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Abstract—This paper introduces a comprehensive Transformer-
based architecture for anomaly detection in multivariate time
series. Using self-attention, the framework efficiently processes
high-dimensional sensor data without extensive feature engineer-
ing, enabling early detection of unusual patterns to prevent critical
system failures. In a subsequent laboratory setup, the framework
will be applied using fuzzing techniques to induce anomalies in an
Electronic Control Unit, while monitoring side channels, such as
temperature, voltage, and Controller Area Network messages. The
overall structure of the architecture, as well as the necessary pre-
processing steps, such as temporal aggregation and classification
up to the optimization of the hyperparameters of the model, are
presented. The evaluation of the model architecture with the
postulated restrictions shows that the model handles anomaly
scenarios in the dataset robustly. It is necessary to evaluate the
extent to which the model can be used in practical applications
in areas, such as cloud environments or the industrial Internet of
Things. Overall, the results highlight the potential of Transformer
models for the automated and reliable monitoring of complex
time series data for deviations.

Keywords-AI; Transformer; Time Series; Anomaly Detection;
ECU; Temporal Aggregation.

I. INTRODUCTION

Transformer architectures have seen a surge in popularity
recently, largely driven by the success of Large Language
Models (LLMs) like ChatGPT, Gemini, and Claude. Initially
focused on natural language processing tasks, these models have
demonstrated that the underlying self-attention mechanisms can
be beneficial in other domains as well. This trend is supported
by the rapid increase in computing power in cloud and GPU
environments, which now makes it possible to train and use
models with a large number of parameters quickly and reliably.

A prime example is NVIDIA’s recent presentation at CES,
where new graphics cards and "DLSS 4" were introduced
[1]. These products utilize transformer-based components to
generate high-resolution pixels and entire frames, replacing
the previously dominant Convolutional Neural Network (CNN)
architectures with transformers that excel in parallel, context-
sensitive processing.

Transformers are also becoming increasingly relevant for
time series analysis, particularly when handling complex or
multivariate sensor data. Their ability to capture long-range
dependencies within signals is especially advantageous for
anomaly detection—a critical need in industrial and Internet
of Things (IoT) applications, such as machine, sensor, or

network monitoring. Traditional methods like Recurrent Neural
Networks (RNNs), Long Short-Term Memory (LSTM) models,
or CNNs often struggle with modeling long-term dependencies,
making the self-attention mechanism of transformers a powerful
alternative [2].

This work develops and evaluates a specialized transformer
approach for anomaly detection on multivariate, labeled sensor
data. The goal is to create a fully automated framework that can
be applied to a variety of multivariate datasets, demonstrating
how transformer models can detect rare abnormal states and
outperform classical methods, such as LSTM autoencoders
and Isolation Forests. Due to its ability to detect anomalies
in complex sensor environments, this approach is particularly
suitable for safety-critical applications, including its potential
use in fuzz testing scenarios. The model is designed to support
the automatic detection of anomalies in different domains; its
effectiveness in fuzz testing environments will be evaluated in
future work.

The paper is organized into seven sections. The Introduction
provides an overview of the research topic and objectives. The
Section II examines relevant approaches and previous studies.
The Section III outlines the data sources and preprocessing
steps. The Section IV details the model’s design. The Section V
reviews and interprets the results. The Section VI compares
the model presented with other common methods in this
domain. Finally, the Section VII summarizes key insights,
highlights potential applications, and suggests directions for
future research.

II. RELATED WORK

The detection of anomalies in technical systems is a
comprehensive field of research that has gained considerable
importance in recent years due to advances in the field of
machine learning and, in particular, the use of neural networks.
Various methods are employed, differing depending on the
domain and data structure. This section presents related work
from the fields of fuzz testing, transformer-based anomaly
detection on time series data, and a platform for monitoring
Electronic Control Units (ECUs) using side-channel analysis,
which together provide a background for our research.

M. Böhme et al. have analyzed the challenges and opportu-
nities of fuzzing and emphasize the problem of “human-in-the-
loop”, where test auditors have to invest considerable effort
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in analyzing the fuzzing results. Their research focuses on
automating these processes through Artificial Intelligence (AI)
[3]. L. McDonald et al. classify fuzzing methods and investigate
hybrid approaches that combine static analysis, runtime error
detection, and machine learning. They identify side-channel
fuzzing as a promising extension for black-box fuzzing in
the field of embedded [4]. One of the main problems with
black box fuzzing is the lack of direct insight into the internal
processes of the system under test. One solution to this is
side-channel fuzzing, in which physical side channels, such as
power consumption, electromagnetic emissions, or temperature
curves are analyzed [5] [6]. P. Sperl et al. show that power
trace analyses are suitable for optimizing fuzzing processes by
drawing conclusions about the internal processes of a system
[5]. This method has been successfully applied to embedded
systems to identify unexpected behavior and detect error states
more efficiently.

Transformer models have achieved outstanding performance
in many tasks in the field of natural language processing
and computer vision [7]. Transformer models have also
demonstrated outstanding results in the analysis and forecasting
of time series data [8][9]. Furthermore, it is important to point
out that there is no obvious need to use transformer models
for long-term time series predictions, since even simple MLP
models can outperform transformers, such as DLinear in the
analysis of long-term time series predictions [10]. However,
the results of transformers, such as PatchTST [11] already
show significant improvements. Xu et al. [2] were able to
prove that transformer models also offer advantages in the
detection of time series anomalies, since temporal dependencies
can be represented by the model, which leads to a high
detection performance. Although there are different transformer
architectures that have already been applied to time series-based
data with different focused objectives, such as lightweight [12]
[13] or cross-block connectivity [14] or adaptive computation
time [15], it is still a future task to adapt and evaluate different
architectural approaches to time series data [7]. However,
Zerveas et al. [16] have shown that there is little work on
pre-trained transformers for time series data and the existing
studies focus mainly on the classification of time series data.
In various system architectures and frameworks that rely on the
combined analysis of static and dynamic AI-based methods,
such as [17], research into modern approaches to processing
and anomaly detection of time series to improve the recognition
rates of these systems and frameworks are important.

The monitoring and anomaly detection used in this work is
based on the platform of Fuxen et al. [18] who have developed
a system for monitoring ECUs using side-channel analysis for
fuzz testing in future mobility systems. Based on this platform,
our transformer model was developed and will be evaluated in
a fuzz testing scenario as part of future work. The combination
of monitoring, fuzzing and AI-supported analysis offers an
innovative approach to safeguarding safety-critical systems and
uses the findings of Fuxen et al. as a foundation.

Figure 1. Correlation Heatmap

Figure 2. Time series variable cfo1 plotted with anomalies highlighted in red

III. DATASET

The primary criterion in selecting the dataset was its
applicability to real-world scenarios, particularly for deploying
the AI on real-time measurements in a laboratory environment.
The Controlled Anomaly Time Series (CATS) dataset [19] from
Solenix Engineering GmbH was chosen for its rich features
that enable a realistic simulation of complex dynamic systems.
This dataset comprises synthetically generated multivariate
time series with 17 variables, including control commands,
environmental influences, and sensor data, such as temperature
and voltage.

At the outset of the data analysis, a correlation matrix was
created in the form of a heatmap. This heatmap shown in
Figure 1, depicts the complete dataset and reveals strong
interdependencies among several variables. The color coding
indicates negative correlations in blue and positive correlations
in red—both types being crucial for the transformer when
dealing with multivariate datasets. It is particularly noticeable
that the characteristics bso1 and cfo1 with 0.98, and 0.77 show
a relatively strong correlation with amud.

Figure 2 presents an example of injected anomalies in the
variable CFO1, with anomalies highlighted in red. The plot
was generated prior to data cleaning and scaling, showing raw
measurement values on the Y-axis and the temporal progression
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Figure 3. Transformer Architecture

(dates) on the X-axis, as the data were collected over several
days.

A critical consideration for this dataset is the "root cause"
of the anomalies, which initially manifests in other variables.
Therefore, the dataset must not be truncated or abstracted, as
doing so would eliminate these dependencies and prevent the
transformer from learning the inherent patterns present in the
original variables.

Notably, the dataset contains 200 carefully injected and
annotated anomalies, which cover both obvious and context-
dependent cases, making it an excellent benchmark for training
the transformer-based anomaly detection system. With a
resolution of 1 Hz over 5 million timestamps, the dataset
offers data to learn normal system behavior and to develop
robust anomaly detection models. An accompanying metadata
file lists the time intervals of the anomalies, facilitating the
removal of these segments during data preparation to expand
the training set of normal data.

This dataset mirrors the physical measurement parameters
expected in the laboratory. By applying the transformer
model—known for its ability to capture both local and global
temporal dependencies and to model complex multivariate
correlations—to this synthetic data, the anomaly detection
system can be evaluated and optimized under conditions that
closely resemble practical scenarios.

IV. ARCHITECTURE

In the following section, we provide an in-depth description
of the implemented Transformer architecture. This section cov-
ers the core structure, the underlying mathematical principles.
Figure 3 illustrates the overall Transformer architecture, which
is designed to classify time series segments based on their
anomaly probability. The architecture is structured into the
following steps:
1) Input Layer: The initial processing stage for incoming time

series segments.

2) Linear Embedding (Embedding-Layer): Transforms raw
sensor data into a higher-dimensional representation.

3) Batch Normalization: Enhances training stability by nor-
malizing feature distributions.

4) Transformer Encoder: Implements multi-head self-attention
and feedforward networks to capture temporal dependencies.

5) Global Aggregation (Mean over Time): Condenses the time-
dependent representations into a single feature vector per
segment.

6) Classification Head (Linear Output): Projects the aggregated
features into a scalar output for anomaly detection.

A. Input Layer and Batch Normalization

The model begins by processing time series segments, each
with dimensions [BatchSize, WindowSize, Features]. A linear
embedding layer transforms raw sensor data (17 features) into
a higher-dimensional space (e.g., 128 dimensions) using the
formula:

y = xAT + b (1)

where x is the input, A represents the weight matrix
(initialized uniformly with

k =
1

in_features
(2)

and b the bias. This step is crucial in mapping the raw input
data into a format suitable for the self-attention mechanism.

Batch normalization is applied to maintain a stable distribu-
tion of features across each sliding window. This normalization
improves the model’s robustness during training.

B. Attention and Encoder Layer

In our model, we adopt the vanilla Transformer architecture
as described in Attention is All You Need [20]. The attention
mechanism begins by projecting the input into three distinct
representations—queries, keys, and values—via learned linear
transformations. These projections are then used in a scaled
dot-product attention computation, where the dot product of
queries and keys is scaled by the inverse square root of the
key dimensionality to ensure numerical stability. The resulting
attention weights are applied to the values, allowing the model
to focus on relevant parts of the input.

Building upon this, the encoder layer integrates multi-
head self-attention with a position-wise feed-forward network.
Each encoder block applies residual connections and layer
normalization both after the multi-head self-attention and
the feed-forward network, which enhances gradient flow and
stabilizes training. This combination of attention and encoder
components forms the core of the Transformer model, enabling
it to capture complex dependencies in sequential data.

C. Temporal Aggregation

After processing the sequence through the Transformer
encoder layers, a temporal aggregation step is applied to
condense the time-dependent representations into a single
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vector per input segment. This is achieved using an element-
wise mean pooling operation across the time dimension:

z =
1

T

T∑
t=1

xt,

where xt ∈ Rdmodel is the output for each time step t and z
represents the aggregated feature vector. Although alternatives,
such as max pooling or token-based representations (e.g., using
a [CLS] token) exist, average pooling is chosen here for its
simplicity and its ability to equally represent all time steps
[21][22].

D. Classification

The final stage of the architecture is the classification head.
The aggregated vector z is passed through a linear layer to
produce a scalar output:

o = Linear(z) ∈ R.

A sigmoid activation is then applied to convert the scalar into
a probability score between 0 (normal) and 1 (anomalous)
[21][22]:

σ(Logit) =
1

1 + exp(−Logit)

A threshold value determines the final binary classification.
For handling class imbalances typical in anomaly detection,
a Focal Loss is used instead of standard binary cross entropy
[23]. The Focal Loss formula is:

FL(ŷ, y) = α
(
1− ŷ

)γ
BCE(ŷ, y),

this is set to emphasize hard-to-classify examples.
Anomaly detection typically involves highly imbalanced

data, where anomalous events are extremely rare compared to
normal instances. Traditional loss functions like Binary Cross
Entropy (BCE) treat all samples equally, often causing the
model to be biased toward the majority class and overlook the
few but critical anomalies. Focal Loss addresses this challenge
by dynamically down-weighting the loss contribution of well-
classified normal samples and up-weighting the misclassified
or harder-to-classify anomalous examples. In practice, this
means that the model is encouraged to learn more from the
sparse anomaly examples, enhancing its sensitivity and overall
detection performance in an imbalanced dataset [23].

E. Training

In preparation for training, suitable hyperparameters for
the Transformer model are determined using Optuna [24].
This process follows a semi-supervised approach: while the
model is mainly trained on normal (non-anomalous) data, the
validation set contains a few anomalies. This setup enables
the optimization process to favor parameter combinations that
effectively detect anomalies, optimizing for metrics, such as
the F1 score.

Once Optuna identifies the best hyperparameters, the
model is retrained on normal data in an unsupervised man-
ner—meaning it does not explicitly see any anomaly examples

Figure 4. Evaluation of Hyperparameters using Optuna

during training. The final evaluation, however, is performed
on a test set containing both real and synthetically generated
anomalies, thereby assessing the model’s true capability to
detect unusual patterns.

The hyperparameter tuning is managed via an Optuna
Optimizer class (see Figure 4), which integrates several
DataLoader instances for training, validation, and test data
(both normal and anomalous). During each trial in the process,
hyperparameters (e.g., model dimension, number of attention
heads, encoder layers, dropout, learning rate, and weight decay)
are sampled from predefined ranges.

V. EVALUATION

To assess the model’s performance, we applied standard
binary classification metrics—such as the confusion matrix,
F1-score, and ROC-AUC—among others. In this section, we
analyze the results on the CATS dataset using these metrics,
and we detail the hyperparameter configuration of the best
performing model as identified through OPTUNA [25][26].

TABLE I
MODEL RESULTS

Transformer Metrics Values
Optimal threshold 0.0117
ROC-AUC 0.9993
F1-Score 0.9717
Precision 0.9585
Recall 0.9853
Accuracy 0.9921
Anomalies detected (all Labels) 11731/83558 (14.04%)
Anomalies detected (Anomaly-Labels) 11244/11413 (98.52%)

Table I summarizes the overall performance of our anomaly
detection model. The high ROC-AUC of 0.9993 and F1-Score
of 0.9717 indicate that the model is effective in discriminating
between normal and anomalous instances in the CATS dataset
while being trained with an unsupervised method. The model
achieves a precision of 0.9585 and a recall of 0.9853, which
reflects its balanced capability to correctly identify anomalies
while minimizing false positives. Overall the accuracy is
reported at 0.9921, and the confusion matrix confirms that
98.52% of the true anomaly labels are correctly detected.
These metrics underscore the robustness of our approach in
handling complex multivariate time series data and highlight its
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potential for reliable anomaly detection in practical applications.
The confusion matrix confirms these results, with the model
detecting 98.52% of true anomalies.

Key hyperparameters for the CATS dataset and optimized
via Optuna include:
• Dropout: 0.2
• Learning Rate: 2.0075e-05
• Model Dimension: 128
• Attention Heads: 8
• Encoder Layers: 3
• Weight Decay: 0.00036
• Batch Size: 128

VI. COMPARISON WITH OTHER ARCHITECTURES

In this section, we provide a preliminary comparative analysis
of our Transformer-based anomaly detection model with the
established methods evaluated in the publication Anomaly
Detection in Time Series: A Comprehensive Evaluation [26]. It
should be noted that our evaluation is currently limited to the
CATS dataset, which was chosen due to its close resemblance
to our laboratory setup. This selection enables us to investigate
the model’s performance under controlled conditions that reflect
our specific experimental environment.

While a direct comparison is inherently challenging due to
the use of different datasets across studies, we have compared
our model’s performance with established architectures by
benchmarking key metrics (ROC-AUC, F1-Score, Precision,
and Recall) against those reported in the literature. We
acknowledge that such indirect comparisons have limitations,
however, on the Timeeval website, the CATS dataset is already
listed and integrated on GitHub [27]. This availability opens
up opportunities for further evaluation, either by our team or
by the broader research community. In future work, we plan
to leverage this integration to perform additional assessments
and comparisons. Furthermore, benchmarking our Transformer-
based model using the datasets available on Timeeval could
provide a standardized framework to rank and compare its
performance against other state-of-the-art approaches in [26].

Custom aspects of our framework include:
• Focal Loss with Self-Attention: This combination, while

less common in time series applications, effectively addresses
class imbalance by emphasizing the misclassified anomaly
cases.

• Flexible Time Window Segmentation: The model adapts its
sequence length and optimizes the number of attention heads,
allowing it to better capture diverse temporal characteristics.

• Tailored Binary Anomaly Classification: By focusing
on binary labels (normal vs. anomalous) and leveraging
a specialized loss function, our approach directly targets the
detection of rare anomaly labels.
A key discussion point is the generalizability of the results.

Although the dataset used in this study contains carefully
embedded anomalies, it remains an open question whether
these findings can be directly transferred to more complex,
real-world scenarios. Future experiments with time series data

from various domains—such as industrial processes or medical
applications—are needed to fully assess the model’s robustness
under varying conditions.

Another important aspect is the sensitivity to preprocessing
choices. For instance, the window size used in the sliding-
window technique has a significant impact on the patterns that
are detected based on our experiments. Similarly, strategies
for handling missing data and the specifics of hyperparameter
tuning (e.g., via Optuna) can greatly influence the reliability
and speed of anomaly detection. Sensitivity analyses, such as
systematically varying the window size or testing different
missing-data methods, would help ensure that the model’s
performance is not overly dependent on narrow parameter
settings.

Compared to traditional methods, the Trans-
former—especially in its encoder-only configuration—offers
potential advantages in terms of flexibility and performance.
While decoder layers might be beneficial for forecasting
or reconstruction tasks, they also increase complexity and
resource requirements without necessarily improving pure
anomaly detection. In contrast, older methods like classical
autoencoders or statistical approaches (e.g., Isolation Forest)
can sometimes achieve similar results with less effort but
often struggle to capture the complex, nonlinear dependencies
in high-dimensional time series data.

VII. CONCLUSION AND FUTURE WORK

The Transformer-based architecture presented in this work
has proven to be a potential approach for anomaly detection
in multivariate time series. By leveraging self-attention mech-
anisms, the model was able to capture relationships in the
dataset and accurately predict potential anomalies with minimal
feature engineering. The flexible data pipeline—including
missing-value handling, scaling, and segmentation—enables
rapid adaptation to new datasets and application scenarios.

Optimized hyperparameter optimization has shown that a
systematic, semi-supervised approach can identify optimal
settings that effectively support the final unsupervised training.
However, the validity of these results is highly dependent on the
quality and representativeness of the underlying data. Therefore,
it is necessary to perform future evaluations on different real
data sets from different domains using time series data to finally
confirm the generalizability and robustness of the model.

Overall, the experiments highlight the potential of trans-
former architectures for anomaly detection and provide valuable
insights for future research.

In practice, the Transformer-based approach offers the advan-
tage of capturing high-dimensional relationships between sensor
variables. This capability enables the reliable identification of
unusual patterns even in noisy environments or under changing
data distributions. It can be concluded that the demonstrated
method has some relevance for industrial or safety-critical
scenarios in which multi-sensor data must be continuously
monitored for deviations. However, further development is
required to provide a productive model for this.
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Comparing models across heterogeneous datasets remains
challenging. Our preliminary benchmarking using key metrics
underscores the potential of our approach. The integration of
the CATS dataset into Timeeval offers a promising avenue
for future standardized evaluations of our Transformer-based
model alongside other state-of-the-art techniques [26].

Moreover, Transformer-based anomaly detection is finding
increasing application in other fields, such as medicine, where
it can identify abnormal patterns in complex biosignals. In
our laboratory setup, an ECU combined with a fuzzer is
used to deliberately induce anomalous states on the Controller
Area Network (CAN) bus while simultaneously capturing side-
channel data, such as temperature and voltage. This integrated
approach not only delivers a comprehensive view of the system
state but also provides feedback to progressively enhance the
fuzzing algorithm [18].

The results of the presented methodology for time-series-
based anomaly detection confirm the effectiveness of the
developed model within the limitations. This provides a solid
basis for further investigations and evaluations in laboratory
environments and beyond. The flexible exploration of different
use cases within the research group with regard to automotive
security and IoT security is a focused goal.
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