
GFDG: A Genetic Fuzzing Method for the Controller Area Network Protocol

Miguel Stey ∗, Murad Hachani †, Philipp Fuxen †, Julian Graf †, Rudolf Hackenberg†

Department of Computer Science and Mathematics
Ostbayerische Technische Hochschule Regensburg

Regensburg, Deutschland
∗ e-mail: miguel1.stey@st.oth-regensburg.de,

† e-mail: {murad.hachani|philipp.fuxen|julian.graf|rudolf.hackenberg}@oth-regensburg.de

Abstract—Ensuring the security of modern automotive systems
is critical due to their increasing complexity and reliance on inter-
connected Electronic Control Units. The Controller Area Network
still serves as a key communication protocol within these systems,
making it a primary target for security testing. Traditional fuzz
testing approaches for Controller Area Networks often rely on
random or brute-force message generation, not leveraging the
system’s feedback to improve the generation process. This paper
introduces the Genetic Fuzz Data Generator, a fuzzing method that
leverages Genetic Algorithms and side-channel analysis to enhance
Controller Area Network security testing. The Genetic Fuzz Data
Generator dynamically refines its fuzzing strategy by evaluating
system responses through side-channel data, such as processing
unit temperatures and power supply variations. By structuring
Controller Area Network messages as genetic individuals and
applying evolutionary principles—including selection, crossover,
and mutation—the Genetic Fuzz Data Generator systematically
identifies active Controller Area Network IDs and generates
targeted fuzz messages. Experimental validation was conducted
on a real automotive electronic control unit within a controlled
laboratory setup. The first results demonstrated the approach’s
effectiveness, revealing system anomalies, including a Denial of
Service vulnerability that disrupted functions of the investigated
Electronic Control Unit. The findings highlight the potential of
feedback-driven fuzzing for improving the efficiency of black-
box security testing in Controller Area Network-based systems.
Future research could further optimize fitness functions or explore
additional side-channel metrics.

Keywords-Automotive Security; Controller Area Network; Fuzz
Testing; Genetic Algorithm; Side-Channel Analysis.

I. INTRODUCTION

Modern connected vehicle systems rely on increasingly
complex software running on Electronic Control Units (ECUs)
that manage critical functions. Ensuring the security of these
systems is essential, particularly as the attack surface expands
with enhanced connectivity, integration of multiple networked
components, and the growing reliance on cloud-based infras-
tructures for remote diagnostics, software updates, and real-time
data processing. Building upon our previous work [1], where
we developed a side-channel monitoring setup for fuzz testing
automotive systems, we have identified key limitations in tradi-
tional random fuzzing approaches—specifically, the challenge
of efficiently detecting active Controller Area Network (CAN)
IDs. This insight motivated the development of the Genetic
Fuzz Data Generator (GFDG), a method that leverages genetic
algorithms and side-channel feedback to systematically generate
targeted fuzz messages for the CAN protocol.

In conventional fuzz testing, generating a large volume
of random messages often results in a low probability of

triggering a response from the target system. Our prior
research demonstrated that side-channel data could significantly
enhance anomaly detection; however, the approach lacked
the adaptive capability to focus on active CAN IDs. The
GFDG addresses this gap by structuring CAN messages as
genetic individuals—each represented by an 11-bit identifier
and a payload—and refining them through evolutionary oper-
ations, such as selection, crossover, mutation, and migration.
Preliminary results suggest that this feedback-driven process
can enhance testing efficiency and contribute to identifying
subtle vulnerabilities, though further investigation is needed to
quantify its full impact.

Given that this paper focuses on the innovative integration of
genetic algorithms with side-channel analysis to dynamically
target and refine CAN fuzzing, we frame our investigation
around the following research questions:

RQ1: How does the integration of genetic algorithms with
side-channel feedback improve the identification of
active CAN IDs?

RQ2: What are the impacts of evolutionary operations
(selection, crossover, mutation, and migration) on the
performance and adaptability of the fuzzing process?

This paper is organized as follows. Section II reviews related
work, including an analysis of existing fuzzing methodologies
and the limitations observed in our 2023 study. Section III
describes the underlying concepts and the theoretical foundation
of genetic algorithms in the context of fuzz testing. Section
IV details the architecture and implementation of the GFDG.
Section V presents experimental evaluations conducted on a
real automotive ECU, and Section VI discusses the results,
highlighting both improvements and remaining challenges.
Finally, Section VII concludes with directions for future
research.

II. RELATED WORK

Fuzz testing has emerged as a critical technique for identi-
fying vulnerabilities in embedded systems, where conventional
random-input approaches often fall short due to limited
I/O capabilities, constrained resources, and heterogeneous
architectures [2]. These inherent challenges have motivated
the development of feedback-driven methodologies that are
specifically tailored for embedded environments.

A notable advancement in this area is demonstrated by the
Firm-AFL framework, which adapts coverage-guided fuzzing
techniques to the constraints of embedded firmware. Firm-AFL

40Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

https://orcid.org/0009-0001-8363-6367
https://orcid.org/0009-0005-5004-6247
https://orcid.org/0009-0004-4505-9230
https://orcid.org/0009-0003-2060-0556

shows that by integrating runtime feedback into the fuzzing
loop, one can significantly enhance vulnerability detection
even in resource-limited settings. This insight underlines the
necessity of adapting traditional fuzzing techniques to the
particularities of embedded systems [3].

In parallel, side-channel-assisted fuzzing has recently
emerged as a promising approach. Sperl and Böttinger propose
a method that leverages power consumption measurements
as a feedback mechanism, inferring aspects of the target’s
control flow from power traces. Such side-channel feedback can
mitigate the “black-box” limitations inherent in conventional
fuzz testing of embedded devices [4].

In the automotive domain, securing the CAN is of paramount
importance given its central role in vehicle communications.
In “Fuzzing CAN Packets into Automobiles” [5], Lee et al.
demonstrate that automotive systems are vulnerable even when
attackers inject fuzzed CAN packets without in-depth system
knowledge. Their experiments, which involve sniffing CAN
traffic and subsequently fuzzing packet fields via wireless chan-
nels, reveal that random fuzzing can induce abnormal vehicle
behavior. These findings highlight the inherent insecurity of the
CAN bus and motivate the need for more systematic, feedback-
guided fuzzing strategies in automotive networks.

Building on these insights, our work—the GFDG—applies
the Genetic Algorithms (GAs) and side-channel analysis
to enhance fuzzing techniques for CAN-based systems. By
representing CAN messages as genetic individuals and refining
test inputs through evolutionary operations (selection, crossover,
and mutation), GFDG leverages runtime and side-channel
feedback to focus fuzzing efforts on active CAN IDs. This
hybrid approach not only echoes the advantages demonstrated
by FIRM-AFL in adapting fuzzing to embedded firmware
but also extends the paradigm by integrating the side-channel
feedback techniques proposed by Lee et al. [5] and the empirical
findings from “Fuzzing CAN Packets into Automobiles”.

III. BACKGROUND

This section provides an overview of key concepts relevant
to this work. The CAN protocol is widely used for ECU
communication in automotive systems, making it a critical
target for security testing. Fuzz testing helps uncover vul-
nerabilities by generating test inputs and analyzing system
responses, but traditional methods struggle with identifying
active CAN IDs. GAs offer a potential solution by optimizing
test case generation through system feedback.

A. CAN protocol

CAN is a broadcast-based protocol [6] used extensively in
the automotive sector to connect ECUs. In the CAN protocol,
different types of frames are defined, each serving a specific
purpose. The Standard Frame, for example, is used for the
regular exchange of messages between ECUs [7]. Typical
applications of this frame include transmitting sensor data
or sending commands to other ECUs. The Standard Frame
consists of several fields that facilitate the transmission process,
including the acknowledgment field and the checksum field

[7]. For fuzz testing purposes, the most relevant component
of the frame is the message it contains. A CAN message is
defined by its identifier (ID) and a data field of up to 8 bytes
[6]. The primary function of the CAN ID is to define the
context of the data, while its secondary role involves enabling
message filtering by the nodes on the bus. Since each node
broadcasts messages onto the bus, the CAN ID allows each
node to determine whether the message is intended for it or
should be ignored [8]. In the context of fuzz testing, this means
that an ECU will process only those fuzz messages with IDs
that it is configured to recognize.

B. Fuzz Testing

Fuzz testing is an automated method for testing the security
of information systems. It involves automatically generating
input data for the system under test and monitoring its responses
[9]. A fuzzer typically consists of two core components: a
Fuzz Data Generator (FDG), responsible for producing new
fuzz messages, and an Anomaly Monitor, which analyzes
the system’s reactions to identify potential vulnerabilities
[6]. In the context of fuzz testing via CAN, the primary
challenges are the large space of possible messages and
the fact that an ECU only responds to a subset of CAN
IDs. In a black-box fuzzing scenario, the specific active IDs
of an ECU are unknown to the tester. Therefore, methods
capable of identifying these active IDs are more efficient
than non-feedback-based fuzzing approaches. The literature on
CAN fuzz testing presents various methods, but most rely on
randomly generating messages [10][11] or employing brute-
force techniques [12][13][14]. These approaches do not utilize
system feedback to identify active IDs, resulting in less efficient
fuzzing processes. Consequently, there is a need for more
advanced methods that incorporate system feedback to enhance
the efficiency of CAN fuzz testing.

C. Genetic Algorithm

The GA is a search algorithm that mimics the principle of
evolution from biology to find optimal solutions to problems.
GAs can be considered a family of algorithms that utilize the
same foundational structure but differ in specific strategies
or parameters [15]. To solve a given problem, the first step
involves defining an individual, which represents a potential
solution. Each individual consists of certain genes that encode
potential solutions for the problem. A group of individuals
forms a population, and each iteration of the algorithm
corresponds to a generation of individuals [15]. The GA begins
by generating an initial population that represents Generation 0.
The algorithm then iteratively proceeds through several steps for
each generation. The core step is the evaluation of individuals
based on their fitness, which is a numerical value indicating how
well an individual solves the problem. Analogous to survival
probability in natural evolution, the fitness score determines the
likelihood of an individual contributing to the next generation
of solutions [15]. After evaluating the fitness of all individuals,
a selection process occurs, where certain individuals are chosen
based on their fitness to participate in crossover. Crossover is

41Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 1. The Process of GFDG.

a genetic operation that combines pairs of selected individuals
to generate new offspring, effectively recombining genes to
explore new solution spaces [16]. Additionally, during the
creation of offspring, mutations can occur. The mutation
is typically implemented through bit-flips of genes based
on a predefined mutation chance. After generating a new
population, the algorithm repeats the cycle of evaluation,
selection, crossover, and mutation until a termination criterion
is met.

IV. THE GENETIC FUZZ DATA GENERATOR

This section describes the concept for the GFDG that is based
on the structure of the GA and uses side-channel information
for the evaluation. For this method, additional changes to the
GA were taken into account for special requirements of the
application to CAN fuzzing. For the GA, it is required to define
an individual for the specific problem that the algorithm is
applied to. The definition of a CAN Individual in the context
of fuzz testing is provided in the following Subsection IV-A.
In Subsection IV-B, the developed algorithm for the GFDG
is described, including the reasoning in chosen strategies for
each operation and all alterations to the standard GA structure.
The modified algorithm for the CAN protocol is illustrated
in Figure 1 and is further elaborated upon in the subsequent
sections.

A. Defining a CAN-Individual

In the GA, each individual in the population represents a
potential solution composed of various genes. In the context
of fuzzing over the CAN protocol, an individual corresponds
to a CAN message. This message must be recognized as a
valid CAN message by the receiver of the target ECU. If

the message violates protocol rules, the receiver node detects
this, resulting in an error frame being sent back to the fuzzer
without further processing of the message. Consequently, not
all fields of the CAN frame are suitable as mutable genes for
the individual. Therefore, the GFDG uses only the message
portion of the CAN frame as the genes of an individual.
From a broader perspective, an individual in the GFDG is
a CAN message consisting of an 11-bit ID and a 64-bit data
field. Other fields, such as data length and checksum, are
recalculated correctly for transmission and are neither mutated
nor inherited. The GA further conceptualizes individuals as
collections of chromosomes composed of genes. Here, the
CAN ID is treated as a chromosome consisting of 11 genes,
each representing one bit of the CAN ID. This chromosome
is mutation-resistant and cannot be split during crossover
because the CAN ID determines whether the control unit
processes the message. One goal of the GFDG is to identify
accepting CAN IDs and test different payload data for these
IDs. Therefore, IDs are not mutated randomly. Instead, the
algorithm strategically generates more or fewer individuals with
specific IDs. The second chromosome of a CAN individual
represents the payload data, which can contain 0 to 64 bits.
Since the payload’s interpretation depends on the CAN ID and
therefore is not predictable in a black-box scenario, each bit of
the payload is treated as an individual gene. In summary, from
the perspective of the GA, an individual in the GFDG consists
of a non-mutable and non-crossable chromosome representing
an 11-bit number and a standard chromosome with up to 64
genes.

B. GFDG Algorithm

The GFDG applies GAs to refine fuzz testing for CAN-
based systems. This section details the algorithm’s key steps,
including initialization, message evaluation, selection, crossover,
mutation, and migration. By leveraging system feedback, the
GFDG aims to optimize test case generation and improve
fuzzing efficiency.

1) Initialization: At the start of the fuzzing process, an
initial generation must be created. This initial population is
particularly important for the GFDG algorithm as it largely
determines the IDs of the first generations. Since IDs do not
change when creating new generations and only a few new
IDs are introduced through migration, the initial population
significantly impacts the performance of a run. In many cases,
the standard strategy for GA is to initialize the first generation
randomly. However, in this application, random initialization
has a low probability of generating IDs in the first generation
that trigger a response from the system. If no active IDs are
generated, the run’s performance depends on how many active
IDs are introduced through migration, which constitutes only a
small portion of each generation. To address this limitation, a
different approach was developed. This method leverages side-
channel feedback through the fitness function to actively select
the initial population. In the first step, a multitude of CAN
messages to the required amount are randomly generated and
sent as fuzzing inputs to the target system. As in the normal

42Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

fuzzing process of GFDG, side-channel data is collected, and
a fitness value is calculated for each message. The messages
with the highest fitness values are then selected to form the first
generation. By prioritizing messages with high fitness scores,
this method aims to increase the likelihood of including active
CAN IDs in the initial population, which can influence the
performance of the GFDG algorithm.

2) Sending and Measuring: After each generation, the main
steps of the fuzzing process are performed for each individual.
First, the individual is sent to the system under test. Then,
the side-channel data of the ECU is measured to evaluate the
individual. In the test environment used to evaluate this method,
the available side-channels included the temperature of the
ECU’s three processing units—namely, the Central Processing
Unit (CPU), Graphics Processing Unit (GPU), and Automotive
Microcontroller (AMC)—as well as the power supply of the
associated display of the tested Infotainment System.

3) Evaluation: After an individual is sent to the system
under test and the side-channel measurements are collected,
these data are used to evaluate the individual. The eval-
uation is performed similarly to traditional GA, using a
fitness function. In the context of optimization problems,
the fitness value indicates how well an individual solves
the problem. In this application of fuzz testing, the fitness
function measures if and to what extent the system reacts to
a sent fuzz message. It is important to note that the specific
fitness function heavily depends on the system being tested,
the chosen side-channels, and their behavior. Therefore, a
single, fixed fitness function is not presented here. Instead,
the process of identifying an appropriate fitness function
for the investigated system is described. When applying
this method to other CAN-based systems, it is necessary to
analyze the available side-channels to determine which changes
indicate a system reaction. This analysis informs the formu-
lation of a suitable fitness function for the specific system.
This method was tested on an ECU controlling the infotainment
system of a car. As previously mentioned, the selected side-
channels in this setup were the temperatures of the ECU’s
processing units (CPU, GPU, and AMC) and the power supply
of the connected display. The rationale for these side-channels
is the assumption that if a fuzz message is processed by an
otherwise isolated ECU, the processing units calculating should
cause temperature increases. This is especially relevant when
the infotainment system displays information, as any change
on the display triggered by a fuzz message would require
the GPU to render new images, leading to a measurable
increase in its temperature. Similarly, the power supply of
the display was monitored because potential system reactions,
such as turning off the display or adjusting its brightness, would
cause detectable changes in power, consumption. Therefore,
the fitness function was designed to yield higher scores when
the temperature of one or more processing units increased after
sending a message or changes in power supply were measured.

4) Selection: After each individual of the current gener-
ation has been evaluated, parents for the next generation
are selected using Ranked Selection. This method assigns

each individual a fixed selection probability based on its
rank within the generation according to its fitness score [17].
Ranked Selection was chosen because it ensures that the best-
performing individuals have a significantly higher chance of
being selected compared to others. This approach is based
on the assumption that the fitness function accurately reflects
the system’s reactions. Consequently, GFDG can prioritize
generating more fuzz messages from individuals that triggered
the strongest reactions, increasing the likelihood of uncovering
system vulnerabilities.

5) Crossover and Mutation: After the parent individuals
for the next generation are selected, they are used to create
the majority of the next generation through crossover and
mutation. This process follows the standard GA approach, using
single-point crossover for the payload genes of a message.
The resulting offspring are then mutated using a bit-wise
mutation strategy, where each bit of the payload is checked for
mutation probability, and bit-flips are performed accordingly.
As previously mentioned, the CAN ID is not affected by
mutation, and its bits are not split by crossover. Instead, the
CAN ID is linked to the first gene of the payload. Consequently,
a child individual inherits the ID from the parent from which it
received its first payload bit. Therefore, this design additionally
ensures that the distribution of CAN IDs among the offspring
mirrors the distribution present in the parent population.

6) Migration: As previously explained, altering the CAN
IDs of parents is avoided because it would most likely result
in CAN IDs that the ECU does not respond to. However, this
creates a challenge for the GFDG approach, as it restricts
each run to generating messages only with the IDs present in
the initial generation. The likelihood of the first generation
containing at least one active CAN ID is low, especially with
small population sizes. This could lead to multiple runs of
the GFDG without producing a single CAN message that
triggers a response from the system under test. To overcome
this limitation, the GFDG introduces an additional step to
the standard GA to introduce new IDs into the population
without losing the progress made in previous steps. This step
is called Migration. During migration, a small portion of the
next generation is created using new random individuals. This
approach ensures a steady flow of new IDs and payload genes
within a single run of the GFDG. Consequently, the algorithm
can explore more CAN IDs in one run, increasing overall
efficiency.

7) Termination Criteria: Every GA requires a termination
criterion, which is checked after each generation. The common
approach is to set a maximum number of iterations, which the
GFDG also employs. Tests of the GFDG evaluated different
iteration limits, identifying 50 to 100 generations as the
optimal range. A lower limit prevents the algorithm from fully
leveraging its evolutionary process, while a higher limit leads
to a rapid increase in duplicate messages. Notably, this effect
correlates with mutation probability—higher mutation rates
can reduce the likelihood of duplicate messages within a single
run, potentially allowing for a greater number of generations.

43Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

Algorithm 1 GFDG Algorithm
1: Input: POP_SIZE, MAX_ITER, CROSSOVER_RATE,

MUTATION_RATE, MIGRATION_COUNT
2:
3: population← initialize_population()
4: generation← 0
5: while generation < MAX_ITER do
6: for each individual in population do
7: individual.fitness←

send_and_evaluate(individual)
8: end for
9: if termination_criteria_met(population) then

10: break
11: end if
12: mating_pool← ranked_selection(population)
13: new_population← {}
14: while |new_population| <

POP_SIZE −MGRATION_COUNT do
15: (parent1, parent2)← pick_two(mating_pool)
16: (child1, child2)←

crossover_and_mutate(parent1, parent2,
CROSSOV ER_RATE,MUTATION_RATE)

17:
new_population← new_population ∪ {child1, child2}

18: end while
19: for i← 1 to MIGRATION_COUNT do
20: new_population←

new_population ∪ generate_CAN_message()
21: end for
22: population← new_population
23: generation← generation+ 1
24: end while

V. EXPERIMENTS

The previously described GFDG algorithm was implemented
and tested on an ECU in a laboratory setup to evaluate its
performance. The tested system is an automotive ECU used
in certain 2020 vehicle models to control various cockpit
functions. Testing focused on the ECU’s dedicated CAN
channel for controlling the Infotainment System. Temperature
sensors and an oscilloscope were used to monitor the previously
mentioned side-channel signals. Before fuzz testing, multiple
baseline measurements of the ECU were conducted to establish
reference data representing its normal operating state. This
baseline was then used for comparison with measurements
taken during fuzz testing. For evaluation, multiple fuzz testing
runs with the GFDG were performed under different ECU
states, including while Navigation or Radio functions were
active and while a mobile device was connected to the Info-
tainment System via Bluetooth. Each test run was performed
with a population size of 16, a migration count of 4, and a
maximum iteration count of 50. After each test run, the ECU
was properly shut down, and a waiting period was observed
to allow the processing units to cool. After each test, the

GFDG log file—containing all sent CAN messages, associated
fitness scores, and timestamps—was documented along with
the side-channel measurements. Additionally, the display of
the Infotainment System was manually monitored, and any
visual effects were recorded.

VI. RESULTS

After the experiments, the initial analysis compared side-
channel measurements with and without fuzzing to identify
anomalies. Without fuzz testing, the temperature of all three pro-
cessing units remained stable within a 0.1 to 0.2°C range across
all tests, and the display’s power supply remained consistent.
During fuzz testing with the GFDG, multiple anomalies were
observed. These included temperature increases of 1 to 2°C
in one or more processing units in a short period, which were
reproducible by resending the same fuzz messages. Notably,
temperature spikes were most pronounced when fuzz messages
triggered visual changes on the display, confirming the hy-
pothesis that rendering new images requires GPU processing,
leading to increased temperature. Additionally, certain CAN
messages generated by the GFDG caused a temporary decrease
in display brightness, resulting in a measurable voltage drop of
at least 50 percent. Some fuzz messages also led to short-term
temperature spikes in the AMC. However, no visible changes
in the user interface were observed for these cases, making it
unclear what system behavior they triggered. Overall, multiple
CAN messages were identified that caused observable changes
in the system under test. Several messages with different CAN
IDs triggered notifications on the display, including warning
and error messages. Analyzing the GFDG log file confirmed
that all fuzz messages with a measurable system impact
were correctly identified by the fitness function. Furthermore,
multiple child messages—generated from the same parent ID
but with modified payloads—elicited distinct system reactions.
A notable case involved a message generated through the
migration step, which triggered a "Goodbye" message on the
display. The GFDG detected this message as active due to
a significant GPU temperature increase and selected it as a
parent for further genetic operations. The resulting three child
messages with the same ID exhibited different behaviors: two
had no visible effect and were confirmed inactive through side-
channel measurements, while the third caused the system to
reboot the Bluetooth function and display an error message.
Further testing revealed that sending this message twice in
quick succession caused multiple infotainment functionalities
to crash. Specifically, the Media, Radio, and Telephone menus
became inaccessible through the user interface. Although the
Bluetooth settings menu remained available, users could no
longer modify any settings, turn Bluetooth on/off, or connect
new devices to the vehicle’s Infotainment System. This behavior
was classified as a Denial of Service (DoS) vulnerability.

VII. CONCLUSION AND FUTURE WORK

This research introduced the GFDG, a fuzzing approach
for the CAN protocol that leverages GAs with the goal of
enhancing testing efficiency. Unlike conventional CAN fuzzing

44Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

methods, the GFDG incorporates system feedback through
side-channel analysis, enabling the identification of active
CAN IDs and the generation of targeted fuzz messages. By
structuring CAN messages as genetic individuals and applying
evolutionary operations, such as selection, crossover, and
mutation, the GFDG dynamically refines its test cases to
increase the likelihood of triggering system responses and
uncovering vulnerabilities. Experimental results suggest that
this approach is capable of identifying system anomalies within
an automotive ECU, though further analysis is needed to fully
assess its effectiveness. Notable findings included measurable
increases in processing unit temperatures and power supply
variations, confirming the correlation between system reactions
and observable changes in side-channels. Furthermore, the
GFDG successfully uncovered a DoS vulnerability capable
of disrupting multiple Infotainment functions, highlighting its
potential for real-world security assessments. However, this
method has certain limitations. The performance of the GFDG
heavily depends on the accuracy of the defined fitness function,
which, in turn, relies on the availability and quality of side-
channel data for recognizing system reactions. Additionally,
parameters, such as mutation probability, population size, and
migration proportion influence its overall effectiveness. These
aspects require further research to refine this method.

Despite these limitations, the experimental results indicate
that integrating genetic algorithms with side-channel feedback
can enhance the identification of active CAN IDs (RQ1) and
can contribute to the efficiency and accuracy of vulnerability
detection in automotive ECUs. Additionally, the application of
evolutionary operations—selection, crossover, mutation, and
migration—appeared to help refine fuzz messages, potentially
enhancing the adaptability of the fuzzing process (RQ2), though
further analysis is required to quantify this effect.

REFERENCES

[1] P. Fuxen, M. Hachani, J. Schmidt, P. Zaumseil, and R.
Hackenberg, “Side channel monitoring for fuzz testing of future
mobility systems”, CLOUD COMPUTING 2023, p. 24, 2023.

[2] J. Yun, F. Rustamov, J. Kim, and Y. Shin, “Fuzzing of embedded
systems: A survey”, vol. 55, no. 7, 2022, ISSN: 0360-0300.
DOI: 10.1145/3538644.

[3] Y. Zheng et al., “FIRM-AFL: High-throughput greybox fuzzing
of IoT firmware via augmented process emulation”, presented
at the 28th USENIX Security Symposium (USENIX Security
19), 2019, pp. 1099–1114, ISBN: 978-1-939133-06-9.

[4] P. Sperl and K. Böttinger, “Side-channel aware fuzzing”, in
Computer Security–ESORICS 2019: 24th European Symposium
on Research in Computer Security, Luxembourg, September 23–
27, 2019, Proceedings, Part I 24, Springer, 2019, pp. 259–278.

[5] H. Lee, K. Choi, K. Chung, J. Kim, and K. Yim, “Fuzzing
can packets into automobiles”, in 2015 IEEE 29th Interna-
tional Conference on Advanced Information Networking and
Applications, IEEE, 2015, pp. 817–821.

[6] H. Zhang, K. Huang, J. Wang, and Z. Liu, “CAN-FT: A fuzz
testing method for automotive controller area network bus”,
in 2021 International Conference on Computer Information
Science and Artificial Intelligence (CISAI), Sep. 2021, pp. 225–
231. DOI: 10.1109/CISAI54367.2021.00050.

[7] “Iso 11898-1:2024 road vehicles — controller area network”,
International Organization for Standardization, Standard, ver-
sion 3, May 2024.

[8] F. Pölzlbauer, R. I. Davis, and I. Bate, “Analysis and optimiza-
tion of message acceptance filter configurations for controller
area network (CAN)”, in Proceedings of the 25th International
Conference on Real-Time Networks and Systems, ser. RTNS ’17,
New York, NY, USA: Association for Computing Machinery,
Oct. 4, 2017, pp. 247–256, ISBN: 978-1-4503-5286-4. DOI:
10.1145/3139258.3139266.

[9] A. Singhal, T. Winograd, and K. A. Scarfone, “Guide to secure
web services”, National Institute of Standards and Technology,
Gaithersburg, MD, NIST SP 800-95, 2007, Edition: 0, NIST
SP 800–95. DOI: 10.6028/NIST.SP.800-95.

[10] D. S. Fowler, J. Bryans, S. A. Shaikh, and P. Wooderson, “Fuzz
testing for automotive cyber-security”, in 2018 48th Annual
IEEE/IFIP International Conference on Dependable Systems
and Networks Workshops (DSN-W), ISSN: 2325-6664, Jun.
2018, pp. 239–246. DOI: 10.1109/DSN-W.2018.00070.

[11] T. Werquin, R. Hubrechtsen, A. Thangarajan, F. Piessens, and
J. T. Mühlberg, “Automated fuzzing of automotive control
units”, in 2019 International Workshop on Secure Internet of
Things (SIOT), ISSN: 2690-8557, Sep. 2019, pp. 1–8. DOI:
10.1109/SIOT48044.2019.9637090.

[12] A. Anistoroaei, B. Groza, P.-Ş. Murvay, and H. Gurban,
“Security analysis of vehicle instrument clusters by automatic
fuzzing and image acquisition”, in 2022 IEEE International
Conference on Automation, Quality and Testing, Robotics
(AQTR), May 2022, pp. 1–6. DOI: 10 . 1109 / AQTR55203 .
2022.9802024.

[13] D. S. Fowler, J. Bryans, M. Cheah, P. Wooderson, and S. A.
Shaikh, “A method for constructing automotive cybersecurity
tests, a CAN fuzz testing example”, in 2019 IEEE 19th
International Conference on Software Quality, Reliability and
Security Companion (QRS-C), Jul. 2019, pp. 1–8. DOI: 10.
1109/QRS-C.2019.00015.

[14] M. Li, Y. Wang, H. Zhang, and J. Wang, “PRFT: A fuzz
testing method for tire pressure monitoring system based on
protocol reverse”, in 2023 2nd International Conference on
Big Data, Information and Computer Network (BDICN), Jan.
2023, pp. 248–252. DOI: 10.1109/BDICN58493.2023.00058.

[15] S.-J. Wu and P.-T. Chow, “Steady-state genetic algorithms
for discrete optimization of trusses”, Computers & Structures,
vol. 56, no. 6, pp. 979–991, Sep. 17, 1995, ISSN: 0045-7949.
DOI: 10.1016/0045-7949(94)00551-D.

[16] A. Lambora, K. Gupta, and K. Chopra, “Genetic algorithm- a
literature review”, in 2019 International Conference on Machine
Learning, Big Data, Cloud and Parallel Computing (COMIT-
Con), Feb. 2019, pp. 380–384. DOI: 10.1109/COMITCon.2019.
8862255.

[17] A. Shukla, H. M. Pandey, and D. Mehrotra, “Comparative
review of selection techniques in genetic algorithm”, in 2015
International Conference on Futuristic Trends on Computa-
tional Analysis and Knowledge Management (ABLAZE), Feb.
2015, pp. 515–519. DOI: 10.1109/ABLAZE.2015.7154916.

45Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

https://doi.org/10.1145/3538644
https://doi.org/10.1109/CISAI54367.2021.00050
https://doi.org/10.1145/3139258.3139266
https://doi.org/10.6028/NIST.SP.800-95
https://doi.org/10.1109/DSN-W.2018.00070
https://doi.org/10.1109/SIOT48044.2019.9637090
https://doi.org/10.1109/AQTR55203.2022.9802024
https://doi.org/10.1109/AQTR55203.2022.9802024
https://doi.org/10.1109/QRS-C.2019.00015
https://doi.org/10.1109/QRS-C.2019.00015
https://doi.org/10.1109/BDICN58493.2023.00058
https://doi.org/10.1016/0045-7949(94)00551-D
https://doi.org/10.1109/COMITCon.2019.8862255
https://doi.org/10.1109/COMITCon.2019.8862255
https://doi.org/10.1109/ABLAZE.2015.7154916

	Introduction
	Related work
	Background
	CAN protocol
	Fuzz Testing
	Genetic Algorithm

	The Genetic Fuzz Data Generator
	Defining a CAN-Individual
	GFDG Algorithm
	Initialization
	Sending and Measuring
	Evaluation
	Selection
	Crossover and Mutation
	Migration
	Termination Criteria

	Experiments
	Results
	Conclusion and Future Work

