capturing the concerns that
our water domain experts wanted to express. We argue that
domain experts need both a flexible system for transforming
and filtering data, and a capable system for correlating and
accumulating different measurements over time. We show that
both paradigms can be unified into one uniform model that
lends itself to a coherent two-layered low-code data processing
platform. In our vision, the parts of a processing pipeline that
lend themselves well to being expressed as a pipeline are
expressed using a flow-based approach, while the parts that
are best expressed as logical deduction are expressed using
a block-based low-code programming layer backed by a rule
engine.

The remainder of this paper is structured as follows. In
Section II, we list two motivating scenarios, which we use to
derive a problem statement in Section III. In Section IV, we
describe our approach by stating how a visual programming
environment combining flows and rules will tackles these
problems. In Section V, we provide a bird’s eye perspective
on the platform, before presenting the conclusion and future
work in Section VI.

II. MOTIVATING SCENARIOS

Our motivation for the design of a uniform low-code pro-
gramming platform is centred around two driving scenarios
from the water management domain.

UC1 The pre-validation of rainfall measurements. Raw
measurements from the sensor devices are analysed
and corrected for known anomalies. Sensors need to
be manually calibrated over time. While being cali-
brated, sensors produce faulty data (e.g., measuring
rain when there should not be rain). This use case is
concerned with identifying these calibration events,
removing the raw measurements, and replacing the
missing data with data from the statistically most-
correlated, nearby, measurement station(s) that did
have actual data.

UC2 The real-time monitoring of surface water qual-
ity. Specific locations and specific parameters (e.g.,
temperature, pH, conductivity, etc.) have their own
safe ranges and expected behaviours. Both abnormal
values (i.e., values that are not in a well-known safe
range) and spikes (i.e., measurements that are signif-
icantly higher/lower than the previous one) need to
be detected. An alert can then be sent out, by the
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Figure 1: Example of a flow where traditional flow components shine: the
shape of the flow intuitively conveys the outcome, the components’ behaviours
are straightforward to infer.

platform, to investigate the cause of the abnormal
readings.

Before the introduction of our low-code platform, necessity
dictated that the former scenario was tackled using spread-
sheets, commonly recognised as one of the most widely
used tools for low-code programming [5]. Unfortunately, this
manual process was tedious and error-prone, and was never
performed on live data. The latter was only possible in a
limited way, and only on raw data as measured and stored
into the sensors’ data collection platform. I.e., not using any
of the validated data as generated by the first use case.

A. Flow-Based Model

Some of the aspects of these use cases fit well in a
traditional flow-based programming approach. For example,
Figure 1 provides a sketch of a low-code program to validate
acidity and temperature readings. By joining the data produced
by two sensors, each time step can be validated individually.
The general semantics of the program are easy-to-understand
from this visualisation: flows consist of components that con-
tain computations, and arrows between them connect the input
and outputs of these computations. The flow-based model is,
traditionally, well-suited for the development of distributed
event-driven systems, such as data processing pipelines, IoT
applications, and Cyber-Physical Systems.

B. Rule-Based Model

However, some implementation aspects of the presented use
cases are better expressed using a rule-based programming
approach. For example, for detecting spikes or applying inter-
station correlation the rule-based approach is more favourable.

Rule-based logic or symbolic AI is concerned with ex-
pressing and representing human knowledge and logic in a
declarative manner, usually based on facts and by specifying
“if-then” rules that connect and manipulate attributes of those
facts to produce new facts. Foregoing the low-code require-
ment for a moment, Figure 2 shows a rule-based approach
for handling calibrations in UC1. The figure depicts a code-
based approach in a variant of Datalog extended with stratified
negation [6]. Rules provide fine-grained control over the
generation of new facts from existing facts. For example, the
suspiciousRainfall rule in Figure 2 denotes exactly
when a rainfall measurement (of a given quantity MM, at a
given time T, for a specific measurement station S_ID) is
deemed suspicious: if there is at least 2mm of rain but no
rain at any other measurement station known by the system
(i.e. within the same city). In general, rule-based logic is

1 rainfallAtStationOtherThan(T, S_ID) :=
2 rainfall(T, MM, S_ID),
3 rainfall(T, MM_OTHER, S_ID_OTHER),
4 (S_ID != S_ID_OTHER),
5 (MM_OTHER != 0).
6
7 suspiciousRainfall(T, MM, S_ID) :=
8 rainfall(T, MM, S_ID),
9 (MM > 2),

10 not rainfallAtStationOtherThan(T, S_ID).
11
12 unsuspiciousRainfall(T, MM, S_ID) :=
13 rainfall(T, MM, S_ID),
14 (MM > 2),
15 not suspiciousRainfall(T, MM, S_ID).
16
17 unsuspiciousRainfall(T, MM, S_ID) :=
18 rainfall(T, MM, S_ID),
19 (MM <= 2).

Figure 2: Text-based logic programming example for finding suspicious
rainfall sensor readings.

well-suited for capturing complex domain knowledge and for
correlating data over time.

III. PROBLEM STATEMENT

The problem statement concerns five sub-problems. Two
that emerge from using flow-based programming, and three
that emerge from rule-based programming.

A. Obstacles to Process Sensor Data with Flow Operators

We have identified two problems that emerge when flow-
based programming is used to build applications like those in
the presented use cases.

P1: Poor Visualisation of Correlation in Flows: The main
strength of a flow-based environment is its ability to visualise
control flow in an easy to grasp manner. However, they fall
short in adequately visualising the dependencies in the context
of data correlation, especially when that correlation concerns
data that arrives over time. To exemplify this problem, we
have made three sketches using flow-based abstractions for
the identification of temperature spikes. Figure 3a presents
a program that utilises custom flow component to correlate
facts. These types of components hide the delay needed for
time-based correlation in the implementation of the “compare
with previous” component. I.e., there is no (visual) indi-
cation that the flow delays the processing of temperature
readings. Figure 3b and Figure 3c use traditional flow-based
components with a “delay” component that delays a reading
for one time-step. In the former approach, an “arithmetic
transform” component computes the difference between two
temperature readings, and an “arithmetic compare” component
then identifies the spikes. In the latter approach (based on
[7]), individual temperature measurements are delayed and
consequently compared to the current temperature reading.
Note here that the semantics of the system needs to adequately
handle missing values. For example, the “merge” component
would need to discard data whenever the “filter” component
dropped temperature readings.
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(c) Using an explicit delay component applied on an individual field.
Comparisons are applied on values, not compound facts.

Figure 3: Three approaches for finding spikes in two consecutive temperature
readings.

P2: Poor Abstraction of Sub-tasks in Flows: Many sensor
data processing pipelines, such as those in the smart water
management domain, mainly reason about compound facts,
not individual numbers. In the application domain, typical
input values are not merely primitive values like numbers
or text, but compound objects or facts about the world that
consist of multiple properties or fields. For instance, a tem-
perature measurement of 25.0 ◦C is not represented by a raw
number “25.0”, but by a “Temperature” fact that states that
the temperature at some timestamp at some measuring station
was “25.0”. As a result, the processing pipelines have two
layers: one layer dealing with high-level fact routing pipeline,
and one layer implementing the multitude of lower-level
fact transformation, filtering, and correlation tasks. Traditional
flow-based approaches fail to offer low-code tools with which
users can abstract over lower-level tasks (and their internal
dependencies) in the implementation of the higher-level layer.
This is exemplified by Figure 3c, in which individual fields are
de-structured. The same visual language for considering whole
facts is used on the value level, which makes understanding
the flow at a glance more difficult.

B. Obstacles to Process Sensor Data with Rules

We have also identified three problems that emerge from
using a rule-based approach in a low-code environment.

P3: Complexity of State Management in Rules: Many rule
evaluation engines employ a stateful fixed-point evaluation
model: i.e., facts are continuously added and derived through-
out the lifetime of an application. While the incremental
generation of facts is powerful, a program will eventually
run out of memory. As such, there must be a mechanism to
discard old facts. Automatic solutions to discard stale data
from the knowledge base exist [8][9], though those solutions
make assumptions about the facts’ data model and about the
constraints that the programmer specified in the rules which

may not apply in general. This leaves state management a
responsibility of the user of the rule engine. In the context
of a low-code programming environment, we thus need to
minimise the need for state management.

P4: Poor Fit of Rules to Imperative Actions: Rules are
a poor fit for expressing imperative actions (e.g., network and
file I/O). Imperative actions, like reading sensor data in UC1,
do not map well onto the rule-based paradigm.

P5: Poor Modularity of Rules: Many rule-based engines,
by default, operate on a single shared fact base for all rules:
i.e., all rules are continuously active and operating on the same
facts. In code-based approaches to rule-based programming,
some advanced scoping mechanisms such as namespaces and
modules [10] exist that can be used to prevent that program-
mers must take into account all combinations of all facts.
However, requiring users to make use of such mechanisms
as-is is at odds with the simplicity promised by low-code
environments.

IV. APPROACH

We claim that when programming non-trivial applications,
the programming model should enable programmers to express
both types of logic in the corresponding paradigm. This is es-
pecially true in the context of (visual) low-code programming.
If the goal of a visual low-code programming model is to be
accessible by domain experts, then it is essential that both
paradigms can be used for expressing programs.

A novel low-code platform that supports the vision outlined
in this paper enables experts in the water management domain
to express automatic data validation and processing pipelines,
and in which the results of those pipelines can be used to make
the (alerting) decisions needed to implement the scenarios.

Our solution is composed of a two-layered approach in
which flow- and rule-based paradigms are integrated into
one coherent low-code platform. The flow-based abstractions
provide a clear, general, overview of the behaviour of the
application. Complex rule-based abstractions are embedded
within the flow and provide powerful abstractions for, e.g.,
aggregation which are not straightforward to express with pure
flow-based abstractions. We now discuss various aspects of
this programming environment, and how its design tackles the
problems from Section III.

Rule-based Specification of Sub-tasks (P1 and P2): The
main paradigm of the system is flow-based. However, complex
processing steps can be implemented via rules components
whose behaviour integrates well into the visual abstractions of
the flow-based system. The system enforces a clear separation
of fact types: different fact types are visually distinct in both
the flow-based and rules-based programming environments.
Edges between components in the visual environment are
labelled by the type of facts to easily denote the flow of data,
which makes flows easier to understand.

Rules components express application logic using “if-then”
clauses. In short, the rule-based components provide users with
the tools to abstract over lower-level sub-tasks inside the high-
level, flow-based processing pipeline, while using a uniform
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data language between the high-level (flow-based) abstrac-
tions and the low-level (rule-based) abstractions. Dealing with
correlation of multiple facts is then expressed in this lower
abstraction. I.e., instead of visualising correlation as a “delay”
component (as in Figures 3b and 3c), the rules component as
a whole reminds users that the block performs complex ag-
gregation of data. We envision a block-based visualisation for
the rule-based layer as those environments compare favourably
with respect to flow-based environments [11].

Opt-in Statefulness (P3): Considering that rule-based
approaches cannot completely forego state management, we
instead let users explicitly choose either a stateful or a non-
stateful execution model for each rule-based component. As
such, the complexities of state management only need to
be considered when users actually require statefulness. In
short, we provide a (flow-based) component that contains a
fully-fledged rule engine (with fixed-pointing semantics), and
another (flow-based) component that applies simple transfor-
mations (in which correlations between facts are disallowed).
Nonetheless, both use the same block-based visual language
to remain accessible to domain experts.

Restricted Imperative Actions (P4): The visual platform
uses the flow-based system for all imperative actions like
reading data from a file, connecting to a sensor’s live feed
of measurements, and writing computed facts to a file. As
such, these are not a concern in the rule-based programs at
all. This simplifies not only the implementation of the rule-
based engine, but also helps users to better understand the
logic of a program.

Modular Fact Bases for Rules (P5): Each rule-based
component reasons about facts from only two origins: the ex-
tensional facts that were delivered to the rule-based component
along the arrows visualised in the high-level flow program, and
the intensional facts that were derived by the rules specified in
that specific rule-based component, using only the facts that
are local to that specific rule-based component. In both cases
the rules of each rule-based component reason only about
facts local to that flow component. This design element solves
the poor modularity that follows from rules’ whole-program
scoping in an intuitive manner, linking it back to the way in
which data dependencies at the level of facts are visualised in
the flow language.

V. BIRD’S EYE OVERVIEW OF THE PLATFORM

We now present the concrete aspects of the implementation
of the platform. I.e., we present how users use this system to
define and execute flows. The visual platform is implemented
as a web application in which users can define flows and their
respective data schemas.

A. Flows, Relations and Datasets

User interaction with flows starts from the main flow tab
as shown in Figure 4a. On this tab users can manage flows.
They can create a new flow, open the editor for any that have
been created previously, as well as start/stop them.

(a) Managing flows

(b) Managing system-wide relations

(c) Managing datasets

Figure 4: Screenshots of the visual platform.

To distinguish between different fact types, the system
allows for creating so-called “relations”. The user can open
the relation editor, which is shown in Figure 4b. These show
the relations that are available to all flows. The same visual
language for building rules is used, which we explain in
Section V-C. By default, these relations include fact types
relevant to the water management domain: i.e., timestamped
measurements. As these are hardcoded by the system, they
cannot be modified. However, new ones can be added and
also modified from this interface.

Datasets are the platform’s abstraction for persisted data.
They are, in essence, CSV-files: i.e., an ordered collection of
tuples with a certain arity. Datasets can be created by a flow
component, or by uploading a CSV-file to the platform via
the web interface as shown in Figure 4c. Datasets uploaded
as a CSV-file can be loaded via a flow component. Note that
datasets do not always correspond with a system-wide relation.
As such, configuring a dataset component will automatically
generate a relation in the flow where they are being used. To
avoid the complexities that arise when multiple flows use the
same dataset as input and/or output, only uploaded CSV-files
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Figure 5: Screenshot of the flow canvas for detecting temperature spikes from
a measurement station.

can be used as input in a flow. This design restriction ensures
that datasets cannot be used as an inter-flow communication
mechanism, which is not supported by the platform.

B. Flow-Based Programming in RuleFlow

The nodes in a flow are components that produce, process,
or consume facts. Using the terminology of [2], each compo-
nent in a flow has zero or more “in ports”, and zero or more
“out ports”. The type of in and out ports that a component has
depends on the component’s configuration. For instance, if a
rule-based component is extended with a new fact pattern of
a relation that it did not yet have before, the component will
gain an in port for facts of that type.

Users add components to a flow by dragging a representa-
tion of one of the existing component kinds from a component
palette onto the flow canvas (see Figure 5). Dependencies
among components are established by dragging an arrow from
a component’s out port to another component’s in port. These
arrows are labelled with the name of the relation that travels
along the arrows, and the arrows are colour-coded. This is
similar to, e.g., DiscoPar [12]. Components can be configured
by double-clicking on them, which usually opens a modal.
Finally, the flow canvas offers the means to edit the global
relations, offers buttons to save the state of a flow and to
start the flow, and shows a console onto which the results of
the flow (or of individual components) can be inspected. The
platform is shipped with a number of built-in components, we
distinguish between three main types.

1) Source components are used to provide input to a flow.
There are built-in sources for generating facts with nu-
meric values in a given range, for reading data from an
existing dataset, and for connecting to a remote server
to fetch (historic or live) data from measuring stations.
The configuration of these measuring station components
is kept simple: a user only needs to select from a list
of measuring stations and the given date–time range for
which measurements must be retrieved.

2) Operator components apply transformations. There are
only two built-in operator nodes: one in which a rule-
based program is embedded, and one which only applies

Figure 6: Screenshot of the visual editor for rules to detect temperature spikes.

simple transformations (as mentioned in Section IV,
both use the same visual abstractions). The input and
output ports are generated from the embedded rule-based
program. For example, if there is a rule that expects
“Rainfall” facts, then a “Rainfall” input port will be
generated.

3) Sink components are the complement to source compo-
nents. The built-in sink components are used to save facts
to a dataset and to send data to the remote sensor platform
(i.e., for UC2). There is also a built-in component that is
used to send out email alerts (i.e., for UC1).

Besides these built-in components, users of the platform
can define their own flows which then become available to
other flows as components. Like operator components, subflow
components can have both input and output ports. While a full
overview of the semantics of subflows is not in the scope of
this paper, the gist is that flows can be explicitly configured
that they can be instantiated by other flows (i.e. top-left of
Figure 5): the sources and sink components of these subflows
are then parameterised.

C. Rule-Based Programming

Both operator components are configured in a rule-based
programming environment, as depicted in Figure 6. Each rule-
based subprogram consists of one or more rules, with one or
more body fact patterns and one head fact pattern each. The
environment is built on top of Blockly [13].

Blocks are provided for managing the data schema of facts
(for any relations that are local to the rules component), and for
defining rules using fact patterns. The fact patterns in the rules
can make use of variable bindings, of an expression language,
and of aggregators. In the visual language, the grammar is
enforced by the shape of blocks’ slots.

The block-based approach makes it possible to use a visual
metaphor to denote that the action block “accepts” one
head fact. We found that it was advantageous to use
the shapes as blocks as a form of static “type” checking to
prevent the construction of structurally wrong programs. On
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the other hand, we found that disallowing connections due
to more complex context-dependent requirements hampered
users more than it helped them. Therefore, there are two types
of blocks: (1.) blocks that deal with facts connect vertically to
“notches”, and (2.) blocks that deal with fields of facts connect
horizontally to “jigsaw” slots.

When the visual platform detects that the user made a
mistake that is not handled by this distinction, the platform
allows the user to drop the block in the ‘wrong’ slot but
provides inline feedback on why this connection does not
make sense. This design choice serves two purposes: first,
it enables the low-code platform to teach its users some of
the finer nuances, and second, it allows users to construct
programs which are not yet valid, but will become valid when
the users finishes adding the blocks they meant to add. This is
similar to how textual IDEs allow programmers to temporarily
have a program in an invalid state while the programmer is
halfway through making an edit.

D. Prototypical Implementation

A prototypical implementation of our approach was built in
TypeScript. We leverage ReactFlow [14] for visualising and
interacting with flows of components. The rule and expression
language Rocks was built on top of Blockly [13]. Access to the
platform was given to our research partner who experimented
with designing surface water monitoring flows on the platform.

VI. CONCLUSION AND FUTURE WORK

We described a low-code programming model and environ-
ment for automating sensor data processing pipelines for the
surface water management domain. We identified visual flow-
based programming and rule-based approaches as two promis-
ing avenues for building low-code programming models. Our
prototypical platform has been designed specifically for the
water management domain. We have shown, throughout the
paper, the advantages that our platform provides for two use
cases important to the water management domain. However,
not all aspects of the problems identified in Section III are
wholly resolved, and real-world use of the current design by
its users point at avenues for future research.

A. Linking Flow Definition and Use

An important aspect for which our current design does not
offer affordances, is the evolution of the low-code programs
over time. Because of the way that the flow abstraction
mechanism works, the site of use and the site of definition
of a subflow are detached. The site of use does not track the
site of definition.

B. Hot-swapping of Stateful Components

Evolving long running stateful software systems requires
that care is taken to preserve accumulated state across mod-
ifications to the software. This holds equally in a flow-based
low-code context, where modifying one or more flow com-
ponents should not invalidate all state in the system. Further
complicating the support for hot-swapping [15] is the fact that

the state may need to be transformed to be compatible with
the modified flow. For instance, if a user decides to merge
two consecutive rules components in a flow together into one
larger rules component, the system has to provide the means
to correctly merge both components’ fact bases.
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