
PERTD - Cloud Application Threat Modeling

Aspen Olmsted

School of Computer Science and Data Science

Wentworth Institute of Technology

Boston, MA 02115

olmsteda@wit.edu

Abstract— This research work investigates the problem of

developing secure cloud software applications. Currently,

proposed solutions focus on data flow across so-called trust

boundaries. The challenge with the current approach is that many

of our applications' threats are not from malicious users. Many

threats come from poor design, misunderstanding of use cases, and

a lack of planning for environmental changes. This research

focuses on the challenges of developing secure cloud software

applications through a modeling process that allows us to identify

risks to the cloud software during the design phase and implement

strategies to mitigate those risks in the coding and implementation

phase.

Keywords- cyber-security; software engineering; software

development lifecycle

I. INTRODUCTION

Secure software development stands at the intersection of
innovation and protection, emphasizing the design,
implementation, and maintenance of software systems with a
robust focus on security. By embedding security measures and
best practices throughout the development lifecycle, we can
transform vulnerabilities into resilient defenses against potential
threats. Here are some inspiring research areas in secure
software development:

1. Secure Coding Practices: This area champions identifying
and promoting vital coding techniques that empower developers
to write secure code. By exploring common programming errors
and vulnerabilities, we can equip ourselves with tools like static
code analysis and automated vulnerability detection, paving the
way for robust software security.

2. Threat Modeling: In a proactive approach, threat modeling
illuminates potential threats and vulnerabilities early in
development, giving you a sense of preparedness and control.
This research area enables developers to refine their techniques
and effectively chart pathways to improved security through
tools like attack tree analysis and risk assessment
methodologies.

3. Security Testing: Evaluating software for weaknesses
becomes a quest for excellence, driving us to improve
constantly. Innovative techniques such as penetration testing and
fuzz testing serve as guardians of security, while automated
processes revolutionize how we ensure the integrity of our
software systems.

4. Secure Software Architectures: Research in this field
aspires to design architectures that withstand attacks,
safeguarding sensitive information with secure component
integration and effective communication protocols.

5. Secure Software Development Processes: Methodologies
become a fortress by embedding security at every stage of the
software development lifecycle, from requirements engineering
to incident response planning, forming an unshakeable
foundation of trust.

6. Secure DevOps and Agile Development: In the fast-paced
realms of DevOps and agile methodologies, research navigates
the exciting intersection of speed and security, integrating
practices that ensure rapid innovation without compromise.

7. Secure Software Analytics: This area of research uncovers
patterns and anomalies in software-related data, harnessing the
power of machine learning and data mining to predict
vulnerabilities and bolster our defenses.

8. Security Education and Training: Elevating security
education for developers transforms knowledge into action,
fostering a culture of security awareness that resonates within
software development teams.

These research areas advance secure software development

and inspire a collective drive to protect our digital world and

mitigate risks associated with cyber threats and attacks. Our

paper's focus on threat modeling is a call to action, aiming to

reduce risks to software functionality, regardless of the source of

potential danger.

 The organization of the paper is as follows. Section II

describes the related work and the limitations of current

methods. Section III describes workflow engines used in our

motivating example of a distributed cloud application. Section

IV discusses a current Threat Modeling technique called

STRIDE. Section V discusses an alternative Threat modeling

technique called DREAD. In Section VI, we give a motivating

example from our study. Section VII describes our modeling

methodology. We conclude and discuss future work in Section

VIII.

II. RELATED WORK

Functional requirements can be defined and represented in
various ways. While these requirements serve as the foundation
for software development, non-functional requirements (NFRs)
provide the essential guidelines for coding implementation.
Many authors have examined NFRs and the challenges of
incorporating them into the design process. Pavlovski and Zou
[1] NFRs are defined as specific behaviors and operational
constraints, including performance expectations and policy
limitations. Despite many discussions surrounding them, they
are often not given the attention they deserve.

Glinz [2] suggests categorizing functional and non-
functional requirements to ensure their groups are inherently
considered during application development. Alexander [3]
points out that the language used to describe requirements is
essential, noting that words ending in “-ility,” such as reliability
and verifiability, often refer to NFRs. Much of this research
focuses on identifying NFRs. Our work builds on these
foundations by applying domain-specific models using our
proposed modeling technique.

63Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

Ranabahu and Sheth [3] explore four different modeling
semantics to represent cloud application requirements: data,
functional, non-functional, and system. Their work primarily
addresses functional and system requirements, with some
overlap in non-functional requirements from a system
perspective. They built upon research conducted by Stuart, who
defined semantic modeling languages for modeling cloud
computing requirements throughout the three phases of the
cloud application life cycle: development, deployment, and
management. Our work fills in the gap regarding the semantic
category of non-functional requirements.

Ranabahu and Sheth [3] use Unified Modeling Language
(UML) to model only functional requirements. UML [5] is a
standardized notation for representing software systems'
interactions, structures, and processes. It consists of various
diagram types, with individual diagrams linked to different
perspectives of the same part of a software system. We utilize
UML to express non-functional requirements as a secondary
step following the PERTD models.

Integrating UML Sequence, Activity, and Class diagrams
can enhance the semantics of our models. UML offers
extensibility mechanisms that allow designers to add new
semantics to a model. One such mechanism is a stereotype,
which helps extend the vocabulary of UML to represent new
model elements. Traditionally, software developers interpret
these semantics and manually translate them into program code
in a hard-coded manner. In our book [6], we marry the models
generated by each phase of the software development lifecycle
into with threat modeling and risk mitigation techniques.

The Object Constraint Language (OCL) [7] is part of the
official Object Management Group (OMG) standard for UML.
An OCL constraint specifies restrictions for the semantics of a
UML specification and is considered valid as long as the data is
consistent. Each OCL constraint is a declarative statement in
the design model that signifies correctness. The expression of
the constraint occurs at the class level, while enforcement
happens at the object level. Although OCL has operations to
observe the system state, it does not include functions to modify
it.

JSON [8] stands for "JavaScript Object Notation," a simple
data interchange format that began as a notation for the World
Wide Web. Since most web browsers support JavaScript, and
JSON is based on JavaScript, it is straightforward to support
there, which stands for "JavaScript Object Notation," a simple
format used for data interchange that originated as a notation
for the World Wide Web. Since most web browsers support
JavaScript and JSON is based on JavaScript, it is easy to work
with in web environments. Many cloud-based web services now
exchange data in JSON format. JSON Schemas [9] define
correctness for data passed in JSON format. We utilize an
extended form of JSON schemas on the aggregated data from
several web services.

Our contribution to secure software development for cloud
applications involves a new Threat Modeling technique,
coupled with modeling standards, such as UML and OCL,
utilizing their extensibility mechanism of stereotypes to model
non-functional requirements effectively. We allow for an
aggregated JSON Schema with our extensions to validate the
combined data format.

III. WORKFLOW ENGINES

Workflow engines like Zapier [10] and Power Automate

[11] are powerful automation tools that enable users to create

and manage workflows for integrating and automating tasks

across various applications and services, whether in the cloud

or on-premises.

Zapier is a popular cloud-based automation platform that

allows users to connect to different web applications and

automate their workflows. It operates on a simple "trigger-

action" model, where an event in one application triggers an

action in another. Users can create "Zaps" (automated

workflows) by selecting a trigger and defining the subsequent

actions. For example, when a new email arrives in Gmail

(trigger), the attachments can be automatically saved to Google

Drive (action).

Zapier supports numerous apps and services, including

well-known ones like Gmail, Slack, Salesforce, and Trello. It

features a user-friendly interface, pre-built Zap templates for

everyday use cases, and advanced options like filters, delays,

and data transformations. Additionally, Zapier allows for multi-

step Zaps, making it possible to create complex workflows with

multiple actions and conditions.

Power Automate is a cloud-based service from Microsoft

that allows users to automate workflows and integrate

applications and services within the Microsoft ecosystem and

beyond. It offers connectors for various applications, including

Microsoft 365 apps (such as Outlook and SharePoint),

Dynamics 365, Azure services, and third-party services like

Salesforce, Dropbox, and Twitter.

Power Automate features a visual design interface where

users can create workflows by combining triggers, actions, and

conditions. Available triggers include email arrivals, button

clicks, data changes, and scheduled events. Actions can involve

sending emails, creating tasks, updating records, etc. Power

Automate offers advanced capabilities like loops, parallel

branches, and approval processes.

Both Zapier and Power Automate provide extensive

libraries of pre-built templates and connectors, making it easier

for users to begin automating tasks. They offer options to

monitor and manage workflows, handle errors, and track

activity logs. These platforms cater to users with varying

technical expertise, from business users to developers, and help

automate repetitive tasks, streamline processes, and enhance

productivity.

IV. STRIDE THREAT MODELING

STRIDE [12] is a threat modeling framework that offers a

structured approach for identifying and analyzing threats in

software systems. It aids security practitioners and developers

in understanding potential risks and implementing appropriate

security controls. STRIDE is an acronym representing six

categories of threats:

1. Spoofing Identity: This category involves attackers

impersonating legitimate users or entities to gain unauthorized

access or deceive the system. For instance, attackers may spoof

64Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

a user's identity by stealing credentials or manipulating

authentication mechanisms.

2. Tampering with Data: Tampering threats involve the

unauthorized modification or alteration of data within the

system. Attackers may tamper with data in transit, modify

stored data, or manipulate system parameters to achieve desired

outcomes. For example, an attacker could alter the contents of

a database, inject malicious code into an application, or change

parameters to bypass security checks.

3. Repudiation: Repudiation threats allow users to deny

their involvement in specific transactions or activities, posing

challenges for auditing and accountability. For instance, an

attacker might modify logs or manipulate transaction records to

evade detection or deny their actions.

4. Information Disclosure: This category addresses threats

related to unauthorized exposure or disclosure of sensitive

information. Attackers may exploit vulnerabilities to access

confidential data, such as personal information, financial

records, or intellectual property. This can happen through

insecure data transmission, weak access controls, or

information leakage via error messages.

5. Denial of Service: Denial of Service (DoS) threats aim to

disrupt or degrade a system's availability or performance.

Attackers may overload resources, exhaust system capacity, or

exploit vulnerabilities to cause a service outage, rendering the

system unresponsive or unusable for legitimate users.

6. Elevation of Privilege: Elevation of Privilege threats

involve attackers gaining unauthorized access to higher

privileges or permissions than they should have. By exploiting

vulnerabilities or design flaws, attackers can bypass security

controls and gain elevated access rights, leading to

unauthorized data access, system compromise, or further

exploitation.

When applying the STRIDE framework, security

practitioners and developers analyze the software system from

the perspective of each threat category. They identify potential

vulnerabilities and develop corresponding mitigation strategies

to address the threats. This analysis facilitates informed

decisions regarding security controls, system design

improvements, and the prioritization of security efforts.

V. DREAD THREAT MODELING

DREAD is a threat modeling framework designed to assess

and prioritize software vulnerabilities based on their potential

impact. The acronym DREAD stands for five key factors used

to evaluate threats:

1. Damage Potential: This factor refers to the extent of harm

that could be caused if a vulnerability is exploited. It evaluates

the impact, which can range from minor inconveniences to

severe consequences like data breaches, system compromises,

or financial losses.

2. Reproducibility: This measures how easily an attacker

can reproduce or exploit a vulnerability. Vulnerabilities that are

consistently easy to exploit are considered more dangerous than

those that require complex or unpredictable conditions for

exploitation.

3. Exploitability: This factor assesses the level of skill or

effort needed to exploit a vulnerability. Vulnerabilities easily

exploited with readily available tools or techniques pose a

higher risk. Conversely, vulnerabilities that are difficult to

exploit or require specialized knowledge are considered lower

risk.

4. Affected Users: This evaluates the number of users or

systems a vulnerability could impact. A vulnerability affecting

numerous users or critical systems is considered more

significant than one impacting only a limited subset of users.

5. Discoverability: This assesses how likely an attacker is to

find the vulnerability. Vulnerabilities that are easily

discoverable—through public disclosures, known attack

techniques, or automated scanning tools—are riskier than those

that are harder to find or require advanced reconnaissance.

Using the DREAD framework, each factor is scored on a

scale from 0 to 10, with 0 being the least concerning and ten

being the most critical. These scores help prioritize

vulnerabilities and allocate resources for mitigation efforts.

Higher scores indicate a higher priority for addressing the

identified vulnerabilities.

While DREAD is a valuable tool for assessing and

prioritizing vulnerabilities based on their potential impact, it

should be used alongside other threat modeling techniques and

considerations to ensure a comprehensive security analysis and

informed decision-making.

VI. MOTIVATING EXAMPLE

The challenge with the STRIDE and DREAD threat models

is that they primarily focus on vulnerabilities associated with

malicious user activities. However, many risks arise from

architecture, the environment, or human error.

Consider a common architecture used by many businesses

today: data generated by an online transaction processing

(OLTP) system, either stored on-premises or logically on-

premises, is synchronized to a cloud system considered off-

premises and beyond the organization's control. This scenario

is not uncommon in today's business landscape.

Consider a large performing arts venue employing a local

SQL Server-based system for ticketing and donation

transactions. Meanwhile, its marketing department uses a

cloud-based email and SMS marketing system. The OLTP data

TABLE 1 - UPLOAD ACTIVITY STRIDE MODEL

Action S T R I D E

Timerfires

PrepareDataForUpload

SendData X X X X

ReceieveData

LoadData

BuildViews

65Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

must be extracted, translated, uploaded, and loaded regularly

for the marketing system to function correctly.

Various issues can arise when multiple processes and data

are transferred across networks that span domain boundaries. A

UML activity diagram illustrates the steps involved in moving

data from the on-premises OLTP system to the cloud-based

system used by the marketing team. This model shows that

activities occur in both environments. The challenge with the

STRIDE and DREAD threat models is that the vulnerabilities

modeled and the matching remediations target malicious user

activities. Many times, risks come from architecture,

environment, or human error.

A motiving example is an architecture that is used in many

businesses today where data that is generated in OLTP systems

that are either stored on-premises or logically on-premises is

synchronized to a cloud system that is considered off-premises

and outside the domain of control of the organization. To

understand this better, consider a large performing arts venue

that utilizes a local SQL Server-based system to process

ticketing and donation transactions. The marketing department

uses a cloud-based system for email and SMS marketing. The

OLTP data must be extracted, translated, uploaded, and loaded

regularly for the marketing system to be functional.

Understanding the data transfer process is crucial to prevent

potential risks. Figure 1 shows a UML activity diagram

executed to move data from the OLTP system on-premises to

the system in the cloud used by the marketing folks. In the

model, you will see that activities happen in both partitions.

Figure 2 presents a model that outlines the execution path
when data is retrieved from the cloud system. The data includes
sending activity for both emails and SMS text messages. This
sending activity can be substantial, encompassing tuples for
sends, opens, clicks, and bounces. Additionally, information

regarding communication preferences and unsubscribed data is
retrieved.

The marketing department requires service availability and
data integrity for its business operations. For instance, NFRs
could specify that the system must be available 99.999% of the
time or that the data must be no more than 24 hours old.
Whenever a distributed system is proposed, a model should be
developed to represent these NFRs and the threats to the system's
ability to meet them.

Unfortunately, the focus of STRIDE and DREAD on
malicious users does not adequately address many of the risks in
our motivating example. Table 1 illustrates a STRIDE model
corresponding to the update activity depicted in Figure 1, while
Table 2 shows the STRIDE model related to the download
activity from Figure 2. In the STRIDE model, actions are at risk
from malicious users; however, many steps are also vulnerable
to environmental issues that can impact the system's availability
and integrity. Examples of these issues include network and
system outages, concurrent computational usage on equipment,
and lack of control of the quality of source data.

VII. PERTD MODEL

We developed the PERTD Model to assess better the risks
associated with distributed applications. This model addresses
four main environmental risk categories for distributed systems:

1. Partition

Activities vulnerable to partition errors will fail if a network
is partitioned between on-premises devices and the cloud. Risk
reduction strategies include:

- Pausing the complete workflow and retrying

- Utilizing previous execution data

- Employing alternative data sources

2. Execution

Activities that are susceptible to execution errors may fail
due to ambiguous code requirements, which can lead to runtime
or tooling errors. For example, queries that generate data might
fail with future datasets. Risk reduction measures include:

- Utilizing previous execution data (most systems create a
copy before execution)

- Using alternative data sources

3. Requisite

Figure 2 - Download Activity

TABLE 2 - DOWNLOAD ACTIVITY STRIDE MODEL

Action S T R I D E

Timerfires

PrepareDataForDownload

SendData X X X X

ReceieveData

LoadData

Figure 1 - Upload Activity

66Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

Activities with requisite vulnerabilities depend on
prerequisite activities. If a prerequisite fails, the dependent
activity becomes stale. Risk reduction can involve:

- Utilizing previous execution data

- Employing alternative data sources

4. Timing

Activities at risk due to timing need to finish within a
specific time window or under a threshold duration. Risk
reduction strategies include:

- Utilizing previous execution data (most systems create a
copy before execution)

- Using alternative data sources

5. DATA

Activities are at risk due to data often being combined from
different sources. Unfortunately, schema correctness specifiers
only apply to one data source. Risk reduction strategies include:

- Additional workflow steps to verify correctness

In Tables 3 and 4, we apply our PERTD model to analyze
the risks related to uploading and downloading activities. The
PERTD model captures significantly more risks than the
STRIDE model.

After identifying NFRs in the PERTD model, we develop
standard UML Class, Sequence, and Activity Diagrams. The
threats to the system are modeled using UML stereotypes. UML
stereotypes extend the standard UML language by introducing
custom or specialized elements, properties, and behaviors. They
allow the addition of domain-specific annotations, constraints,
or semantics to UML elements, enhancing expressiveness and
tailoring modeling for specific contexts. Stereotypes are
indicated by guillemets (<< >>) placed above the name of the
stereotyped element.

Stereotypes can be attached to classes, messages, attributes,
and activities. With the PERTD model, we incorporated the
four risk categories as stereotypes: <<PARTITION>>,
<<EXECUTION>>, <<REQUISITE>>, <<TIMING>> and
<<DATA>>. These stereotypes are then tagged to messages in
UML Sequence and Activity diagrams, while data classes and

individual attributes can also be tagged if they are susceptible
to these risks.

Additionally, OCL is included to specify invariants that can
define additional semantics related to the correctness of method
calls, classes, or attributes. For instance, if data in a particular
class must be no older than three days, this can be expressed
using the last_update attribute.

To verify data from when it is vulnerable, we utilize an
extended version of JSON Schemas [9]. Our extension allows
the Schema to reference different data sources. JSON schema
supports a CONTAINS operator to verify the existence of an
element in a collection. We added a CONTAINEDIN operator
to span across schemas represented by different data sources in
the distributed system. We also added a NOTCONTAINEDIN
to verify the absence of an element. Figure 3 shows two sample
schemas. The top schema is a simplified version of a patron,
the bottom schema is a simplified version of a ticket. They
share an email field which is designated in the tickets schema
to require the existence in the patron data.

Figure 3 - Sample Schema

To mitigate the risk of data integrity issues, we validate the data

against the specified schemas as part of the data workflow.

TABLE 4 - UPLOAD ACTIVITY PERTD MODEL

Action P E R T D

Timerfires X

PrepareDataForUpload X

SendData X X X X

ReceieveData X X X X

LoadData X X X X

BuildViews X X

TABLE 3 - DOWNLOAD ACTIVITY PERTD MODEL

Action P E R T D

Timerfires X

PrepareDataForDownload X

SendData X X X X

ReceieveData X X X X

LoadData X X X

67Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

VIII. CONCLUSIONS AND FUTURE WORKS

In this work, we provide a modeling methodology to handle

issues in cloud software development related to NFRs in

distributed systems. We show that in this work, we present a

modeling methodology aimed at addressing issues related to

NFRs in distributed systems during software development. Our

PERTD model enables us to identify significantly more fine-

grain risks associated with distributed systems. Additionally,

we have enhanced the modeling of functional requirements by

employing UML stereotypes to represent the NFRs identified in

the PERTD model. Future work will incorporate code

generation to mitigate the risks identified and modeled

throughout this process. Utilizing our PERTD model makes

identifying many more risks to a distributed system possible.

We extended the modeling of functional requirements by using

UML stereotypes to model the NFRs identified in the PERTD

model. Implementation of cross-data source validation is

provided to ensure data integrity. In our future work, we will

add code generation to reduce the risks identified and modeled

in the process.

REFERENCES

[1] C. J. Pavlovski and J. Zou, "Non-functional requirements in business
process modeling," Proceedings of the Fifth on Asia-Pacific Conference

on Conceptual Modelling, vol. 79, pp. 1-10, 2008.

[2] M. Glinz, "Rethinking the Notion of Non-Functional Requirements,"
Third World Congress for Software Quality, Munich, Germany, pp. 1-

10, 2005.

[3] Alexander, I, "Misuse Cases Help to Elicit Non-Functional

Requirements," Computing & Control Engineering Journal, 14, 40-45,

pp. 1-10, 2003.

[4] R. Ajith and A. Sheth, "Semantic Modeling for Cloud Computing, Part
I," Computing, vol. May/June, pp. 81-83, 2010.

[5] Object Management Group, "Unified Modeling Language:

Supersturcture," 05 02 2007. [Online]. Available:
http://www.omg.org/spec/UML/2.1.1/. [Accessed 20 Feb 2025].

[6] A. Olmsted, Security-Driven Software Development: Learn to analyze

and mitigate risks in your software projects, Birmingham, UK: Packt
Publishing, 2024.

[7] Object Management Group, "OMG Formally Released Versions of

OCL," 02 2014. [Online]. Available: http://www.omg.org/spec/OCL/.
[Accessed 20 02 2025].

[8] JSON.org, "Introducing JSON," 2024. [Online]. Available:

https://www.json.org/json-en.html. [Accessed 20 Feb 2025].

[9] Open Collective, "JSON Schema," 2024. [Online]. Available:

https://json-schema.org/. [Accessed 20 Feb 2025].

[10] Zapier Inc., "Automate without limits," 2024. [Online]. Available:
https://zapier.com/. [Accessed 20 Feb 2025].

[11] Microsoft, "Power Automate," 2024. [Online]. Available:

https://www.microsoft.com/en-us/power-platform/products/power-
automate. [Accessed 20 Feb 2025].

[12] R. Khan, D. Laverty, D. McLaughlin and S. Sezer, "STRIDE-based

threat modeling for cyber-physical systems,," in 2017 IEEE PES
Innovative Smart Grid Technologies Conference Europe (ISGT-

Europe), Turin, Italy, 2017.

68Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

