
Trends for Pulling HPC Containers in Cloud

Vanessa Sochat
Lawrence Livermore National Laboratory

e-mail: sochat1@llnl.gov

Abstract—Container technologies are foundational for cloud
orchestration and have captured the interest of the High Per-
formance Computing (HPC) community. While much work has
been done to demonstrate that there is no additional overhead
when using a container technology, strategies for building and
pulling scientific containers to cloud environments and the cost
implications of those choices have not been fully studied. Due
to the importance and predominance in the ecosystem, consid-
erations that minimize the time of operations, such as pulling
and staging, are essential. This understanding and innovation
in the space is becoming more important as more scientific
applications are ported to cloud environments. In this study,
we first aim to understand the landscape of containerized
scientific applications, assembling a sample of more than 77K
Dockerfile recipes discovered from repositories in a research
software engineering database and across a set of well-known
machine learning organizations. We assess these data for trends
in building strategy and resulting containers, and show that
applying best practices to a set of 10 application containers can
lead to improvements in layer redundancy and thus lower time
and cost to use the set. Finally, we develop a simulation tool that
creates containers for controlled experiments that vary the total
size, and the number and size of layers. With this tool, we run an
experimental study that varies layer size and count across several
scales to better understand the trade-off between layer count and
size and the subsequent cost. In this experimental work, we find
that total image size is a dominating variable during provisioning,
and that strategies to improve I/O and enable lazy loading of
images can lead to improvements of 3-15x. This work is valuable
to inform the HPC community moving to the cloud about best
practices for building and pulling containers.
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I. INTRODUCTION

Capturing application logic in containers is a strategy to
ensure reproducibility and automation of modern workflows
[1]. The dominant force of cloud, and specifically container
orchestration in cloud [2], has further incentivized the High
Performance Computing (HPC) community to investigate and
pursue strategies for optimally running HPC applications there,
requiring a different mindset to consider not just optimizing
performance [3]–[5] but also minimizing monetary cost. One
component of this cost is the action of moving a container from
a registry [6] to the cloud environment, an action often referred
to as “pulling” that can add additional time to a workload, and
thus incur additional monetary costs.

The process of pulling a container from a registry is gov-
erned by the Open Containers Distribution Specification [7],
where first a container runtime makes a request to a registry
Application Programming Interface (API) for a specific image
identifier and tag, and a successful response returns an image
manifest list [8]. The manifest list is parsed until a matching
image platform is found, and then the container runtime tool

can download the final image manifest, which includes a list
of layers for download. Each layer is typically a compressed
archive of a piece of the image filesystem, created as one
command line in the build file called a Dockerfile [9]. While
layers are downloaded in parallel and validated, the extraction
is sequential due to the need to assemble the filesystem in the
order mandated by the image configuration [10]. This entire
process involves multiple interactions with the registry, and
the download and extraction steps that encompass the pull
can take upward of 76% of the container startup time [11].

Running a containerized workload using Kubernetes [12]
starts with the pull of an application container. If all containers
need to be started at the same time, node coordination is
important. As container sizes grow larger and require more
time to pull, this step could incur larger monetary costs. The
design of the container and strategy for pulling can contribute
to the efficiency of this step. If layers are assembled in a
way to clean up unused files or take advantage of multi-stage
builds, image size can be minimized [13]. The choice of file-
system and content retrieval and extraction strategy can further
influence the time from initial pull to application start. This
calls for an assessment of best practices when building and
pulling containers, and the extent to which they are followed.
If there is little time and incentive in the scientific community
to optimize building and pulling strategies, the result can be
a setup that is more monetarily costly.

While work has been done to assess all images in a registry
[14] and pulling for common service containers [15], to our
knowledge, no work has focused on images built in the
scientific community. In this work, we do a temporal and
quantitative analysis on the scientific community container
ecosystem from 2014 until present day. In Section II we
assess trends and practices for building containers, and look
at changes in size, number of layers, base images used, and
reuse. We develop an open-source tool to run simulations of
container pulling across sizes and number of layers. We per-
form experiments across different cluster and container sizes
with simulated and real application containers to identify ideal
pulling strategies (Section III). We show that the total image
size is the dominant variable related to pulling time, make
suggestions based on our experimental results for effective
pulling strategies, and develop two new pieces of software to
support pulling experimentation and cluster deployment [16],
[17]. Finally, in Section IV we review interesting findings,
limitations, and follow-up work. Starting on the premise that
the HPC community desires to move application containers
from on-premises to the cloud and pulling is a required step
that incurs monetary costs, this work is a starting point to
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define good practices and areas of future work.

II. METHODS

A. Analysis of Container Images

Deployment of container images to HPC systems or cloud
requires pulling the container images from registries, a task
that can increase in time and thus be more costly for a work-
flow. Thus, understanding the sizes of images and change over
time can provide insight into current practices and suggestions
for improvement.

B. Dockerfile Ecosystem

We aim to use build recipes for containers to assess image
and layer sizes and content. Larger sizes will take longer
to pull, incurring higher monetary costs, and this can be
associated with good and bad practices in the build recipes
themselves [18]. The first task was to assemble a database
of container image references, often called unique resource
identifiers (URIs). A URI is a unique identifier that includes
the registry, repository, and tag associated with a specific digest
that indicates a version (e.g., docker.io/library/ubuntu:latest).
While registries can expose a catalog endpoint to retrieve a
catalog of all containers, most do not as it would increase load
on already busy registries. Thus, we opt for a programmatic
approach using the Research Software Encyclopedia, a meta-
software database of over 5.6K curated research software
projects [19], to discover Dockerfile recipes from established
research software and machine learning projects. We can use
this set to identify common underlying base images, and do
an analysis of container and layer sizes.

C. Image and Layer Sizes

The container registry can provide manifests – JSON docu-
ments that detail the contents of the images, namely layers and
digests, and the configurations. We are first interested in using
this metadata to better understand the number of layers across
images and tags, and how this has changed across time. Seeing
that the number of layers has changed over time might reflect
a change in build practices. We then can assess similarity of
images by way of pure digests of images and content of the
layers themselves.

D. Image Similarity

1) Content Similarity

A single Dockerfile provides three ways to assess similarity
– the similarity of the base images used to build the container,
the similarity of the Dockerfile build instructions themselves,
and the similarity of the exact digests of the layers. The
choice of a base image reflects a user preference, as different
bases bring different package managers and potential needs
for building software. The content similarity reflects layers
having similar functionality, and the exact matching of digests
is directly related to reuse, as a digest match indicates a cache
hit and not needing to pull a new layer [14].

Similarity of container images by way of content can be
done for both our Dockerfile database and the base images they

are built from. For each, we treat the image build instructions
as a document, where each line that builds a layer is parsed as
a single sentence. To derive the build instructions for the base
images, we parse the FROM directives of the Dockerfiles, and
retrieve build instructions from the “history” section of the
image manifest in the registry. For our Dockerfile database,
we simply need to parse the RUN directives directly in the
Dockerfile. For each of these sets of build instructions, we
apply the following approach. If we consider a grouping of
layers that encompasses a Dockerfile (and image) to be akin
to paragraphs or sentences that make up a document, we can
use these build instructions as a corpus. For each document,
we pre-process the instruction lines to remove a subset of
punctuation, and replace other punctuation with a space (e.g.,
underscores and dashes) and tokenize the result. We can then
derive word2vec embeddings [20] each of length 300 for
each image or Dockerfile, and do a pairwise similarity of
these vectors using cosine similarity to derive a similarity
matrix. These similarity values reflect the degree to which
build instructions (from base images or Dockerfiles) are built
with common logic.

2) Digest Similarity

While our similarity analysis primarily aimed to reflect on
similarity of content, a different goal is to better understand
the impact of build strategies on resulting digest similarity.
The exact digest is the unique identifier for a layer, and the
decision point about whether a container runtime needs to pull
a layer. Since layers are saved to a cache [21], it follows that
a strategy that minimizes redundancy of layer digests requires
fewer pulls, both taking up less space on the filesystem and
time to do the pulls.

Toward the goal of understanding digest similarity “in the
wild” and similarity when care is taken to ensure redundancy,
we can first assess the similarity of digests across our set of
unique resource identifiers for base images. We will calculate
the Jaccard coefficient between pairwise images, which is the
ratio of the number of intersecting digests divided by the union
of all digests. A Jaccard coefficient of 1 indicates most similar,
and 0 most dissimilar. This value is expected to be low, as
each digest reflects not only the content within it, but the
previous layers [22]. We can then compare these scores against
equivalently calculated values for different sets of images that
are intentionally built with different redundancy strategies in
mind:

1) A reasonable effort to create redundancy
2) A best effort to create redundancy
3) Little effort to create redundancy.
For each of these sets, we aim to compare a set of 1̃0

containerized HPC proxy applications (and new builds of
the same applications with an improved strategy) based on
a real-world performance study [23]. For (1) we will use a
derivative of the containers from the study where a reasonable
effort was taken to ensure redundancy, however some images
used an entirely different build strategy to achieve more ideal
performance. Best-effort builds of the same applications (2),
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and a highly redundant set of the same applications (3) using
spack [24] “containerize” to generate multi-stage builds with
one large layer that included a main application and all
dependencies. This exercise will demonstrate the impact to
building strategy on overall image similarity, and consequently,
redundancy of layers that can influence cost. All container
Dockerfiles are available [25].

E. Image Bases

For our next analysis, we want to classify our images for
the underlying base image, which typically falls in the set
of operating systems including debian, alpine, ubuntu, centos,
fedora, rockylinux, and busybox. This task requires the unique
resource identifier that can be used to pull the actual image
layers for analysis. To do this assessment, we first reduce our
entire set of images to inspect just one tag for each, choosing
either “latest” or (if not available), the newest dated tag. We do
this because different tags belonging to the same URI do not
typically vary with respect to the base operating system, and
we can estimate the unique resource identifier of the image
from one single tag. We also have to be selective due to the
need to pull the entire image and extract the contents to the
filesystem, which can be both expensive in time and cost for
internet bandwidth.

Since there is no single, reliable way to derive a base
operating system, we will use a simple strategy to compare the
extracted filesystem paths in the image to a known database
of operating system paths. This approach is enabled by the
“guts” software [26] to extract the container image to the
filesystem, and generate a complete manifest of file paths
and environment paths. Using this manifest, we can compare
each extracted image fileystem against a database of 46 base
extractions across tags of those named base images [27]. This
means that, given a contender image A that needs classification
and a set of base images B:

• Extract paths from A (PA)
• Generate a set (intersection) of paths across B. This

represents shared paths in the base images B that could
not be used to distinguish them (PB)

• Subtract this set of paths from A.
• This provides distinct paths in A. (PA - PB = AP)
• AP is a combination of application-specific additions to

the base image, and non-shared base image paths.
• Compare each base image paths Bi with AP to generate

a score Si (Si = intersection(AP, Bi) / len(AP))

By scoping the denominator to the set of paths in AP, paths
in Bi shared with other base images are again discarded. (Si
= intersection(AP, Bi) / len(AP)). The score calculated above
represents the percentage of extracted filesystem paths in A
that are also present in Bi, a given base image set of filepaths
after removing any shared paths between base images. While
some of these paths will be added software installs, the
remainder will be paths that identify a base image family.
Given no additional software installs, all of these paths will

be derived from the base image, and the maximum similarity
score is 1. Given no overlapping paths between AP and Bi,
the minimum score is 0. When we calculate similarity of our
contender image A with all base images Bi, the maximum
score is declared the matching base image.

F. Building Best Practices

In addition to word2vec embeddings generation for similar-
ity calculations, the Dockerfile database can be used to make
observations about image building best practices.

G. Image Pulling Strategy

a) Number of Layers

While the maximum number of layers for a Docker image
is known to be 127, the implemented maximum set by the
Docker client is in fact 125 [28]. In practice this limit is
determined by the kernel version, and so different container
building tools can vary in allowances. For the purposes of this
work, we will test an upper limit of 125 layers, as a majority
of scientific container developers build with docker [29]. The
question remains for build practices, given a constant size,
whether it is a better strategy to choose few large layers, or
more smaller layers. And secondly, given some number of
layers, how does pull time vary with image size and choice
of network or registry? Toward this goal, we developed a
docker building tool to generate images with a controlled
total size, and number of unique layers [17]. We used the
Dockerfile database to calculate a range of image sizes based
on percentiles between the 25th and 100th (Table I) as a
strategy to reflect images being used by the community. For
each of these sizes, we will perform a container pulling study
that generates the respective size at a range of layer counts
that are equivalently derived from the data. The sizes were
chosen at percentile increments of 5, with the exception of
the range between the 95th and 100th percentile, which was
broken into an additional set of three ranges due to the larger
span between the values.

For the study, we chose two values for the number of layers
– the median (9) of the dataset, along with the upper max of
125. For each pair of image size and layer count, the size of
the layer is calculated as the total size stated above divided by
the number of layers. We will only build images for which the
minimum size is within the allowances of a standard registry
(10MB or smaller).

The experiment will use Kubernetes, the de facto standard
container orchestration framework for cloud and Fortune 500
companies [2] and be run on Google Kubernetes Engine
(GKE). As each container is assembled from layers with a
different generation command, there is no chance for overlap
of file names so the cache can never be used when pulling
images. The study will be run on each of 4, 8, 16, 32,
64, 128, and 256 n1-standard-16 nodes on Google Cloud,
with 16 vCPU and 60GB RAM per node. Initial testing was
done to pull containers on the n1-standard-16 and a larger
instance, n1-standard-64 (64 vCPU and 240GB memory), and
n1-standard-16 was chosen as the n1-standard-64 was only
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TABLE I. IMAGE SIZES CHOSEN FOR PULLING STUDY

Image Size (bytes) Human readable Percentile from Database

53702097.0 (53.7 MB) 25th
58049507.8 (58.05 MB) 30th
71460665.0 (71.46 MB) 35th
91388866.2 (91.39 MB) 40th
108513992.4 (108.51 MB) 45th
132399102.0 (132.4 MB) 50th
163049655.0 (163.05 MB) 55th
218665412.8 (218.67 MB) 60th
271728773.4 (271.73 MB) 65th
320018606.2 (320.02 MB) 70th
392602448.0 (392.60 MB) 75th
496514346.8 (496.51 MB) 80th
687439577.6 (687.44 MB) 85th
1181249324.6 (1.18 GB) 90th
2775722493.4 (2.78 GB) 95th
6841726027.3 (6.84 GB) 96.25th
10907729561.2 (10.91 GB) 97.5th
14973733095.1 (14.97 GB) 98.75th
19039736629.0 (19.04 GB) 100th

1.028x faster, but 3.87x more expensive. For each container,
a Job [30] will be created that requires pulling the container
to all nodes, and the Kubernetes Event Exporter [31] will be
used to capture all events from which pull times and errors
can be derived. Importantly, this tool requires setting the max
age of events to a large value (1200 seconds) or else events
can be dropped. The experiment will be conducted multiple
times, each time optimizing a different part of the setup to give
actionable advice about pulling practices. At the end of this
first experiment, there will be data for deciding on one or more
image sizes and number of layers for subsequent experiments
to assess pulling strategies across nodes [32], discussed next.

b) Local vs. Remote Registry

The location of the registry relative to the final destination
of the pull can be a salient factor to pulling latency, where
sources that are physically closer to their destination might
see improvements in latency and pulling time. To test this
approach, we will pull the application container set from
GitHub packages (ghcr.io) and then directly from the registry
provided by the cloud where the experiments are run, Google
Artifact Registry (gcr.io).

c) Filesystem Latency

Input/Output operations per second (IOPS) and throughout
can be hugely influenced by the filesystem available to the
Kubelet, resulting in a 3x improved throughput [32] and thus,
faster image pulls as the layers are streamed to the filesystem
and then extracted. With this knowledge, we aim to test adding
a single 375GB LocalSSD to each node in the cluster to which
the images will be pulled.

d) Streaming Images

While our experiment containers did not contain a real
application (they start and complete) it is worth testing image
streaming, where images are allowed to enter a running state
before the entire image is downloaded. This is done by way of

starting containers with content that is recorded to be accessed
at the onset of the container running, and then loading content
that is needed on demand – a strategy called lazy loading
[33]. While it cannot be known exactly how Google Cloud has
implemented this approach, an open source tool to perform
this task is the SOCI (Seekable OCI) snapshotter [33], a
containerd plugin that creates an index of image contents, and
then is able to start the container before download finishes.
This is possible because, as Harter et. al showed [11], only
6.4% of container data is needed for this step. In a real-world
application scenario, this would hugely reduce costs because,
although the image pull still needs to complete, the pull itself
does not slow down the starting time of the workload. While
we cannot determine if Google Cloud is using this exact
snapshotting, the project that SOCI derives from, the stargz
snapshotter [34] came from a project developed by Google
engineers. The lazy loading approach has been documented to
speed up a workload start time by 6.3x [32]. On Google Cloud,
image streaming requires using Google’s Artifact Registry,
which does incur additional costs.

e) Real-World Application Test

Given a pulling strategy that is shown to be optimal in the
previously stated experiments, we would finally want to test
the approach with real applications. The reason is, especially
for the image streaming strategy previously mentioned, the
ability for the container to start depends on the logic of
the entrypoint. As our simulated containers do not have real
entrypoints or applications, the times for the streaming images
could be unusually or unrealistically fast. Toward this goal, we
can use a subset of the spack containers described in Section
II-D1 (LAMMPS, OSU All Reduce, AMG, and Minife) that
can guarantee that the application and dependencies are con-
tained within one layer, and the experiment is testing actual
applications that can be validated to run and return a result.

f) Node Coordination

As a final investigation in the study, we want to investigate
the extent to which nodes in the cluster are coordinated for
events, including a pod being scheduled, a container pulling,
pulled, created, and started. If these events are not orchestrated
in unison, given a workload that requires all containers running
at the same time, it could further delay the application start
and incur additional cost.

III. RESULTS

A. Dockerfile Ecosystem

We used the Research Software Encyclopedia to identify
4,621 associated GitHub repositories. Of that set, 694 had at
least one Dockerfile. In total, we find 77,449 Dockerfile across
research software engineering and machine learning projects
to further explore.

B. Image and Layer Sizes

For each of our 77,449 Dockerfile, we retrieve complete
metadata about tags available and configurations from the
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Figure 1. Tags per image with one outlier removed.

respective registry endpoints. Despite the large number of
Dockerfile, the set of unique base images (each with some
number of underlying tags, image configurations, and man-
ifests) was much smaller, (2,132) and with huge variance
with respect to the number of tags. With one outlier removed
(47,428 tags for nix/nixos) (Figure 1), the number of tags
ranges from 1 to 16,748, with a mean of 1842 and standard
deviation of 2,531 tags.

This tells us that there is quite a bit of variation with respect
to release frequency across our set, as each tag is typically
indicative of a version or release. We are first interested in
the number of layers across images and tags, and how this
has changed across time. Seeing that the number of layers has
changed over time might reflect a change in build practices. In
Figure 2 we see this result for the decade between 2014 and
2024, and while the variation has increased slightly (meaning
some images have many more layers) the general means are
the same (16.58 +/- 23.66) across time, visually suggesting
that people are not building images with significantly more
layers. In this exercise, we also found several images from
the RedHat registry (8 repositories with a total of 205 tags)
with greater than 127 layers. This was an unexpected finding
that challenged our “common” knowledge that images could
not exceed 127 layers.

We can then use the manifests, which contain layer sizes
in bytes, to look at the change in size over this same period
(Figure 3). In this figure we see a different pattern – that
images are indeed getting larger.

Finally, we might ask how often layers are repeated. This
depiction is biased to our dataset, which would more likely
have common layers between different tags from the same
image. Even still, for a set of 528,449 unique digests (layers)
the count of replicated layers drops off quickly, with only 120
instances of a layer being repeated more than 500 times, 52
instances of greater than 1000 times, and only 4 repeated more
than 4 times. This data is presented in Table II.

Figure 2. Layers per image by year shows a fairly consistent mean trend
with smaller variance and an increase in outliers.

Figure 3. Total image sizes (sum of layers) by year. Outliers with more than
127 layers, the declared maximum, do in fact exist in the RedHat registry.

Interestingly, we discovered an outlier in this set - a layer
that appeared to be repeated 67,897 times:

sha256:4f4fb700ef54461cfa02571ae0db9a0dc1e0cdb55
77484a6d75e68dc38e8acc1

Further investigation revealed this was an empty set of 32
bytes that was often associated with a WORKDIR directive in
the Dockerfile, but only for cases where the directory already
existed. Discussion with OCI maintainers revealed that there
is an “empty layer” flag in the image configuration. If the
tooling decides not to set the flag, the tool must ship a valid
tar+gzip, and that, even without any files being packaged, takes
up some space for the tar and gzip headers. This is the empty
layer we discovered that when extracted results in the digest
that we found. This was implemented before it was realized
that /dev/null is an actual valid empty tar file.
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TABLE II. REPEATED LAYERS ACROSS DATABASE

Threshold Count

= 1 312095
>1 216354
>2 136054
>50 9255
>100 3333
>500 120
>1000 52
>3000 4

Figure 4. Distribution of image similarities across 300K Docker images,
where each is calculated from image build history from the manifest config-
uration.

C. Content Similarity

We next used the text of the unique layers from the base
corpus (N=528,449 layers) to derive both image and layer
similarity. We started with 2,132 manifests and treated the
layer “history” lines as sentences that make up a document,
deriving a set of 309,317 documents. The word2vec embed-
dedings generated from the tokenized documents were then
used to calculate pairwise cosine similarity (Figure 4). The
cosine matrix generally shows that the bulk of images are not
very similar at all, with cosine scores under 0.2.

When we apply the same processing technique to the
text from the original scientific Dockerfile (N=77,449) RUN
statements we see a similar pattern (Figure 5).

We next want to assess layer similarity. This calculation
was more challenging, as we have a total set of 6,535,425

Figure 5. Distribution of image similarities across 77K scientific Dockerfile.

Figure 6. Distribution of layer similarities across 582K unique layers

(non-unique) layers across images. We chose a strategy that
removes exact duplicates (typically equivalent layers between
temporally close tags of the same image), and calculate
from the reduced set. Since we are explicitly removing exact
duplicates, our goal would not be to say something globally
about the ecosystem, but say something about similarity of
layers that are not exactly the same. When we tokenize and
process and filter down to unique, ensuring that layers from
images from the same tag are removed, we have 597,591 layers
from base images. When we calculate similarity scores across
these layers, we see a similar pattern (Figure 6) where most
layers are largely not similar.

At a high level, what we can see from this small analysis
is that most layers are not re-used across images.

D. Image Bases

When we classify a subset of our images (Table III),
removing the version of the image, since we are biased to
select for newer images, we find the majority have a debian
base, followed by alpine and ubuntu. We also see that values
in the similarity score distribution are generally high (Figure
7), indicative of shared paths and thus confidence in the
classifications. The minimum score in the above is 0.59, and
the maximum is 1. We see that debian is by far the most
frequently used, at least for this sample of images we are
looking at.

TABLE III. BASE IMAGE CLASSIFICATION

Count Base Image

debian 393
alpine 95
ubuntu 74
centos 64
fedora 15
rockylinux 11
busybox 4

E. Building Best Practices

In addition to word2vec embeddings generation for similar-
ity calculations, we can use our database of 77K Dockerfile
to make observations about image building best practices.
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Figure 7. Distribution of image similarity scores used by the “guts” software
to derive the base image labels.

1) Limit layers amount

While the maximum number of layers allowed in most
registries is 127 and there is no strong guidance on how many
layers are good for a single image, we can see from Figure 2
that the layer count has remained relatively stable over time
with large variance (16.58 +/- 23.66). We might guess that in
practice, people do not explicitly attempt to build images with
the fewest layers, but rather build exactly what they need or
is easiest.

2) Multi stage builds

Multi-stage builds are useful for separating builds into
stages, such as compiling an application and then providing
the final binary and libraries in the final image. They are
indicated by way of finding more than one FROM statement
in the Dockerfile, and considered best practice in that they can
reduce the size of the final production image. When we parse
our repository of 77K Dockerfile build recipes we can look for
greater than 1 FROM statement to indicate such a build. In
this set, we find a total of 1984 Dockerfile, which represents
2.56% of image builds.

3) Docker official images

While a Docker “verified” image can come from the docker
official images, sponsored open source, or verified publisher,
we chose to look explicitly for Docker official images (e.g.,
ubuntu) as these are provisioned directly by Docker Hub with
provided scanning and security checks. We can detect which
images are in this set by way of looking at the FROM unique
resource identifier. If it has docker.io or library or is missing
the registry name (which then will default to the Docker
Hub registry) we have found a docker official image. In our
database, we found a total of 11,439 images that use a Docker
official image, representing 14.77% of the entire set.

4) Latest image

It is conventional wisdom to not use a “latest” tag, the
reason being that it is a moving target and can hinder re-
producibility. When an image “latest” updates the operating
system version, image builds can break as library names
or availability can change over time. For our set of 77K
Dockerfile, we looked for images that would pull a “latest”
tag by way of providing it directly in the unique resource
identifier, or leaving out the tag entirely (which defaults to
latest). Of the set, we found 4,114 Dockerfile that use a latest
image, representing 5.3% of the entire set.

5) Pinned image digest

It is considered better practice to pin an image digest
directly, which is more granular than a tag in that it represents
an exact build of a base image for a point in time. In our set, we
looked for these digests in the FROM statement by searching
for the string “sha256,” which is the hashing algorithm used
for this purpose, and the correct way to specify using a digest.
In our set we found only 74 Dockerfile (0.09% of the set) used
a pinned digest, reflecting that the practice is not common.

6) Using apt get with apt install in same line

For debian or ubuntu images, it is recommended to use apt
get with apt install in the same line to properly use the apt
cache. Across our Dockerfile database, for the subset of layers
that use apt get (507,695 across Dockerfile images), the large
majority (478,742 layers, or 94.3%) take this approach.

7) Using apt get with a clean / autoremove

Since each layer is an isolated unit, and files that are added
(and not removed) between layers can lead to bloated layers
even if they are cleaned up, it is advisable to remove lists
and clean. While debian and ubuntu images automatically run
apt-get clean [35], this is arguably still a good practice when
applied to other package managers and methods to install
software. For our Dockerfile dataset, we find that of the subset
that use apt, 67.8% do a clean (clean or autoremove), 0.048%
do only an autoremove, and 11.19% do both.

F. Impact of Build Strategy on Digest Similarity

To demonstrate the influence of container building strategy
on resulting container layer similarity, we aimed to compare
overall layer digest similarity between 10 applications that
were built in multiple ways. The spack builds for three
containers (low redundancy strategy) were not successful and
were not used in the analysis. The Jaccard scores are shown
in Figure 8 and summary metrics in Table IV.

Interestingly, the performance study set has a cluster of
images that are more similar than the best effort set, likely
resulting from having overall a larger number of matching
layers between images.

The best effort set of builds (middle panel in Figure 8)
that have fewer overall layers would require 33/118 (28%)
unique layer pulls. Since we are certain that these containers
were built with redundancy of layers in mind, we can state
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Figure 8. Jacaard scores for three build strategies. A reasonable effort to ensure redundancy (left) that produces a mixture of similar and dissimilar images,
a best effort strategy (middle), and a build tool that eliminates the possibility for redundancy (right).

TABLE IV. SIMILARITY OF CONTAINER SETS BASED ON BUILD STRATEGY

Container Set Total Layers Unique URIs Unique Containers Unique Layer Digests Jacaard Similarity (mean and s.d)

Performance Study 258 10 10 115 0.40 (0.38)
Best Effort for Redundancy 128 10 10 33 0.66 (0.128)
Low Redundancy Builds (spack) 56 7 7 50 0.2 (0.33)

that this 28% represents the application logic specific to each
container. For the performance study where some care was
taken for redundancy, 115/258 (45%) of layers would require
isolated pulls. Finally, for the spack build strategy that creates
a large layer that consists of a custom spack view, 50/56 (89%)
of layers would require unique pulls, a strategy that does not
allow for large amount of redundancy. We can see this result
reflected in the Jaccard similarity cluster maps in Figure 8.
The exercise demonstrates that a choice of a build tool can
have “trickle down” implications for experiment costs, and
often unique application logic makes the task of redundancy
a challenging one.

G. Image Pulling Strategy

We assessed the trade-off between number of layers and
image size. We found no discernible impact to the number of
layers and image pull time (Figure 9). Instead, total image size
appeared to be the most important factor to increase pull time.
We proceeded with subsequent experiments to only include
the median (N=9) number of layers, and a set of 6 larger
sizes between the 90th and 100th percentile of the Dockerfile
dataset, ranging between 148MB and 19GB.

Pulling from a registry external to the cloud provider (Figure
10) made no difference to pull times as compared to pulling
from a registry provided by the cloud (Figure 11)

However, pulling with the presence of LocalSSD (Figure
12) improved times, often by 20-40 seconds (approximately
1.25x), and made pull times more consistent between nodes.
This is an advisable strategy as the cost of storage ($0.1046
per GB per month) is relatively inexpensive compared to the

Figure 9. Testing the influence of number of layers across 4 image sizes and
18 different layer counts showed no discernible difference in pull times, but
rather, suggested that size was a salient factor.

cost of running experiments.
The most surprising and impressing result was using image

streaming, which could reduce pull times down to close to
1 second, assuming to be assisted by a caching strategy [36].
This finding is demonstrated in (Figure 13), where the benefits
of image streaming are fully realized after the initial pull of
the experiment containers for the size 4 cluster. The caching
strategy provided by Google Cloud that makes subsequent
cluster pull times almost instantaneous persists across different
clusters.

Extending images to a real-world set of applications, the
improved pulling times when using image streaming as com-
pared to not using it was still substantial, an approximate 15x
improvement (Figure 14).
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Figure 10. Pull times from a remote registry (GitHub packages) to Google
Cloud showed an increase as the size of the container increased.

Figure 11. Pull times from a local registry (Google Artifact Registry) to
Google Cloud in the same region did not improve pull times.

Figure 12. Pull times from a local registry (Google Artifact Registry) with an
added local SSD improved pull times between 20-40 seconds and improved
consistency of pull times across nodes in the cluster.

Figure 13. Image streaming pulling times across image sizes. The ability of
the container to transition to running was consistently close to 1 second due
to caching. Size 4 demonstrates that the first pull of a specific container in
Google Cloud benefits from image streaming, but is not instantly available as
it is not cached. Larger sizes benefit from a caching strategy [36].

Figure 14. Image streaming pulling times across application images. The
reported time for the container to start running was approximately 15x faster
for applications LAMMPS, OSU All Reduce, AMG, and Minife. The smallest
experiment size did not benefit from Google Cloud caching.

H. Node Coordination

Despite pull times not increasing as cluster size increases,
the total time to run an experiment increased with number
of nodes, resulting in 1383.65, 1392.84, 1408.48, 1426.84,
1535.19, 1940.99, 2884.18 seconds for our initial experiments
for sizes 4, 8, 16, 32, 64, 128, and 256, respectively. This
suggests that additional time is accumulated elsewhere, and the
results of the node coordination tests give a hint to the source
of this extra time. Figure 15 shows time differences between
events across nodes. This is calculated as, for each container,
the earliest timestamp recorded for the event subtracted from
the latest across nodes. Doing this calculation across cluster
sizes shows us the extent to which an event for a specific
container is coordinated. A time of zero indicates that the
nodes across a cluster had the event occur at the same time,
while a value above that represents a stagger from that.
These plots demonstrate that as the size of both containers
and clusters increase, so does the variability of events for it
between nodes – the largest container (19GB) on the largest
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cluster size (N=256 nodes) has minimally two nodes that are
pulled, created, and started approximately 50 seconds apart.
This finding that extra time is accumulated as clusters get
larger, a likely result of needing to wait for the slowest
node across a large set, is interesting and warrants further
exploration for behavior and solutions.

IV. DISCUSSION

In this work, we amass a database of 77K Dockerfile and do
a complete assessment of the trends and container ecosystem
since 2014, observing that the number of layers has largely not
changed, but image sizes are slowly getting larger – a trend
we expect to continue with the growing number of machine
learning images that are entering the ecosystem. We derive
build practices from the data, noting that debian is the most
popular base image, redundancy of layers is uncommon, and
good practices to pin digests and perform multi-stage builds
are uncommon. We finish our study with a set of experiments
that first visually show the change in image similarity based
on digests for three building strategies, and then performing
a comprehensive pulling study that demonstrates using local
SSD and a streaming approach can greatly reduce the time
between onset of pull and having a running container. It was
a surprising result that pull time does not increase with the
number of nodes in the cluster, and that other scaling issues
must be responsible for longer experimental runs on larger
clusters. This finding is interesting and warrants further work.

While Google Cloud offers image streaming easily as an
add-on to GKE, no similar easy install method exists for
Amazon Web Services Elastic Kubernetes Service (EKS) and
so as a supplement to this work we developed a daemonset
[16] to automatically install the SOCI snapshotter to a cluster.
We anticipate doing further work in the space of snapshotter
plugins to further optimize how application assets are loaded
with cache pre-fetching and on demand. From these observa-
tions, we recommend to the reader to use a streaming image
approach when a registry is available that can provide the
indexed images, and if not, to fall back to using local SSD
for improved pulling times.

A. Docker Layers

The finding that Docker has references that set limits to each
of 125 and 128 layers for the overlay fs driver was interesting
and worth further exploring. As containerd does not set any
maximum, we were able to test building and pushing the image
“docker.io/tianon/test:many-layers-256” and it was successful.
The limit was originally enforced because there were early
issues with mounting layers (length of an argument to a
syscall) that led to technical maximums. However, this early
issue may not be relevant depending on the host operating
system, kernel version, and container runtime being used.
Different tools take different approaches to validating this -
– containerd and buildkit use a practical approach that does
not enforce any checks, but then would propagate the error on
mount failure, meaning that the limits are controlled by the
kernel. Other tools like Docker hard code manual checks in the

Figure 15. Time differences between events across nodes. This is calculated as
the maximum - minimum timestamp across nodes for a cluster sizes, reflecting
the extent to which an event for a specific container is coordinated. A time of
zero indicates that the nodes across a cluster had the event occur at the same
time, while a value above that represents a stagger from that.
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code, which might fail earlier, but do not always reflect the true
limit enforced by the user’s particular kernel. With respect to
Docker, the failure often comes after pulling the layers, which
arguably is a check that should be done earlier. This was an
interesting finding because it represents a cultural practice and
established knowledge that is more of a gray area. In practice,
many empty or metadata layers are relatively harmless since
they are ignored or not relevant to image extraction.

B. Limitations

We recognize that our choice of a software database that
would provide scientific images is only a slice of the entire
container ecosystem, and this choice was intentional to not
include many service-oriented images that might run websites,
databases, or other applications not directly related to science.

While using a different compression algorithm can also
reduce extraction, we aimed to test solutions that were readily
available in the common software being use to build contain-
ers, which typically is not containerd [29]. Another viable
solution that was not tested here is to preload base images
using a daemonset [32], a great idea given containers with a
large shared base image. That approach would not have fit
our study as our base image was chosen to be minimal and
insignificant to the pull time. While we used Google Cloud
for this work, the use of the open source project Kubernetes
that is available across clouds, and general pattern to use
a more performant filesystem can be applied to other cloud
environments. A logical next stage of work is to understand
how patterns of application data retrieval work with various
pulling strategies. For example, requiring download of large
data after container startup could have a detrimental effect to
application performance. In these cases, optimizing an initial
pull to better run in parallel could be an optimal choice.

V. CONCLUSION

Best practices are often prescribed with little attention to
how reasonable they are, or how well they fit into a user
workflow or incentive structure. Our work demonstrates that
the number of layers is not a salient variable to worry about,
but rather total image size. Our takeaways are that a container
building strategy optimized for similarity in container layers
can increase layer redundancy, decreasing time needed to pull
and thus decreasing total time and cost for a study. This
improvement becomes more salient when using expensive
resources such as GPU, or an auto-scaling strategy that provi-
sions new nodes that do not have images cached. We suggest
container streaming as an ideal strategy for quickly starting
containers that are large, however caution should be used if
large amounts of new data are needed for application execu-
tion later in the run. Local SSDs can consistently improve
performance without these detrimental effects.

While we cannot say that these benefits extend to other
clouds, those using Google Cloud should consider pulling
images to a smaller cluster first to take advantage of caching
along with image streaming. Layers should (and cannot) go
over the registry limit of 10GB, and given this limitation,

developers will need to consider strategies for provisioning
large models that are intended to be used with containers. As
ML images get larger it will be more important to address
these issues.

Finally, we suggest to the reader that although the specific
strategy chosen for building and pulling might vary based on
the experimental resources and application characteristics, it
is responsible to have awareness about costs, and strategies
for improvement. Given contention for resources such as
GPUs, there is an opportunity cost of the extra time used
on the resources. Nodes that have excess pulling time are not
available for anyone else to use. We encourage the community
to think about the costs of their experiments, and to further
explore this interesting space of work.
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