
Consistent Access to Cloud Services across Regions for Large Enterprises

Pavvan Pradeep
Computer Science

and Engineering Department
PES University

Bengaluru, India
e-mail: pavvanpradeep@gmail.com

Aditi Srinivas M
Computer Science

and Engineering Department
PES University

Bengaluru, India
e-mail: aditimatti@gmail.com

Prisha Goel
Computer Science

and Engineering Department
PES University

Bengaluru, India
e-mail: prishapgoel@gmail.com

Dhruv Sanjaykumar Ratanpara
Computer Science

and Engineering Department
PES University

Bengaluru, India
e-mail: dhruv2502@gmail.com

Shilpa S
Computer Science

and Engineering Department
PES University

Bengaluru, India
e-mail: shilpas@pes.edu

Abstract—In today’s world, high availability is critical to meet
the needs of uninterrupted operation and customer satisfac-
tion. The expansion of cloud services has permitted substantial
progress towards reaching this availability. However, there are
issues such as high ownership costs and constant availability
across many locations, as not all cloud providers provide com-
prehensive regional support. This project seeks to demonstrate
a strategy for developing platforms for global organizations that
are available in multiple regions and provide an improved user
experience. Our methodology enables one to seamlessly integrate
the Istio service mesh into the existing infrastructure, with a focus
on high performance,low latency, multi-region availability across
many zones, dispersed deployment for better reliability, and a
low total cost of ownership. Our solution uses Istio’s features
to improve service resilience and distribution, resulting in cost-
effective, high-performance multi-region deployments.

Keywords—Istio Service Mesh; Reduced total cost of ownership;
Multi-region failover; Availability Zone level failover; Minimized
latency.

I. INTRODUCTION

High availability, scalability, and scattered deployments are
vital in today’s technology-driven world, where continuous
access to services is essential [1]. Cloud providers such as
Amazon Web Services (AWS), Google Cloud Platform (GCP),
Microsoft Azure, and Oracle Cloud Infrastructure (OCI) have
played significant roles in providing these services with multi-
region availability, ensuring that operations continue even
when regions fail. AWS is the largest cloud provider, noted
for its massive infrastructure, which includes 48 regions and
54 Availability Zones worldwide, with a range of services
including processing power, storage, and databases. Cloud
providers like AWS use auto-scaling mechanisms to maintain
availability during periods of high demand [2]. While each
operator provides a variety of global regions and availability
zones, achieving seamless worldwide coverage remains a
difficulty. Geographic limitations, high ownership costs, and
interoperability between providers remain significant difficul-
ties. Most of the industries are moving towards a microser-

vices architecture for their applications to enhance availability.
Deploying applications as lightweight portable container en-
hances scalability and fault-tolerance [3]. However, enterprises
frequently struggle to balance high availability needs with
cost-effectiveness, particularly when deploying across various
geographies [4]. There is also the challenge of managing
dispersed applications, data consistency, and compliance re-
quirements, especially when apps cross international borders.
Existing cloud-based high-availability solutions face several
limitations. Many rely heavily on cloud providers, leading to
vendor lock-in and high operational costs. Cloud-based auto-
scaling guarantees resource availability, but it falls short in
addressing region-level failover. It can be challenging for busi-
nesses to maintain a uniform infrastructure around the globe
because some cloud services are not accessible everywhere.
Given these difficulties, a method that minimizes reliance on
the cloud, maximizes latency, and guarantees smooth failover
without compromising cost is required.

Our approach involves a one-time infrastructure setup cost,
after which it leverages open-source tools like Istio and a
custom load balancer to enable seamless failover and mini-
mize latency. Our aim is to integrate the Istio service mesh
into large organisations’ existing architecture for enhanced
traffic routing and service maintenance. This approach aims
to improve availability, provide multi-region resilience, and
reduce ownership costs. Our technique routes traffic to the
nearest region to reduce latency and ensures that users receive
responses within an optimal time. When a service in a given
availability zone goes down, the zone is tagged as unhealthy,
blocking routing of further user requests to it. This feature
helps to avoid inter-zone service communication, which might
increase latency.

Our approach uses locality-based load balancing to evenly
distribute traffic across all healthy zones within a region. Such
a balanced distribution ensures stability and prevents services
in any zone from being overloaded with user requests thereby

81Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

increasing total system resilience. Our technique uses the
open-source Istio service mesh to manage traffic effectively.
By using Istio, we can create a strong architecture with greater
stability, availability and scalability while lowering the total
cost of ownership.

Our approach focuses on improving the private infrastruc-
ture of large-scale industries. It integrates easily with their
existing systems to boost availability, reduce latency, and lower
costs by reducing reliance on cloud providers. Since cloud
services are not available in all regions and don’t always
work well together, relying on cloud services completely is not
a good option for large-scale industries. Moreover migrating
applications to the cloud require one to have many procedures
in place such as application migration, data migration and de-
pendency checks [5]. Instead large-scale industries can set up
their infrastructure in the regions they need and integrate our
approach seamlessly to increase the reliability and availability
of their services across multiple regions, making their systems
more efficient and cost-effective. Hence, our approach is a
solution that meets the needs of modern, large-scale industries.

Section 2 presents a literature survey, exploring current
strategies aimed at minimizing latency and increasing multi-
region availability. The methodology is described in Section 3,
along with the technologies utilized, such as the Istio service
mesh and Kubernetes in Docker (KinD). This section explains
the implementation of our setup, which consists of two clusters
and a load balancer to ensure multi-region availability and
optimized latency. Results are presented in Section 4, along
with our framework’s latency measures. The research is finally
concluded in Section 5, as part of the future scope the paper
suggests use of AI models for fault prediction and resource
optimization to enhance system maintenance.

II. LITERATURE SURVEY

A. Malhotra, A. Elsayed, R. Torres and S. Venkatram [6]
explore solutions to achieve near-zero downtime for cloud-
native, business-critical applications. Thw authors emphasize
on microservices architecture to enhance fault tolerance and
scalability. A clustered setup with Kubernetes enables load bal-
ancing and seamless failovers within and across regions. Tools
like Global Load Balancer (GLB) for geo-based routing, Pg-
Bouncer for PostgreSQL optimization, and HAProxy for high
availability are integrated. For read-heavy applications, read
replicas handle most requests to offload the primary database,
while write-heavy setups distribute traffic geographically to
optimize latency. Despite its robust approach, the architecture
focuses heavily on database resilience, with limited attention
to network-level failovers.

A. Anwar’s [7] study proposes a high-availability solution
leveraging AWS services. Applications are hosted on EC2
instances spread across multiple Availability Zones (AZs) with
a load balancer managing traffic distribution. NAT Gateways
ensure secure internet connectivity, while auto-scaling groups
dynamically adjust resources. Elastic IPs provide stability,
maintaining consistent DNS entries during instance restarts.
Although this setup withstands zonal outages and high traffic,

regional outages remain a challenge. Its reliance on AWS
services also leads to high operational costs, which could be
optimized by refining auto-scaling policies.

Anna Berenberg and Brad Calder [8] evaluate different
deployment models, from zonal to global, highlighting their
benefits like increased availability, improved latency, and
scalability. By integrating edge computing, it suggests fur-
ther latency reductions and resource optimization. While
the archetypes offer flexibility and future-proofing, managing
complex deployment models and addressing global outages
pose challenges. Balancing costs with high availability and
latency remains an ongoing issue in these strategies.

A. Hajikhani and A. Suominen [9] focus on disaster re-
covery, this research outlines strategies for applications across
Kubernetes clusters using service mesh and serverless work-
loads. It emphasizes automatic failover mechanisms, resource
optimization, and cost reduction in multi-cluster environments.
While the paper provides practical insights, it falls short
in covering all failure scenarios and complex multi-cluster
deployments. Its narrow focus on Kubernetes limits its broader
applicability to other cloud setups.

Mohammad Reza Mesbahi, Amir Masoud Rahmani and
Mehdi Hosseinzadeh [10] present a roadmap for achieving
high availability and reliability in cloud environments. The
paper identifies challenges and proposes solutions to align
with quality-of-service agreements. While insightful for both
providers and consumers, the paper lacks practical validation
and oversimplifies complex technical issues. It serves as a
theoretical framework rather than a hands-on guide to cloud
resilience.

Our proposed architecture aims to address the challenges
faced by these previous approaches by removing the depen-
dency on existing cloud providers, and minimizing cost and
latency.

III. METHADOLOGY

Our methodology is designed to leverage a series of open
source technologies, to ensure multi-region availability, effi-
cient load balancing, and reduced latency.

A. Kubernetes in Docker(KinD)

KinD (Kubernetes in Docker) is a tool that allows one to
easily establish and manage Kubernetes clusters on a local
workstation using Docker containers. Kind is intended to
simplify Kubernetes development and testing by enabling:

• Experimenting with various Kubernetes versions, config-
urations, and deployments.

• Simulation of a multi-node Kubernetes setup on a single
PC.

B. Istio Service Mesh

A service mesh is a software layer that facilitates commu-
nication between services in an application. It consists of a
network of proxies known as ”sidecars” that run alongside
each service. A service mesh can help prevent cascade failures,
which can cause system-wide downtime. It accomplishes this

82Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

by including features such as circuit breaking, retries, and
timeouts. A service mesh can monitor the status of services,
connection, and failures. It can also deliver metrics, logs, and
trace data. A service mesh can aid with traffic management,
such as load balancing and rate limitation. A service mesh
is independent of each service’s code, allowing it to function
across network boundaries and with various service manage-
ment systems.

An Istio service mesh is open source and functions as
a dedicated infrastructure layer that manages and secures
communication between microservices within a distributed
application, effectively giving a transparent mechanism to
govern traffic flow, security, and observability.
Key elements of the Istio architecture:

• The Data Plane:
The Data Plane consists of ”Envoy” proxy sidecars
that handle network traffic, routing, load balancing, and
telemetry data collection for each microservice.

• Control Plane (Istio):
A centralized control system for configuring sidecar prox-
ies, creating traffic routing rules, security policies, and
other service mesh operations.

Figure 1. Services running across Availability Zones within a region

C. Multi Primary Istio on Different Networks

The multi-primary Istio configuration across various net-
works allows two clusters to run with independent control
planes, resulting in secure and highly available communication
across boundaries. Figure 1 illustrates our multi-primary Istio
architecture within a region where there are two clusters on
separate networks, each with its own Istio control plane.
To support cross-cluster connectivity, both clusters have an
Istio east-west gateway in place. This gateway manages east-
west traffic for internal and cross-cluster service interactions,
allowing ingress and egress traffic to flow smoothly between
clusters.

To enable proper service discovery, each cluster’s API
servers are configured to recognise one another. This is per-

formed by establishing a remote secret key in each cluster,
allowing for mutual discovery and secure communication
across networks. As a result, cluster 1’s API server will be able
to access cluster 2’s services along with those within its own
clusters, and vice versa. This configuration allows the Istio
service mesh to effectively distribute traffic across availability
zones, providing resilience, fault tolerance, and effective load
balancing inside the service mesh.

D. Load Balancer

A Load balancer is used to distribute user requests to the
under-loaded services to ensure that no service is overwhelmed
with requests. Hence, it is necessary to have a fault-tolerant
load balancer to create a highly resilient architecture [11]. If
the load is not distributed efficiently across all the available
services it degrades the performance and efficiency of com-
puting resources [12]. Our architecture leverages a global load
balancer to achieve high availability and optimal performance
by routing traffic across two geographically separated regions.
The primary goal is to direct users to the nearest healthy
instance, thereby minimizing latency and enhancing the user
experience. This approach is essential for business-critical
applications, as it ensures that users can access the service
with minimal delay and without disruption, even in cases of
regional failures. To achieve accurate location-based routing,
we employ an external API that provides the user’s geograph-
ical data based on their IP address, which is a reliable method
for real-time location determination in distributed systems.

The process begins by constructing a URL with the user’s
IP address, which is then used to make an HTTP GET request
to retrieve the user’s location data. From the JSON response
body, we parse the latitude and longitude values, which serve
as input for calculating the distance to each available instance.
Before proceeding with distance calculation, we must first
verify the health of each instance to avoid directing traffic
to an unavailable or unstable service. For this purpose, we
create a health check URL by formatting each server’s address
and port, which acts as an endpoint to verify its availability.
This validation step is crucial, as it prevents unnecessary errors
and guarantees that only active and responsive instances are
included in the load balancing process. Each server URL is
parsed to ensure validity; if it is found invalid, the server
is marked as unhealthy, and an error message is logged. To
further ensure robust operations, we use a mutex lock, which
prevents race conditions by managing concurrent access to
shared resources during health checks, a common practice for
maintaining consistency in multi-threaded applications.

Once the health of each instance is confirmed, we convert
the latitude and longitude coordinates of both the user and
each healthy instance into coordinates suitable for distance
calculation. To accurately measure the distance between these
points, we utilize the Haversine function. This mathematical
formula is specifically designed for calculating the shortest
distance between two points on a sphere, making it highly
effective for geographic distance calculations. The precision
of the Haversine function is beneficial for our load balancer,

83Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 2. Architecture

as it ensures users are routed to the physically closest instance,
which is particularly important in regions with multiple service
points.

After calculating the distances, the global load balancer
routes traffic to the closest healthy instance, significantly re-
ducing latency and providing users with a faster, more reliable
service. In the event that this instance becomes unavailable
due to a failure or outage, the load balancer dynamically re-
routes traffic to the next closest healthy instance, maintain-
ing continuous availability. This resilient approach to load
balancing not only enhances user satisfaction but also aligns
with best practices in high-availability architecture by reducing
single points of failure and ensuring reliable service continuity
across regions. Figure 2 depicts a high level overview of the
entire architecture of our setup. By leveraging a multi-cluster
Kubernetes setup with Istio, it enhances service discovery
and traffic management across all regions. This holistic ap-
proach to existing infrastructure of companies guarantees high
availability, scalability, and optimal performance for enterprise
applications.

E. Our Setup

Our setup is distributed across two regions, each containing
two Kubernetes clusters that serve as Availability Zones within
those regions. Such an architectural setup ensures high avail-
ability and low -latency. These clusters are managed using
KinD (Kubernetes in Docker). The regions are labeled as
region1 and region2, and the Availability Zones within each
region denoted as zone1 and zone2. Figure 3 illustrates our
proposed architecture. This setup enables seamless failover
and efficient workload distribution across regions. It also helps
in mitigating single points of failure by ensuring redundancy
at both the regional and availability zone levels. Additionally,
traffic routing mechanisms are implemented to direct user
requests to the nearest and most responsive cluster, improving
overall performance.

Istio is installed in a multi-primary configuration on each
cluster. This configuration ensures high availability and func-
tionality by providing each cluster with its own Istio control
plane. Each cluster in a multi-primary setup has its own Istio
control plane, which allows them to govern traffic, implement
rules, and forward requests throughout the mesh. Such a setup
ensures system stability and availability. Even if the control
plane of one of the clusters fails, the other clusters remain
operational and continue to serve the user requests.

The helloworld service is deployed across all clusters,
providing redundancy and locality-based access. The service
instances are labeled according to their region and zone easier
traffic routing:

• The service is labeled as helloworld.region1.zone1 in
region1, zone1 and helloworld.region1.zone2 in region1,
zone2.

• Similarly, the service is labeled as hel-
loworld.region2.zone1 in region2, zone1 and the service
is labeled as helloworld.region2.zone2 in region2, zone2
.

• The helloworld gateway allows access to the services.
To ensure minimal latency and efficient resource utilization,

a custom load balancer is deployed on a separate system.
This load balancer routes user requests to the nearest region,
optimizing performance and reliability.

F. Availability Zone Failover using Istio Locality-Based Rout-
ing

For enhanced resilience, Istio’s locality-based failover is
configured to handle availability zone-specific issues seam-
lessly. If an issue arises within any zone, marking it unhealthy,
Istio’s destination rules redirect all traffic to the nearest healthy
zones within the same region. This immediate redirection en-
sures that users experience minimal disruptions, as the system
reroutes requests automatically to healthy zones, continuing
services which makes the architecture highly available. Highly
available systems are designed so that no single failure causes
unacceptable service disruption [13]. The destination rule
configuration also continuously monitors the health status of
each zone. Once the affected zone is restored and services
are healthy, it becomes eligible again to receive requests,
maintaining balanced and resilient service distribution.

G. Region-Wide Failover for Regional Resilience

In cases of region-level failures, the custom load balancer
takes over to prevent routing to any impacted region. It
continuously performs health checks across regions to ensure
only healthy regions handle requests. If a region fails, the load
balancer seamlessly routes traffic to the other available region,
ensuring uninterrupted service. As soon as all services in the
affected region are confirmed to be operational again, the load
balancer resumes routing requests to it.

IV. RESULTS AND DISCUSSION

In our observability setup for Cluster 1 in Region 1, Zone
1, we monitored key performance indicators such as latency,

84Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 3. Our setup

success rates, and request volumes. Here are the detailed
observations:

A. Traffic Volume and Success Rate:

As seen Figure 4 the incoming traffic volume is 12.2
requests per second, with a recorded success rate of 100%.
This indicates that every request was processed successfully,
without any loss or errors, reflecting a highly reliable service
operation.

Figure 4 shows that both 4xx and 5xx error rates are
recorded at 0, showing there were no client-side or server-
side errors. The absence of 4xx errors suggests that all client
requests were well-formed and valid, while the lack of 5xx
errors confirms robust server-side processing and stability.

Figure 4. Observability Metrics

B. Latency Metrics (P50, P90, P99):

Since the helloworld service in Region 2, Zone 2 is also
accessible from Region 1, Zone 1, we compared latency across
both clusters:

P50 Latency: Figure 4 shows that the median latency, or
time within which 50% of requests are processed, is 71.40 ms
for Cluster 1 (Region 1, Zone 1) and 73.49 ms for Cluster 2
(Region 1, Zone 2).

P90 Latency: It seen in Figure 4 that the latency within
which 90% of requests are completed is 95.49 ms in Zone 1

and 96.14 ms in Zone 2, showing that the majority of requests
have relatively low latency.

P99 Latency: Figure 4 shows that for 99% of requests, the
latency is 189.57 ms in Zone 1 and 203.00 ms in Zone 2. These
values show that even for high-percentile latency, processing
times remain well within acceptable ranges.

The slight increase in latency in Zone 2 (Region 1) is
attributed to cross-zone access, as requests from Zone 1
accessing services in Zone 2 experience a maximum additional
latency of approximately 4 ms.

C. Client and Server Request Volumes and Success Rates:

The client request volume is observed to be 6.4 operations
per second (ops/sec), matching the server request volume
of 6.4 ops/sec. This consistency indicates that all requests
initiated by the client are successfully received and processed
by the server, with no data loss or retries.

Both client and server success rates are recorded at 100%,
further confirming the absence of failures or unfulfilled re-
quests.

D. Client Request Duration:

From start to finish, client queries typically take around 300
milliseconds. This is the total round-trip time, which includes
processing requests, creating responses, and returning them to
the client.

E. Gateway Success Rate:

The helloworld gateway’s incoming request success rate
is 100%, which shows that the gateway setup is operating
correctly and consistently, directing traffic without introducing
issues.

F. Outgoing Response Rate by Destination Workload:

The destination workload’s outbound response rate is mea-
sured at 100%, indicating that answers from the destination
workload are constantly successful, indicating error-free com-
munication between workloads and optimum processing of
outgoing data.

All the metrics point to a robust and highly available system
with low latency for both local and cross-zone queries. The
multi-region setup can process requests at low latency and
ensure that the system is highly responsive. Such a highly
available architecture is needed for large enterprises to ensure
service uptime and an enhanced user experience. Including
observability into the infrastructure using tools like grafana
enables enables real-time tracking and timely identification of
potential issues.

Such high success rates and low latency values confirms
that the setup is configured to withstand traffic spikes and
variations without any effect on service quality, thereby em-
phasizing on its effectiveness in a multi-zone, multi-region
architecture.

85Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

G. Cost Analysis:

For production-grade servers across regions (e.g.,
T3.medium or m5.large instances), assuming 10-20 instances
per region for redundancy, costs could range from $1,500 to
$3,000 per region, totaling $3,000 to $6,000. AWS EKS is
priced at $0.10 per hour per cluster along with EC2 costs
for worker nodes, could add approximately $1,000 to $2,000
for a multi-region setup. Multiple load balancers and high
outbound data transfers may contribute an additional $500 to
$2,000, while persistent storage with high availability (e.g.,
Amazon RDS or S3 for data durability) might cost around
$500 to $1,000. Overall, for a mid-to-large-scale deployment,
the monthly operational cost might range from $5,000 to
$12,000. If large corporations and real-time applications were
to implement an existing architecture like this, their costs
could increase to anywhere between $20,000 to $50,000
monthly. We aim to target large scale industries who have an
existing private infrastructure.By leveraging open-source tools
and technologies and avoiding reliance on AWS or any other
cloud providers, the total cost of operation for our proposed
methodology comes up to $0.

H. Comparison with Cloud-Native Solutions:

Cloud providers such as Google’s Anthos and AWS EKS
with Istio offer managed service mesh solutions. Our method,
leveraging KinD and Istio in a multi-primary setup, elimi-
nates cloud dependency while maintaining low-latency service
discovery and failover. Some enterprises, like Cloudflare and
AWS CloudFront, deploy edge nodes or use CDNs to reduce
latency. Our approach dynamically routes traffic based on
region health and network proximity, reducing costs while
ensuring resilience. AWS Global Accelerator, GCP Multi-
Region Load Balancer, and other providers offer auto-scaling
groups, managed load balancers, and cross-region replication.
While these services ensure failover and high availability, they
introduce vendor lock-in and high operational costs.

V. CONCLUSION AND FUTURE WORK

Our solution presents a robust, multi-region architecture in
which there are two separate geographical regions which host
independent Kubernetes clusters on KinD with Istio installed
using the multi-primary approach on different networks. Each
cluster is set up with a Hello World service. Each cluster
has its own control plane, ensuring independent access across
clusters. Such an architecture increases the availability of the
service mesh and ensures that failure in one cluster or region
does not affect the other clusters, supporting high availability
throughout the architecture.

Our setup uses a load balancer that directs traffic based
on real-time health monitoring. Every 10 seconds, the load
balancer checks the health of each cluster to ensure that
traffic only goes to healthy clusters. If a cluster fails, the load
balancer identifies the nodes as unhealthy and routes traffic to
other healthy nodes in the service mesh. This strategy provides
constant uptime and lowers latency, resulting in a smooth user
experience even amid infrastructure failures.

Cloud providers like AWS provide ways to design fault-
tolerant cloud application using virtualization technologies
which emphasize on redundancy and continuous monitoring
[14]. However, using such approaches can be very expen-
sive for large-scale industries. Our approach is especially
useful for such large-scale businesses who want to optimise
their infrastructure and reduce reliance on expensive cloud
alternatives. Our setup is a robust, multi-region configuration
which leverages open-source solutions like Istio, to deliver
multi-regional availability, low latency, and scalability without
incurring the significant expenditures associated with cloud
services. This design seeks to integrate smoothly with current
organisational environments improving resilience and service
reliability across many regions. By using open-source solu-
tions, we provide a low-cost way to achieve a distributed,
highly available service architecture. This makes our method
ideal for large-scale organisations that value service continuity,
scalability, and low-latency access for worldwide users.

Integrating powerful AI-powered monitoring capabilities
could be one of the ways to improve the infrastructure.
By implementing machine learning models, the system can
predict faults earlier and optimise resource allocation. Such
an approach might provide an additional layer of maintenance
by detecting flaws before they impact operations, decreasing
downtime and enhancing system reliability, especially during
peak demand periods.

Reducing latency across multi-region architectures, partic-
ularly during region-wide or availability zone failovers, can
improve user experience. Response times could be reduced
by using enhanced routing algorithms and advanced load-
balancing approaches. By lowering latency, the infrastructure
may provide a better user experience while maintaining high
availability and performance. This would provide seamless
access to services, resulting in a more resilient and efficient
system.

REFERENCES

[1] A. Malhotra, A. Elsayed, R. Torres, and S. Venkatraman, ”Evaluate
Solutions for Achieving High Availability or Near Zero Downtime for
Cloud Native Enterprise Applications,” in *IEEE Access*, vol. 11, pp.
85384-85394, 2023, doi: 10.1109/ACCESS.2023.3303430.

[2] A. Johnson and B. Lee, ”Auto-Scaling Strategies for High Availability
in AWS,” in *Proceedings of the International Conference on Cloud
Computing*, 2017, pp. 112-125.

[3] H. Lang and C. Li, ”Containerization for High Availability in Cloud
Environments,” in *Proceedings of the International Conference on
Cloud Computing and Big Data*, 2019, pp. 201-214.

[4] G. Verma and R. Sushil, *Cloud Computing Implementation: Key Issues
and Solutions*, Springer, 2015.

[5] N. Ahmad et al., ”Strategy and Procedures for Migration to Cloud Com-
puting,” in *Proceedings of the 2018 IEEE 5th International Conference
on Engineering Technologies and Applied Sciences (ICETAS)*, 2018,
pp. 1-5.

[6] V. Mohammadian et al., ”Fault-Tolerant Load Balancing in Cloud
Computing: A Systematic Literature Review,” in *IEEE Access*, vol.
PP, pp. 1-1, 2021.

[7] W. A. Aziz, ”High Availability Solution for Cloud Applications,” in
International Journal of Simulation: Systems, Science Technology,
vol. 24, 2023.

[8] A. Berenberg and B. Calder, ”Deployment Archetypes for Cloud Appli-
cations,” in *ACM Computing Surveys*, vol. 55, no. 3, Article 61, pp.
1-48, March 2023. doi: 10.1145/3498336.

86Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

[9] A. Hajikhani and A. Suominen, ”The Interrelation of Sustainable
Development Goals in Publications and Patents: A Machine Learning
Approach,” *Trepo Digital Repository, Tampere University*, 2021.

[10] M. R. Mesbahi, A. M. Rahmani, and M. Hosseinzadeh, ”Reliability
and High Availability in Cloud Computing Environments: A Reference
Roadmap,” in *Human-Centric Computing and Information Sciences*,
vol. 8, no. 20, 2018. doi: 10.1186/s13673-018-0143-8.

[11] A. Malhotra, A. Elsayed, R. Torres, and S. Venkatraman, ”Evaluate
Solutions for Achieving High Availability or Near Zero Downtime for
Cloud Native Enterprise Applications,” in *IEEE Access*, vol. 11, pp.
85384-85394, 2023, doi: 10.1109/ACCESS.2023.3303430.

[12] S. Afzal and G. Kavitha, ”Load Balancing in Cloud Computing – A
Hierarchical Taxonomical Classification,” in *Journal of Cloud Com-
puting*, vol. 8, no. 22, 2019. doi: 10.1186/s13677-019-0146-7.

[13] E. Bauer and R. Adams, ”Service Reliability and Service Availability,”
in *Reliability and Availability of Cloud Computing*, Hoboken, NJ:
Wiley-IEEE Press, 2012.

[14] R. Brown and M. Davis, ”Designing Fault-Tolerant Cloud Applications:
A Virtualization-Based Approach,” in *IEEE Transactions on Services
Computing*, vol. 18, no. 4, pp. 567-581, 2020.

87Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

