
On the Necessity of Measuring Security in IoT

Tobias Eggendorfer
TH Ingolstadt

Faculty of Computer Science
Ingolstadt, Germany

Email: tobias.eggendorfer@thi.de

Katja Andresen
HWR Berlin

Department of Business and Economics
Berlin, Germany

Email: katja.andresen@hwr-berlin.de

Abstract—While the Internet of things has become ubiquitous, it
is mostly populated by former embedded devices, whose software
was developed by specialists in the respective field. Hence, security
researchers often find issues in those, which some consider to be
low hanging fruits. Fixing security flaws in deployed embedded
devices is sometimes very complex: In automotive or airborne
systems, road- or airworthiness tests need to be passed, in these
and e.g. medical devices or industrial Internet of things updates
cannot interrupt operation. Therefore, in ideal world, Internet
of things and embedded systems would be free from security
issues. This could be reached with security metrics, a concept the
authors are working on.

Keywords-Internet of Things; IoT; Embedded Systems; Embedded
Security; IoT Security; Security Metrics; Cyber Security; Industrial
IoT; Legal Aspects

I. INTRODUCTION

In 2017, the United Stated Federal Drug Administration
(FDA) recalled St. Jude’s pacemakers due to a security issue
[1], allowing potentially lethal remote tampering – an issue
pre-seen by Holt and Holt’s thriller “Flimmer” [2]. In Finland,
attackers took down a building complex central heating unit,
resulting in frozen pipes and massive restoration costs [3].
The industrial Internet of Things (IoT) controller SIMATIC
by Siemens has 336 Common Vulnerabilities and Exposures
(CVE) entries, 33 of these were issued in 2024 alone [4].
Attacking these might disrupt production processes and even
challenge critical infrastructures. Cordless screwdrivers, ovens
or coffee appliances may now be configured or used over the
Internet, and thus have become a part of the Internet of things –
as with the now legendary Miele dishwasher directory traversal
[5]. Stealing cars is not short circuiting the ignition any more
but gaining access to its Controller Area Network (CAN) bus
and pretending by software the key was in the lock [6].

A. IoT and embedded security – Fixing issues

While software security issues are common nowadays, those
in IoT and embedded systems are especially nasty: patching
and updating the devices is often a tedious process. E.g., for a
dash cam, firmware needs to be downloaded on the desktop,
copied to a freshly formatted SD card, the dash cam rebooted
and the card quick enough removed for the next reboot [7].
The complexity results from the device being offline or not
providing an online-update feature.

For some IoT, updating is easier, because devices could
download their update. However, there are two issues: On
several occasions, updates broke the system, e.g., [8] [9]. Also,

the update cannot be installed anytime, an example are cars on
ferries updating their system without asking their user. With
an update taking longer than the ferry trip, the car cannot be
started again and thus blocks unloading the ferry [10]. This
could happen to, e.g., a fire truck or an ambulance – those need
to be available 24/7, at unpredictable times. Updates would
need to be carefully planned with replacement vehicles being
set up, as it is for regular maintenance. However, over the
air software updates might occur more often, since from a
manufacturers point of view, they are easily distributed. This
puts an additional burden to an already very resource- and cost-
intensive process, affecting update speed and thereby security.

Some devices need to run an approved version of their
respective software, e.g., devices deployed in planes need an
airworthiness approval, sometimes even by several agencies
worldwide. In medical devices, similar rules exist. In neither
case a mid air update is recommendable.

Some embedded devices are deployed without reasonable
physical access, hindering updates, e.g., pacemakers and
internal defibrillators. Some are hardly ever serviced, shifting
the task of updating to its user, who is unaware of relevant
security patches. In some cases, administrators might even
be too careless to install security fixes: Both Hafnium and
Heartbleed security issues were observed in the wild years
after their respective discovery.

B. Lateral movement

In recent attacks, IoT served as the entry point to corporate
networks, moving on from there is called lateral movement.
There are reports on using a surveillance web cam [11] or the
photovoltaic system’s web-interface. In a home environment a
smart TV could be the vantage point.

It is often suggested to separate networks, moving IoT
devices outside the productive environment. This is only a
partial solution, e.g., the Mirai bot net abused infected IoT
devices for distributed Denial of Service (dDoS) [12].

C. Motivation for IoT and embedded security metrics

Therefore embedded and IoT-devices should be as secure as
possible when deployed, thereby reducing the need for patches.
But their manufacturers would always claim that security is
of paramount importance to them and their devices underwent
rigorous testing. Considering the vast amount of CVE numbers
assigned to embedded and IoT-devices this is not plausible.
While printers are neither embedded nor IoT, Hewlett-Packard

25Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

provides a very good example for vendor security claims versus
reality: On January 29, 2025 they released patches for a CVE
issued in 2017 [13] – eight years later.

Due to the absence of security measures in IoT, there is an
urgent need for a way to help identify and implement necessary
security controls [14].

Search engines like shodan.io support this need. They help
identifying IoT-devices and searching for specific devices,
software versions or configurations with vulnerabilities.

The authors proposed a security metric [15] to identify a
systems level of security as well as to be able to compare
devices in order to make an informed procurement decission.
This paper discusses how this metric could be applied to IoT
and embedded devices in order to increase their security.

D. Structure of this paper

The paper is structured as follows: Section II first defines the
concept of embedded systems, IoT and Industrial IoT (IIoT)
for the purpose of this paper. It then outlines common security
challenges in regular software, how and when they affect IoT
systems and how to mitigate them. Based on this, this section
provides an overview on software quality management with a
focus on security and security metrics outside IoT.

Section III analyses how security metrics could be applied
to IoT. Based on this, legal enforcment of the use of security
metrics and its potential effects is discussed in Section IV. The
last Section V provides a conclusion and gives an outlook on
future research.

II. BACKGROUND

The following section provides definitions and an overview
on Information Technology (IT), IT-security, security issues
and their respective origin as well as counter measures.

A. Embedded Devices, IoT, firm- and software

For this paper, an embedded device is defined as a computer
with a specific purpose that is usually integrated into a cyber
physical system, interacting with sensors, actors and / or has
a specific user interface, but usually not a full keyboard or
screen. Their software is optimized for the use case and not
meant to be changed by the user, e.g., dashcams, defibrillators,
smart TVs, heating controllers or smart locks, but also engine
control systems or a lane assistants in cars.

An IoT device is an embedded system connected to the
Internet and could either be configured, monitored or controlled
remotely. IIoT is IoT monitoring and / or controlling industrial
system, such as assembly lines or automated warehouses.

For this paper, software and firmware are considered to be
equivalent: While firmware is usually provided “on a chip”,
which might even be a Read-Only Memory (ROM) module,
and comes with a device, from a security perspective it is still a
program. With the line between embedded systems and regular
computers becoming less clear – a Raspberry Pi could be both
– the borderline between soft- and firmware also moves. It
becomes relevant, when it comes to potential cyber-physical
effects of IoT.

B. IT security in general

Often social engineering (SE) and ransomware are seen
as the biggest threads to IT security. From an operational
perspective, this explains how the attack has been executed
[16] and describes its effects. But technically, each SE attack
is a security issue, be it bypassing the need to know or least
privileges principle, a flaw in the system, which allowing to
inject and execute arbitrary code, or other imperfections. Hence,
while SE was supportive, the relevant issue was a faulty system.

For the effect, it is not relevant how the attacker exploits the
newly gained access, e.g., to deploy ransomware or part taking
in industrial espionage. However, the effects are relevant from
an economic and political perspective, as well as for attribution
and legal measures; however, this falls outside the technical
scope. There, it is only a payload to the actual attack.

The difference between payload, the actual attack, e.g., a
buffer overflow or format string issue, and the attack vector,
describing how the attack was launched, e.g., through Remote
Procedure Call (RPC) or SE, is important: Security measures
addressing only the attack vector, e.g., by educating users to
prevent SE, do not fix the underlying security flaw. It could
still be leveraged through other means.

Security measures could mitigate some attack’s effects, e.g.,
off site backups to prevent ransomware. This reduces the
risk, because the damage is lowered. However, the underlying
security issue remains unsolved and could still be exploited
for activities such as espionage. Hence, the best solution is to
fix the cause, the security issue itself, since this is effective for
all attack vectors and effects. Only addressing some of them
is sometimes called “snake oil” or “security theatre” in the
security community, due to their limited effect [17] [18].

C. Typical security issues in IoT and embedded devices

In IoT and embedded devices, there is a huge variety of tasks
to perform. While in a Tesla, the systems provide X for the user
interface [19] [20], in implanted pace makers a touch screen is
not feasible, instead a Bluetooth Low Energy (BLE)-interface
could be provided – these having their own security issues, e.g.,
[21]. Industrial IoT systems often use proprietary protocols
to interface with control units, e.g., Supervisory Control and
Data Acquisition (SCADA), others have built in web-interfaces,
such as the aforementioned dishwasher.

Based on the huge variety of IoT and embedded systems,
all security issues in both compiled software as well as those
in web applications could occur. For the latter, Open Web
Application Security Project (OWASP) provides an overview
of potential issues. A regularly updated top ten list indicates
the most prevalent, ranging from Cross Site Scripting (XSS) to
Lightweight Directory Access Protocol (LDAP)- and Structured
Query Language (SQL)-injections, but also including issues
like insecure deserialisation of a data stream or authentication
bypass [22]. While the list is updated every few years, the
issues typically shift positions within the top ten, but rarely
disappear entirerly – nor do new issues come up. While
at the time of writing, the OWASP Top Ten 2025 list was
not yet available, a comparison of the lists from 2017 to

26Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

2021 reveals that only three new issues appeared in the top
ten. Out of those three that seem to have disappeared, four
were merged into two new categories and are still in the top
ten, these are: A01:2017 “Injection” and A07:2017 “XSS”
merged into A03:2021 “Injection”, A04:2017 “XML External
Entities” and A06:2017 “Security Misconfiguration” became
A05:2021 “Security misconfiguration” [22]. This indicates bad
security practice and a non existent web-security learning curve,
applicable as well to IoT-web-interfaces.

In regular programs, security issues could be related to
memory access, such as with a buffer overflow, out of bounds
read or write, format string issue or off by one. These usually
result in a program flow alteration or even code injection.
Other issues include integer overflows, which might result in
a system with an unstable state [23] or as a vantage point for
other attacks, such as a buffer overflow [24]. All of which
are applicable to IoT as well. Other issues are resemble web
attacks, such as an under protected Application Programming
Interface (API) or insecure authentication.

These issues either result from insecure programming
practice or design flaws. Examples for the former include using
strcpy instead of strncpy. While strcpy does not limit
its copying to a maximum amount of bytes, strncpy does.
This prevents – if no other flaws are present, such as integer
overflows or off by ones – some buffer overflows, and was
introduced in ANSI C in 1989 [25], long after buffer overflows
were first described in 1972 [26]. In 1996, the Phrack Magazine
in the famous article “Smashing the Stack for Fun and Profit”
[27] explained the security issue due to its prevalence in these
days. Still now, buffer overflows are of the most often abused
security issue. Good programming practice would enforce the
use of safer functions. Again an indication of a very slow
learning curve, albeit automatic code analysis tools are able
to warn [28]. Which points to them not being (properly [29])
used too often.

Design flaws are harder to identify and come by. Whether one
considers Central Processing Unit (CPU) microcode software
or hardware, both Spectre and Meltdown [30]–[32] are good
examples of design issues: They are a result of pipelining in
modern CPU architecture. Heartbleed provides an example of
a software security issue due to a design flaw: By providing
redundant data and not comparing two values, an out of bounds
read could be triggered [33], another example “ZUGFeRD”, a
concept for eXtensible Markup Language (XML) and Portable
Document Format (PDF) based e-invoices posing a security
risk through redundant, not cross checked data [34] [35]. These
logical issues are much harder to automatically detect, and are
found in IoT as well.

D. Prevention of security issues

In theory preventing security issues based on bad program-
ming style is well known [15] [36] [37] and easily achieved
with static code analysis [28], code reviews, peer programming
and other simple quality checking measures.

Identifying design flaws is possible through code reviews
and peer programming, however this requires a qualified team.

If this was easy, faulty standards such as introducing heartbeat
functionality in TLS leading to the aforementioned Heartbleed
issue, or the ZUGFeRD issues would not have happened.

E. Relation between software quality management and security

All measures undertaken to increase software quality, such
as coding standards, static and dynamic code analysis, code
reviews and peer programming have an effect on the amount of
security relevant issues in a program. OpenBSD is an example:
Due to its quality management, the system only had two remote
exploitable security issues in its standard installation “in a heck
of a long time” [38], i.e., 30 years.

Quality management will find security issues related to bad
programming and some logic flaws. At the same time, it will
increase the quality of the code created, since programmers
know their code will be reviewed, they will obey the coding
standards. If these include safe programming practices, they
have an effect on security as well.

F. Measuring software quality

Software quality in general is a broad term, providing many
perspectives. ISO 25010 provides eight quality dimensions for
software, starting from functionality via portability or usability,
but also security. However, in this regard security is restricted
to functionality. To the authors, software quality serves as a
proxy for security: Quality means the absence of flaws, each
flaw could result in a security issue [15] [37].

1) Standards: Standards like the ISO 27000 series only
provide a management perspective, but offer little in terms of
an operational approach to achieve a high level of software
quality, and they cannot measure the quality of the code. To
some extent, this aligns with how software quality measurement
is discussed in research: So far “software quality” itself lacks
a common understanding [15].

2) Formal Verification: Other concepts include more formal
specification of software and deriving from this specification
a verification. One example are Hoare logics [39]. However
for most projects this manual process is cumbersome and
very intense. There it is probably only used in environments
with high quality and especially safety requirements, such as
in space missions. But even then, if the conditions are not
updated properly to reflect changes elsewhere, issues could
still occur, e.g., the Ariane 5 [23]. In IoT, especially when it
comes to high cyber-physical risks, projects like seL4 provide
formally verified code [40]–[42].

3) Current concepts: Closer to the market are concepts
such as the German’s German Federal Office for Information
Security (BSI) providing a “software quality seal” based on
self assessment of the vendor and easily measurable items such
as the time needed to fix issues [43]. The speed of fixing may
indicate a learning curve, but is not inherently a quality measure
for the software itself. Rather, it serves as an indicator how
effective a vendor is in accepting, understanding and resolving
reports. This is useful to understand how interested they are
in preventing future attacks, it is a measure of the quality of
maintenance. But it does not give any indication on whether

27Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

the bug could have been identified earlier in the development
process, which is where software quality stems from. This
“software quality seal” is therefore hardly an indication of
what it claims to be.

4) Bill of Materials: Another approach to quality is to
identify which third party libraries and software is used within
a project, including the respective version. If an update becomes
available for one of these, it should be easily possible to identify
whether it needs to be installed. This idea has been adopted
by European Union (EU) Cyber-Resilliance-Act (CRA) by
introducing the Software Bill of Materials (SBoM). However
a SBoM does not provide a quality measurement in itself and
there is no clear path to derive a quality measure from it:
Does a short SBoM indicate a higher level or lower level of
quality? There are pros and cons for either way. Aside of this,
an SBoM is useful in identifying relevant patches. As per [44]
IoT projects use less dependencies.

5) Static measures: Khezemi et al. [36] suggest to measure
code quality based on statically comparing code by looking at
size, code complexity, cohesion, coupling, code readability, and
maintainability. These measures have a different understanding
of quality than this paper has, in that it does not address security
measures.

6) Conclusion: Quality aspects of embedded systems and
IoT should address both, hardware as well as software compo-
nents [45].

G. Measuring software security

Eggendorfer and Andresen [15] provide a detailed overview
on currently available methods to measure software security
and concludes that there is no commonly accepted method.
This applies even more for IoT. However, to achieve a high
level of security that is comparable, it is important to capture
aspects beyond already existing standards or initiatives related
to software quality.

Other initiatives invest in preventive measure, like educating
software developers in order to support secure software devel-
opment [38] [46] [47]. To assess software a broadly understood
security metric would offer orientation and guidance. For web
applications [48] developed a concept, which however has
some minor flaws [15].

Reckhaus [49] compares the invest into IT security to
insurance fees to identify an economic value, i.e., metric, for
security investments. While this does not assess the security as
a quality measure, it helps evaluating security concepts from a
economic perspective.

Wuttig [50] analyses IT security in medical IoT devices,
albeit without applying a formal metric. His analysis however
gives a good impression of minimum requirements that should
be included in a formal security test, that could be part of
a security metric. A security issue in patient monitors is an
example of the relevance [51].

III. APPLICATION TO EMBEDDED AND IOT

IoT and embedded systems have different security implica-
tions and requirements than desktop software. The following

section discusses effects of different development approaches
and how this would affect the respective software quality.

A. Differences in software development

Software development for IoT and embedded systems is
different to developing other programmes. Embedded systems
are designed for special tasks. For that, embedded systems, e.g.,
laundromats, cameras, smart home equipment, use firmware
(software) that directly accesses the hardware of the device to
carry out the intended function. Hence, they do not follow the

”one fits all“ architecture as the John-von-Neumann approach.
Typical characteristics of these systems have effects on

quality, as well as security: Many embedded systems need
to process data in real time, i.e., they have an upper limit
for computing time. Obvious examples include the Antilock
Braking System (ABS) and airbag deployment in cars.

These systems are usually designed for a reliable long term
usage – meaning limited maintenance opportunities as well as
corrective updates by default.

As they run on special microprocessors and microcontrollers
embedded systems use limited resources as computing power
and memory – compared with traditional computers. The
specific, often restricted hardware might also have an effect
on code optimization.

B. Related Work

Corno et al. [44] discuss this in detail for Open Source
software, based on an analysis of source code of 30 IoT and
30 non-IoT projects published on github. This is partly because
IoT projects are more complex, in that applications need to be
fault tolerant, often need to use sensor data, tend to be part
of distributed system and require specific domain knowledge
[44] [52]–[54]. Also programming languages vary greatly, with
memory safe programming languages such as JavaScript being
more often used in non-IoT projects, in 18 vs. 4 projects in
[44].

Code quality between IoT and non-IoT applications differs
massively, software for IoT was “more complex, coupled, larger,
less maintainable, and cohesive than non-IoT systems” [36] [55].
This results in some authors suggesting different development
processes for IoT [56]–[58].

The unique requirements, specific and open architecture
has drawn attention of both malicious attackers and security
analysts.

C. Quality assurance

Motoga et al. [59] come to the conclusion that a “diversity
of methods” is needed to assure the quality of IoT systems
during the development phase. With regard to the lifecycle,
“maintainability” is a key goal for the deployment of embedded
systems [59], however there is a potential trade off between
quality attributes such as security, safety and maintainability
[59]. Müller [60] also argues that secure IoT development
requires its own development process.

Quite interestingly, European Telecommunications Standards
Institute (ETSI) issued the standard ETSI EN 303 645 “Cyber

28Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

Security for Consumer Internet of Things: Baseline Require-
ments” representing a collection of rather simple minimum
requirements for secure consumer IoT in order to support man-
ufactures to establish security by design. Considering that ETSI
is less of an IT but more a telecommunication standardisation
body, providing mobile phone network standards such as GSM,
EDGE, 3G, 4G and 5G, its IT-security recommendations are
not always up to date, ETSI TS 103 523-3 V1.2.1 “CYBER;
Middlebox Security Protocol; Part 3: Enterprise Transport
Security” even received a CVE number before publication [61].
Not only the authors consider ETSI EN 303 645 problematic,
Morgenstern at al [62] state the implementation of the standard
lacks completeness leading to security risks. Despite this, based
on ETSI EN 303 645, the German BSI provides a quality seal
for IoT devices, based on voluntary participation [63] [64].

If IoT uses encryption, updating algorithms used for en-
cryption, signing or even hash functions might not be straight
forward, since data stored on the device would need to re-
encrypted, increasing the complexity of the process. Also
interoperability issues with not yet updated systems may occur,
if for security aspects downward compatibility has not been
implemented.

IV. SUGGESTED LEGISLATIVE SUPPORT

When it comes to security of embedded systems and IoT, at
first, security seems to be one attribute among others. However,
security is of high importance due to the massive effects of
security incidents, the risks of lateral movement of attackers,
the abuse of bot nets built upon infected IoT devices and the
dangers of cyber-physical effects. Considering this, legislators
might support better security by passing more stringent laws,
such as the EU did with Directive 2016/1148 of the European
parliament and of the council of 6 July 2016 concerning
measures for a high common level of security of network
and information systems across the Union (NIS)-2 and CRA
recently. These, however, would only become efficient if they
required measurable IT security, i.e., an objective and neutral
way to assess security.

A. The need of a security metric in a legal context

There is a need for objective and measurable security in
a legal context, as a real example demonstrates: With an
increasing amount of fraudulently manipulated invoices, where
attackers swap the recipients bank account against their own, the
Higher Regional Court (Oberlandesgericht (OLG)) in Karlsruhe
ruled, that sending the invoice encrypted was not a requirement
[65], while the OLG Schleswig-Holstein decided encryption is
needed [35]. Both based their decision on the same article of
the General Data Protection Regulation (GDPR). As a result,
in one case, the invoiced party needed to pay again, in the
other case not.

The two courts disagreed on two main issues, one was the
applicability of the GDPR to a juridical person (Karlsruhe)
versus a natural person (Schleswig-Holstein), which could be
disputed, and the other on a technical question. According to
the respective rulings neither court heard an expert witness on

the matter. Both assumed in their own expertise, encryption
was efficient to protect integrity, where a digital signature
would actually be needed [34] [35] [65]. Karlsruhe found that
encryption is not required based on “real world expectations”,
Schleswig-Holstein considered it as a requirement.

The decision by the OLG Schleswig-Holstein is currently
being discussed mainly in the legal community for it basically
enforcing email encryption. Some see it as being disruptive and
too strict [66]–[68], while others point to a decade of advocacy
towards email encryption [35] [65] [69].

The different rulings are a result of allowing room for
interpretation of technical requirements by non technical
legislators and a non technical judicative. Objectively measured
security by contrast allows for consistent court rulings and also
consistent expert hearings. Only with a reliable metric, legal
concepts such as GDPR have an effect.

B. Economic impact

Procurement decisions should also be made based on a
security metric [15]. By providing a legal requirement, it could
easier be incorporated in the buying decision, and thereby
enhance cyber resilience [15].

C. Labelling

In other domains like electronic devices or textiles labels,
batches and seals are accepted and mandatory. For instance
the Conformité Européenne (CE) label for electronic goods
guarantees that minimum requirements for safety, health and
environment have been addressed and fulfilled, albeit the CE
label is based on a self assessment [70].

Self assessment has already proven problematic in IT in
general, as most software manufactures declare their products
to be of high quality, free of security and other flaws, which
hardly ever meets reality. Also with the CE-label, these issues
occur. If, however, the self assessment is based on a comparable,
standardised metric, “fake” assessments could be identified.
Still, a legal framework to prevent the abuse of labels –
potentially more strict than the one used for CE-labels [71] –
is needed.

D. Mandatory Testing

For products that society and lawmakers consider to carry
a higher risk, mandatory tests and specific requirements are
set up. Examples include cars, aircrafts or medical devices. In
special cases regular re-assessments are a legal requirement
as well, e.g., the yearly or bi-annual roadworthiness checks
for cars or permanent side effect reporting in medicine. In
all these cases, security and safety are a requirement, security
issues are (almost) unacceptable. The GDPR introduced security
requirements – at least in theory: Some consider penetration
tests a GDPR requirement [72], however, reality does not agree.

Therefore a security metric would allow efficient, comparable
and reliable security comparisons. It would allow any user to
make a decision between a more or less secure device apart
from other features. With more and more IoT devices connected,
chances increase for exploited vulnerabilities.

29Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

E. Life cycle

Quality and security management need to addressed through-
out the life cycle of an IoT project. Before allowing a product on
the marketing, a formal check such as a roadworthiness checks
in cars. Therefore a security metric serves as a foundation to
measure criteria or attributes (to define) that need to be passed.

Other than with roadworthiness checks, with IoT not the
individual device needs to be reevaluated, but only one
exemplary device, as other than with cars mechanical wear
and tear is not the primary issue. While reevaluation of all
IoT devices would be advisable to prevent risks like lateral
movement, in a first step it seems to be most important to
both apply regular reevaluation to devices with cyber-physical
effects as well as to devices used in critical infrastructure.

V. CONCLUSSION AND FUTURE WORK

Security issues are the downside of a technology that
surrounds us. This article has shown that embedded systems
require special attention to run reliable and secure in an
interconnected world. The design and creation of IoT services
as well as maintenance tasks along the usage phase appears to
be of high complexity.

The authors propose the usage of a metric to measure
a software security index that supports the judgement of
feasibility for applications in a given context. The metric
is therefore addressing the “static” software system with
regard to the technical aspects but also considering dynamic
aspects. The latter could be part of a penetration test scenario.
A metric would allow a judgment in terms of security in
IoT environments. Above, a regular validation could be part
of a “ready for market” concept. IoT manufacturers would
probably have an interest in a better rating leading to quality
improvement of the software system.

REFERENCES

[1] ZDNet. (2017) FDA issues recall of 465,000 St. Jude
pacemakers to patch security holes. Accessed 2025.03.09.
Online: https://www.zdnet.com/article/fda-forces-st-jude-pacemaker-
recall-to-patch-security-vulnerabilities/

[2] A. Holt and E. Holt, Flimmer. Piratforlaget, 2010.
[3] M. Komar. (2016) DDoS attack takes down central heating

system amidst winter in finland. Accessed 2025.03.09. Online:
https://thehackernews.com/2016/11/heating-system-hacked.html

[4] cve.org. (2025) CVE.org search for SIMATIC. Accessed 2025.03.09. On-
line: https://www.cve.org/CVERecord/SearchResults?query=SIMATIC

[5] ——. (2017) Cve-2017-7240. Accessed 2025.03.09. Online: https:
//nvd.nist.gov/vuln/detail/CVE-2017-7240

[6] K. Tindell. (2023) CAN injection: keyless car theft. Accessed 2025.03.09.
Online: https://kentindell.github.io/2023/04/03/can-injection/

[7] AZDOME. (2021) Method of updating the latest firmware.
Accessed 2025.03.09. Online: http://forum.azdome.hk/forum.php?mod=
viewthread&tid=930&highlight=M300S

[8] S. Harding. (2025) Firmware update bricks HP printers, makes
them unable to use HP cartridges. Accessed 2025.03.11.
Online: https://arstechnica.com/gadgets/2025/03/firmware-update-bricks-
hp-printers-makes-them-unable-to-use-hp-cartridges/

[9] F. Deusch and T. Eggendorfer, “Zur Kompatibilität beim Updating
verbundener Systeme (translated: On compatibility when updating
interdependant systems),” K&R, vol. 2018, no. 7, pp. 456–464, 2018.

[10] M. Zysset. (2025) Wenn das Software-Update beim Auto für Stau sorgt
(translated: If the car software update causes a traffic jam). Accessed
2025.03.09. Online: https://www.tagesanzeiger.ch/bls-autoverlad-wenn-
das-software-update-fuer-stau-sorgt-135808833029

[11] G. Hull, C. Trivella, and J. Seland. (2025) Camera off:
Akira deploys ransomware via webcam. Accessed 2025.03.11.
Online: https://www.s-rminform.com/latest-thinking/camera-off-akira-
deploys-ransomware-via-webcam

[12] CISA. (2017) Heightened DDoS threat posed by Mirai and other botnets.
Accessed 2025.03.09. Online: https://www.cisa.gov/news-events/alerts/
2016/10/14/heightened-ddos-threat-posed-mirai-and-other-botnets

[13] Hewlett-Packard. (2025) HP Universal print driver series (PCL 6 and
PostScript) - potential security vulnerabilities. Accessed 2025.03.09.
Online: https://support.hp.com/us-en/document/ish 11892982-11893015-
16/hpsbpi03995

[14] K. Pawar, C. Ambhika, and C. Murukesh, “IoT hacking: Cyber security
point of view,” Asian Journal of Basic Science & Research, 2021.
Online: https://api.semanticscholar.org/CorpusID:235194057

[15] T. Eggendorfer and K. Andresen, “Using security metrics
to improve cyber-resilience,” in Proceedings of the IARIA
Congress 2024. Porto, Portugal: IARIA, 2024, pp. 152–157.
Online: https://www.thinkmind.org/library/IARIA CONGRESS/IARIA
Congress 2024/iaria congress 2024 2 210 50107.html

[16] P. Hengge, Development of a Rule Set for the Defence Against Cyber
Attacks by Analysing and Evaluating Attack Vectors in IT Systems. Hagen:
Masterthesis, FernUniversität in Hagen, 02 2025.

[17] B. Schneier. (2025) Entries tagged security theatre. Accessed 2025.03.09.
Online: https://www.schneier.com/tag/security-theater/

[18] P. R. Zimmermann. (1991) Beware of snake oil. Accessed 2025.03.09.
Online: http://www.philzimmermann.com/EN/essays/SnakeOil.html

[19] J. Michal, Tesla Model 3 Control Units Security Analysis. Prag:
Masterthesis, CTU Prag, 01 2021.

[20] DragTimes. (2014) Tesla model s ethernet network explored,
possible jailbreak in the future? Accessed 2025.03.09.
Online: http://www.dragtimes.com/blog/tesla-model-s-ethernet-network-
explored-possible-jailbreak-in-the-future

[21] J. Leyden. (2017) Dildon’ts of bluetooth: Pen test boffins sniff
out berlin’s smart butt plugs. Accessed 2025.03.09. Online: https:
//www.theregister.com/2017/09/29/ble exploits screwdriving/

[22] OWASP. (2021) OWASP top ten. Accessed 2025.03.09. Online:
https://owasp.org/Top10/

[23] J.-L. Lions. (1996) Flight 501 failure. Accessed 2025.03.09. Online:
http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html

[24] J. Drake. (2015) Stagefright: Scary code in the
heart of Android. Zimperium. Accessed 2025.03.09.
Online: https://www.blackhat.com/docs/us-15/materials/us-15-Drake-
Stagefright-Scary-Code-In-The-Heart-Of-Android.pdf

[25] ISO. (1989) Iso/iec 9899:tc3. Accessed 2025.03.09. Online: https:
//www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf

[26] J. P. Anderson. (1972) Computer security technology planning study,
volume ii. Accessed 2025.03.09. Online: https://csrc.nist.gov/csrc/
media/publications/conference-paper/1998/10/08/proceedings-of-the-
21st-nissc-1998/documents/early-cs-papers/ande72.pdf

[27] A. One. (1996) Smashing the stack for fun and profit. Accessed
2025.03.09. Online: https://phrack.org/issues/49/1

[28] T. Eggendorfer, “At the source. static code analysis finds
avoidable errors,” Admin Magazine, vol. 2019, no. 53, 2019.
Online: https://www.admin-magazine.com/Archive/2019/53/Static-code-
analysis-finds-avoidable-errors

[29] A. Lentz and T. Eggendorfer, “Snakes in the grass,” in NLUUG
najaarsconferentie 2024. Utrecht, Netherlands: NLUUG, 2024.

[30] J. Horn et al. (2018) Spectre and meltdown. Accessed 2025.03.09.
Online: https://spectreattack.com/

[31] M. Lipp et al., “Meltdown: Reading kernel memory from user space,”
in 27th USENIX Security Symposium (USENIX Security 18), 2018.

[32] P. Kocher et al., “Spectre attacks: Exploiting speculative execution,” in
40th IEEE Symposium on Security and Privacy (S&P’19), 2019.

[33] Synopsis. (2020) Heartbleed. Accessed 2025.03.09. Online: https:
//heartbleed.com/

[34] T. Eggendorfer, “Schwer verrechnet (translated: Bad computation),” Linux
Magazin, vol. 2025, no. 04, pp. 50–53, 2025.

[35] F. Deusch and T. Eggendorfer, “E-Rechnung: Verschlüsseln oder Sig-
nieren? (translated: E-invoice: Encrypt or sign?),” K&R, vol. 2025, no. 4,
4 2025.

30Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

https://www.zdnet.com/article/fda-forces-st-jude-pacemaker-recall-to-patch-security-vulnerabilities/
https://www.zdnet.com/article/fda-forces-st-jude-pacemaker-recall-to-patch-security-vulnerabilities/
https://thehackernews.com/2016/11/heating-system-hacked.html
https://www.cve.org/CVERecord/SearchResults?query=SIMATIC
https://nvd.nist.gov/vuln/detail/CVE-2017-7240
https://nvd.nist.gov/vuln/detail/CVE-2017-7240
https://kentindell.github.io/2023/04/03/can-injection/
http://forum.azdome.hk/forum.php?mod=viewthread&tid=930&highlight=M300S
http://forum.azdome.hk/forum.php?mod=viewthread&tid=930&highlight=M300S
https://arstechnica.com/gadgets/2025/03/firmware-update-bricks-hp-printers-makes-them-unable-to-use-hp-cartridges/
https://arstechnica.com/gadgets/2025/03/firmware-update-bricks-hp-printers-makes-them-unable-to-use-hp-cartridges/
https://www.tagesanzeiger.ch/bls-autoverlad-wenn-das-software-update-fuer-stau-sorgt-135808833029
https://www.tagesanzeiger.ch/bls-autoverlad-wenn-das-software-update-fuer-stau-sorgt-135808833029
https://www.s-rminform.com/latest-thinking/camera-off-akira-deploys-ransomware-via-webcam
https://www.s-rminform.com/latest-thinking/camera-off-akira-deploys-ransomware-via-webcam
https://www.cisa.gov/news-events/alerts/2016/10/14/heightened-ddos-threat-posed-mirai-and-other-botnets
https://www.cisa.gov/news-events/alerts/2016/10/14/heightened-ddos-threat-posed-mirai-and-other-botnets
https://support.hp.com/us-en/document/ish_11892982-11893015-16/hpsbpi03995
https://support.hp.com/us-en/document/ish_11892982-11893015-16/hpsbpi03995
https://api.semanticscholar.org/CorpusID:235194057
https://www.thinkmind.org/library/IARIA_CONGRESS/IARIA_Congress_2024/iaria_congress_2024_2_210_50107.html
https://www.thinkmind.org/library/IARIA_CONGRESS/IARIA_Congress_2024/iaria_congress_2024_2_210_50107.html
https://www.schneier.com/tag/security-theater/
http://www.philzimmermann.com/EN/essays/SnakeOil.html
http://www.dragtimes.com/blog/tesla-model-s-ethernet-network-explored-possible-jailbreak-in-the-future
http://www.dragtimes.com/blog/tesla-model-s-ethernet-network-explored-possible-jailbreak-in-the-future
https://www.theregister.com/2017/09/29/ble_exploits_screwdriving/
https://www.theregister.com/2017/09/29/ble_exploits_screwdriving/
https://owasp.org/Top10/
http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html
https://www.blackhat.com/docs/us-15/materials/us-15-Drake-Stagefright-Scary-Code-In-The-Heart-Of-Android.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Drake-Stagefright-Scary-Code-In-The-Heart-Of-Android.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf
https://csrc.nist.gov/csrc/media/publications/conference-paper/1998/10/08/proceedings-of-the-21st-nissc-1998/documents/early-cs-papers/ande72.pdf
https://csrc.nist.gov/csrc/media/publications/conference-paper/1998/10/08/proceedings-of-the-21st-nissc-1998/documents/early-cs-papers/ande72.pdf
https://csrc.nist.gov/csrc/media/publications/conference-paper/1998/10/08/proceedings-of-the-21st-nissc-1998/documents/early-cs-papers/ande72.pdf
https://phrack.org/issues/49/1
https://www.admin-magazine.com/Archive/2019/53/Static-code-analysis-finds-avoidable-errors
https://www.admin-magazine.com/Archive/2019/53/Static-code-analysis-finds-avoidable-errors
https://spectreattack.com/
https://heartbleed.com/
https://heartbleed.com/

[36] N. Khezemi, S. Ejaz, N. Moha, and Y.-G. Guéhéneuc, “Comparison of
code quality and best practices in IoT and non-IoT software,” ArXiv, vol.
abs/2408.02614, 2024. Online: https://api.semanticscholar.org/CorpusID:
271709982

[37] D. Mathes, Qualitätsmetriken für Schutzkonzepte (translated: Quality
metrics for security concepts). Hagen: Masterthesis, FernUniversität in
Hagen, 12 2015.

[38] OpenBSD. OpenBSD security. Online: http://www.openbsd.org/
security.html

[39] C. A. R. Hoare, “An axiomatic basis for computer programming,”
Commun. ACM, vol. 12, no. 10, p. 576–580, oct 1969. Online:
https://doi.org/10.1145/363235.363259

[40] G. Klein et al., “sel4: formal verification of an operating-system
kernel,” Commun. ACM, vol. 53, no. 6, p. 107–115, Jun. 2010. Online:
https://doi.org/10.1145/1743546.1743574

[41] D. B. de Oliveira, T. Cucinotta, and R. S. de Oliveira, “Efficient formal
verification for the linux kernel,” in Software Engineering and Formal
Methods, Peter Csaba Ölveczky and G. Salaün, Eds. Cham: Springer
International Publishing, 2019, pp. 315–332.

[42] SEL4project. (2025) seL4. Accessed 2025.03.09. Online: https:
//sel4.systems/

[43] F. Deusch and T. Eggendorfer, “Messbarkeit von IT-Sicherheit (translated:
Measuring it-security),” K&R, vol. 2023, no. 12, pp. 781–786, 12 2023.

[44] F. Corno, L. D. Russis, and J. P. Sáenz, “How is open source software
development different in popular IoT projects?” IEEE Access, vol. 8, pp.
28 337–28 348, 2020. Online: https://api.semanticscholar.org/CorpusID:
211227160

[45] M. Loghi, T. Margaria, G. Pravadelli, and B. Steffen, “Dynamic
and formal verification of embedded systems: A comparative survey,”
International Journal of Parallel Programming, vol. 33, pp. 585–611,
2005. Online: https://api.semanticscholar.org/CorpusID:22718479

[46] T. Kölnberger, Evaluation of effects of security metrics in the software
development life cycle. Hagen: Masterthesis, FernUniversität in Hagen,
April 2025.

[47] OWASP. SAMM model overview. OWASP. Online: https:
//owaspsamm.org/model/

[48] C. Binder, Entwurf einer Metrik zur Bewertung des IT-Sicherheitsniveaus
am Beispiel von Webanwendungen (translated: Design of a metric to
measure the IT security level of web applications). Hagen: Masterthesis,
FernUniversität in Hagen, February 2024.

[49] S. Reckhaus, IT-Sicherheit und Kosten-Nutzen Analyse von Cyber-
Versicherungen (Translated: IT-security and cost-effect analysis of cyber
insurance). Hagen: Masterthesis, FernUniversität in Hagen, 02 2016.

[50] D. Wuttig, IT-Sicherheitsprüfung im Internet of Medical Things (Trans-
lated: IT-security testing in the Internet of Medical Things). Hagen:
Masterthesis, FernUniversität in Hagen, 08 2022.

[51] CISA. (2025) Contec Health CMS8000 patient monitor (Update A).
Accessed 2025.03.09. Online: https://www.cisa.gov/news-events/ics-
medical-advisories/icsma-25-030-01

[52] A. Taivalsaari and T. Mikkonen, “A roadmap to the programmable
world: Software challenges in the IoT era,” IEEE Software, vol. 34, pp.
72–80, 2017. Online: https://api.semanticscholar.org/CorpusID:6751128

[53] ——, “On the development of IoT systems,” 2018 Third International
Conference on Fog and Mobile Edge Computing (FMEC), pp. 13–19,
2018. Online: https://api.semanticscholar.org/CorpusID:44147446

[54] N. Alhirabi, O. F. Rana, and C. Perera, “Security and Privacy
Requirements for the Internet of Things,” ACM Transactions
on Internet of Things, vol. 2, pp. 1 – 37, 2021. Online:
https://api.semanticscholar.org/CorpusID:231730970

[55] M. Klı́ma et al., “Selected code-quality characteristics and metrics for
Internet of Things systems,” IEEE Access, vol. PP, pp. 1–1, 2022.
Online: https://api.semanticscholar.org/CorpusID:248517759

[56] S. S. Ismail and D. W. Dawoud, “Software development models
for IoT,” 2022 IEEE 12th Annual Computing and Communication
Workshop and Conference (CCWC), pp. 0524–0530, 2022. Online:
https://api.semanticscholar.org/CorpusID:247230583

[57] J. P. Dias and H. S. Ferreira, “State of the software development
life-cycle for the Internet-of-Things,” ArXiv, vol. abs/1811.04159, 2018.
Online: https://api.semanticscholar.org/CorpusID:53282492

[58] X. Larrucea, A. Combelles, J. Favaro, and K. Taneja, “Software
engineering for the Internet of Things,” IEEE Software, vol. 34, no. 1,
pp. 24–28, Jan 2017.

[59] S. Motogna, A. Vescan, and C. Şerban, “Empirical investigation
in embedded systems: Quality attributes in general, maintainability

in particular,” J. Syst. Softw., vol. 201, no. C, Jul. 2023. Online:
https://doi.org/10.1016/j.jss.2023.111678

[60] M.-C. Müller, Konzeption eines ganzheitlichen, die IT- und funktionale
Sicherheit unter berücksichtigenden IoT-Entwicklungsansatzes (Trans-
lated: Concept for a holistic IoT development approach including IT and
functional security). Hagen: Masterthesis, FernUniversität in Hagen,
06 2018.

[61] CVE.org. (2019) Cve-2019-9191. Accessed 2025.03.09. Online:
https://www.cve.org/CVERecord?id=CVE-2019-9191

[62] M. Morgenstern, O. Pursche, and E. Clausing, “Die Sicherheitslage
im IoT-Umfeld: Steigende Gefahrenlage und Sicherheit durch Tests
(translated: The state of security in IoT: Increased risks and security by
testing,” Datenschutz und Datensicherheit - DuD, vol. 45, pp. 102–106,
02 2021.

[63] BSI. (2022) Consumer IoT. Accessed 2025.03.09. Online: https:
//www.bsi.bund.de/DE/Themen/Unternehmen-und-Organisationen/
Standards-und-Zertifizierung/Consumer-IoT/Consumer-IoT.html

[64] F. Deusch and T. Eggendorfer, “Update IT-Sicherheitsrecht 2021/2022
(translated: Update IT-security-law 2021/2022),” K&R, vol. 2022, no. 12,
pp. 794–803, 2022.

[65] ——, “Update IT-Sicherheitsrecht 2022/2023 – Teil 2 (translated: Update
IT-security-law 2022/2023 part 2),” K&R, vol. 2024, no. 4, pp. 242–248,
4 2024.

[66] R. Petrlic. (2025) Remarks on the OLG
Schleswig-Decission (Annoucement). Accessed 2025.03.09.
Online: https://www.linkedin.com/posts/petrlic datenschutz-dsgvo-
cybersicherheit-activity-7294652352156897280-QMjx/

[67] R. Petrlic and J. Zwerschke, “OLG Schleswig: Ende-zu-Ende-
Verschlüsselung ist nach der DSGVO im Geschäftsverkehr regelmäßig
erforderlich (translated: OLG Schleswig: End-to-end encryption is a
requirement in business communications according to gdpr).”

[68] N. Härting. (2025) Gefährdungshaftung aus Art. 32 DSGVO
– OLG Schleswig verirrt sich in die DSGVO und bezeichnet
Papier als “Mittel der Wahl” (translated: Liability based on Art.
32 GDPR - OLG Schleswig getting lost in the GDPR and
suggesting paper as means of choice). Accessed 2025.03.09. Online:
https://www.pingdigital.de/blog/2025/03/03/gefaehrdungshaftung-aus-
art-32-dsgvo-olg-schleswig-verirrt-sich-in-die-dsgvo-und-bezeichnet-
papier-als-mittel-der-wahl/2528

[69] F. Deusch and T. Eggendorfer, “Verschlüsselte Kommunikation im Un-
ternehmensalltag: Nicetohave oder notwendige Compliance? (translated:
Encrypted communications in day-to-day business: Nice-to-have or
required compliance),” K&R, vol. 2018, no. 04, pp. 223–230, 04 2018.

[70] EU. (1993) Council Directive 93/68/EEC of 22 July 1993. Accessed
2025.03.09. Online: https://eur-lex.europa.eu/legal-content/EN/TXT/
HTML/?uri=CELEX:01993L0068-19980812

[71] F. Gronkvis. (2023) What is fake CE marking? Accessed 2025.03.09.
Online: https://www.compliancegate.com/fake-ce-marking/

[72] F. Deusch and T. Eggendorfer, “Penetrationstest bei Auftragsverarbeitung
(translated: Penetration test with processors),” K&R, vol. 2018, no. 04,
pp. 223–230, 04 2018.

ACKNOWLEDGEMENTS

The authors like to thank the reviewers for their valuable and
useful comments that were helpful in improving and clarifying
the paper.

31Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

https://api.semanticscholar.org/CorpusID:271709982
https://api.semanticscholar.org/CorpusID:271709982
http://www.openbsd.org/security.html
http://www.openbsd.org/security.html
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/1743546.1743574
https://sel4.systems/
https://sel4.systems/
https://api.semanticscholar.org/CorpusID:211227160
https://api.semanticscholar.org/CorpusID:211227160
https://api.semanticscholar.org/CorpusID:22718479
https://owaspsamm.org/model/
https://owaspsamm.org/model/
https://www.cisa.gov/news-events/ics-medical-advisories/icsma-25-030-01
https://www.cisa.gov/news-events/ics-medical-advisories/icsma-25-030-01
https://api.semanticscholar.org/CorpusID:6751128
https://api.semanticscholar.org/CorpusID:44147446
https://api.semanticscholar.org/CorpusID:231730970
https://api.semanticscholar.org/CorpusID:248517759
https://api.semanticscholar.org/CorpusID:247230583
https://api.semanticscholar.org/CorpusID:53282492
https://doi.org/10.1016/j.jss.2023.111678
https://www.cve.org/CVERecord?id=CVE-2019-9191
https://www.bsi.bund.de/DE/Themen/Unternehmen-und-Organisationen/Standards-und-Zertifizierung/Consumer-IoT/Consumer-IoT.html
https://www.bsi.bund.de/DE/Themen/Unternehmen-und-Organisationen/Standards-und-Zertifizierung/Consumer-IoT/Consumer-IoT.html
https://www.bsi.bund.de/DE/Themen/Unternehmen-und-Organisationen/Standards-und-Zertifizierung/Consumer-IoT/Consumer-IoT.html
https://www.linkedin.com/posts/petrlic_datenschutz-dsgvo-cybersicherheit-activity-7294652352156897280-QMjx/
https://www.linkedin.com/posts/petrlic_datenschutz-dsgvo-cybersicherheit-activity-7294652352156897280-QMjx/
https://www.pingdigital.de/blog/2025/03/03/gefaehrdungshaftung-aus-art-32-dsgvo-olg-schleswig-verirrt-sich-in-die-dsgvo-und-bezeichnet-papier-als-mittel-der-wahl/2528
https://www.pingdigital.de/blog/2025/03/03/gefaehrdungshaftung-aus-art-32-dsgvo-olg-schleswig-verirrt-sich-in-die-dsgvo-und-bezeichnet-papier-als-mittel-der-wahl/2528
https://www.pingdigital.de/blog/2025/03/03/gefaehrdungshaftung-aus-art-32-dsgvo-olg-schleswig-verirrt-sich-in-die-dsgvo-und-bezeichnet-papier-als-mittel-der-wahl/2528
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:01993L0068-19980812
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:01993L0068-19980812
https://www.compliancegate.com/fake-ce-marking/

	Introduction
	IoT and embedded security – Fixing issues
	Lateral movement
	Motivation for IoT and embedded security metrics
	Structure of this paper

	Background
	Embedded Devices, IoT, firm- and software
	IT security in general
	Typical security issues in IoT and embedded devices
	Prevention of security issues
	Relation between software quality management and security
	Measuring software quality
	Standards
	Formal Verification
	Current concepts
	Bill of Materials
	Static measures
	Conclusion

	Measuring software security

	Application to embedded and IoT
	Differences in software development
	Related Work
	Quality assurance

	Suggested legislative support
	The need of a security metric in a legal context
	Economic impact
	Labelling
	Mandatory Testing
	Life cycle

	Conclussion and future work
	References

