
Kosmosis: Crypto Rug Pull Detection and Prevention by
Fusing On- and Off-Chain Data in a Knowledge Graph

Philipp Stangl∗ and Christoph P. Neumann†

∗Department of Computer Science
Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany

e-mail: philipp.stangl@fau.de
†Department of Electrical Engineering, Media and Computer Science

Ostbayerische Technische Hochschule Amberg-Weiden, Amberg, Germany
e-mail: c.neumann@oth-aw.de

Abstract—Rug pulls have become a major threat to the integrity
of blockchain ecosystems, with illicit activities surging and result-
ing in significant financial losses. Existing approaches to prevent
rug pulls focus on transaction graph analysis within blockchain
networks, but these methods are limited. We propose Kosmosis,
an incremental knowledge graph construction approach that
integrates semantically-enriched blockchain data with social media
insights into a unified knowledge graph to identify and prevent
rug pulls. We demonstrate how Kosmosis can extract semantic
information from blockchain transactions using the application
binary interface to decode smart contract interactions and tag
addresses based on their extracted relationships. We provide a
technical description of the knowledge graph construction process,
highlighting key components, such as address relation extraction,
tagging, and entity resolution. Our research aims to provide a
more comprehensive understanding of blockchain ecosystems and
contribute to the development of robust anti-fraud measures.

Keywords-blockchain; knowledge graphs; cyber fraud; rug pull;
security; smart contracts.

I. INTRODUCTION

Crypto assets use distributed ledger technology, like block-
chain, as decentralized transaction ledger and for proof of
ownership. Different types exist, each with unique roles: 1)
Cryptocurrencies, like Bitcoin, function as digital currencies for
storing or transferring value. 2) Fungible tokens are interchange-
able tokens with various utilities in blockchain ecosystems,
often crucial in Decentralized Finance (DeFi) protocols. 3)
Non-Fungible Tokens (NFTs), in contrast, are unique digital
assets proving ownership and authenticity, holding distinct
values and cannot be exchanged on a one-to-one basis with
other tokens.

In recent years, illicit activities in crypto have surged.
Chainalysis reported a record $20.6 billion in illicit transactions
in 2022 [1]. Since the rise of DeFi in 2020 and NFTs in 2021,
rug pulls have become a major fraud scheme [2], threatening
investors and integrity of the crypto asset sector.

The primary method for detecting fraudulent activity is
transaction graph analysis within blockchain networks [34].
However, this approach has two key limitations. First, trans-
acting parties are pseudonymous, with only their blockchain
addresses publicly visible. Tracking an address is possible,
but linking it to a real-world entity is challenging, as the

analysis is restricted to observable blockchain data. Second, this
method focuses only on asset type, quantity, and sender/receiver,
ignoring transaction semantics, such as what happened in a
transaction that caused the assets to get transferred, is not
covered, thus, limiting the depth of analysis.

Knowledge Graphs (KGs) can integrate fragmented knowl-
edge from diverse data sources, enabling semantic queryingand
reasoning. They offer a holistic view for detecting fraud patterns
in highly connected datasets [5]. A KG consists of uniquely
identified entities and their semantical relations, structured
ontologically. Their open-world assumption allows continuous
data integration, enhancing crypto asset fraud analysis and
fraud prediction.

The remainder of this paper provides a technical perspective
on the Kosmosis approach to incremental KG construction,
complementing its use case outlined in Section II in extension to
[6]. The use case focuses on detecting and preventing rug pulls,
a threat relevant across various blockchain platforms, with our
prototype specifically targeting the Ethereum blockchain due
to its widespread adoption. To support this objective, we first
provide background information on the Ethereum blockchain
and graph-based blockchain data mining methods in Section III.
We then describe the Kosmosis approach to incremental KG
construction in Section IV, emphasizing the pipeline that serves
as the foundation for the detection phase of the use case. Finally,
we outline future work in Section V and conclude the paper
with a discussion of our findings.

II. KOSMOSIS OBJECTIVES & USE CASE

To illustrate the vision of Kosmosis-enabled rug pull pre-
vention methods, we described a hypothetical user story about
homer_eth in [6]. The user story method of use case illustration
was adopted from our previous work in [7]. Kosmosis aims to
leverage a KG to enhance security in blockchain ecosystems
by identifying and alerting users before they interact with
fraudulent projects.

A. Over-Aching Objectives of Kosmosis

Objective 1: Identifying and Alerting Users of Rug Pulls.
With rising crypto scams, Kosmosis seeks to integrate block-

1Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

https://orcid.org/0009-0007-4179-2365
https://orcid.org/0000-0002-5936-631X

chain data, social media, and other KGs into a unified KG.
This facilitates semantic querying and reasoning, enabling
the development of alerting methods based on cross-domain
semantic analysis—where knowledge about on-chain behaviors
and social media interactions can be correlated—to detect
anomalous patterns and assign addresses with a risk score.

Objective 2: Incremental Construction of the KG. To
maintain high data freshness, Kosmosis requires a pipeline for
integrating updates without full reconstruction. This ensures the
integration of the latest available information while preserving
existing data.

Objective 3: Extracting Blockchain Transaction Semantics.
Transaction graphs typically show asset transfers but lack
semantic insights. Kosmosis extracts transaction semantics by
decoding smart contract interactions using their Application
Binary Interface (ABI), which aids in detecting sophisticated
fraudulent behavior. At present, our prototype specifically
targets the account-based transaction model, as implemented
in Ethereum. Expanding the framework to other blockchains
employing different accounting models, such as UTXO-based
systems, is a future objective.

B. Summary of the Kosmosis Use Case of Rug Pull Prevention

In our position paper [6], a hypothetical user, Bob, who
is relatively new to the NFT market, illustrates Kosmosis’
potential for rug pull prevention. A rug pull is a scam where
victims authorize fraudulent transactions. According to [2], rug
pulls occur in five stages: 1) project creation, 2) pre-mint hype,
3) token price setting, 4) accumulation of capital, and 5) exit
scam. The use case is based on the true story of the threat actor
Homer_eth, an NFT creator and X user, who launched his first
NFT collection, Ether Bananas, followed by the release of
Ether Monkeys and Zombie Monkeys.

Of these three NFT collections, Ether Monkeys created the
biggest medial buzz, because it promised additional utility
through a casino to gamble and a decentralized autonomous
organization to govern the NFTs, according to [8]. This buzz
draws Bob into the fray. Bob bought his first NFT from
Homer_eth and became an active participant in Homer_eth’s
growing community. Bob’s involvement in the community
deepened over time. He engaged in discussions, shared his
excitement with fellow members, and earned himself a whitelist
spot that allows Bob to mint the upcoming NFT project Ether
(ETH) Banana Chips by Homer_eth. Convinced of its potential,
Bob minted the NFT when the opportunity arose, unaware of
the underlying risks associated with his investment.

Unbeknownst to Bob, the proceeds from the mint were not
locked within the smart contract for future development, as
initially promised. Instead, these funds were directly transferred
to the deployer address associated with Homer_eth. Subse-
quently, Homer_eth either redirected these proceeds to a new
deployer address—potentially to facilitate a future fraudulent
scheme, or transferred them to an exchange to realize profits
from previous deceptive activities. Following the launch of
ETH Banana Chips, the community experienced a prolonged
period of uncertainty, marked by an absence of updates or

communication from Homer_eth. For several months, no new
developments were reported, leaving stakeholders uncertain
about the project’s trajectory. It was not until March 2022 that
Homer_eth resurfaced, announcing a final NFT project, titled
Froggy Frens. However, due to backlash from the community,
Homer_eth deleted his X account and vanished [8].

C. Kosmosis Extension

Kosmosis identifies potential rug pulls by semantically
analyzing transaction patterns encoded within smart contract
interactions and cross-referencing blockchain addresses with
real-world entity data from social media and other external
sources. Our approach is grounded in the assumption that scam-
mers publicly disclose or explicitly link blockchain addresses
in their social media posts to promote their scams. This linkage
is crucial for Kosmosis, as it provides the primary method of
associating blockchain transactions with social identities, which
enhances the semantic richness of the constructed KG.

The detection logic within the KG evaluates transactions that
involve high-risk state changes, such as bulk asset transfers
shortly after a token mint event, and assigns risk scores based
on the presence of correlated indicators (e.g., rapid withdrawal
to external accounts controlled by the deployer). These risk
scores can trigger automated alerts before submitting a new
transaction, providing timely warnings to users. Had Bob used
Kosmosis, it would have analyzed the transaction history prior
to submitting his mint transaction to Ethereum. The system
would have issued a rug pull warning based on patterns of
fund diversion to deployer addresses.

III. BACKGROUND

This section covers background on rug pulls and blockchain
technology, with a particular focus on the Ethereum blockchain,
as detailed in Section III-A. Following the blockchain aspects,
we discuss related graph-based approaches for blockchain
data mining in Section III-B. On the social media aspects
of Kosmosis, our prior work includes correlating Reddit data
with traditional stock market trends [9] and analyzing Twitter/X
data using SPARQL [10].

A. The Ethereum Blockchain

Blockchain technology is founded on the principles of
immutability, decentralization, transparency, and cryptographic
security, and it has been applied across various domains in
recent years. For example, it has been utilized in the financial
sector (e.g., [11]), as well as in supply chain management, either
through a single blockchain [12] or by leveraging multiple
interoperable blockchains [13]. A significant subset of block-
chain technology is smart contract platforms, which facilitate
the development of decentralized applications through self-
executing smart contracts. This section provides an overview of
the key concepts of Ethereum as a representative smart contract
platform. It covers fundamental aspects such as smart contracts,
their execution environment, and the account-based transaction
model, which are essential for the subsequent sections.

2Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

1) Blockchain Data Structure: A blockchain is a data
structure whose elements called blocks are linked together
to form a chain of blocks [14]. Each block comprises two
parts: a body and a header. The body of the block contains a
set of transactions. A transaction typically involves the transfer
of assets between a sender and a receiver. These participants
are represented by addresses, which are unique alphanumeric
strings that clearly specify the origin and destination of each
transaction. Further, the block body is used to generate a unique
identifier called the block hash. The block header contains a
reference to the unique identifier of its immediate predecessor,
known as the parent block.

2) Smart Contracts: Through smart contacts, which are
executable source codes that enforce the terms and conditions of
particular agreements, a smart contract platform like Ethereum
facilitates the development of decentralized applications [15].
Once deployed on the blockchain, the smart contract is assigned
an address where the code resides and cannot be altered or
tampered with. By writing custom smart contracts, developers
can create and manage tokens that adhere to the standards
ERC-20 for Fungible Token (FT) or ERC-721 for NFT. An
ABI specifies the functions and data structures exposed by
a smart contract, allowing external applications to understand
the capabilities of the contract. Further, an ABI defines a format
for encoding and decoding data that is passed between smart
contracts and external applications. This ensures a consistent
and standardized way to exchange information.

The Ethereum blockchain manages ETH as the native
cryptocurrency of the platform. It operates with the Ethereum
Virtual Machine (EVM) as a fundamental building block,
serving as the execution environment for smart contract code.
Smart contracts, primarily written in a high-level language
such as Solidity, undergo compilation into EVM bytecode.
This bytecode is the executable format used by the EVM to
enact smart contract functions. To interact with this bytecode,
a contract ABI is utilized, which acts as a bridge between the
high-level language and the low-level bytecode. In this context,
an EVM disassembler plays a crucial role; it reverses the
bytecode back into a more readable format, aiding developers
in understanding and analyzing the code deployed on the
Ethereum blockchain. Figure 1 shows the processes involved
in deploying smart contracts to the Ethereum blockchain
and reading contract data from it, including compilation
and deployment steps, and the interaction between a web
application and the Ethereum blockchain. The left side shows
the compilation and deployment of a smart contract, and the
right side depicts an interaction with the contract (e.g., from a
web application).

3) Externally Owned Account: Unlike smart contracts,
Externally Owned Accounts (EOAs) are controlled by real-
world entitys through private keys, enabling them to initiate
transactions, such as transferring crypto assets or executing
functions of a smart contract. When an EOA sends a transaction
to a smart contract, it triggers the code of the contract to execute
according to its predefined rules.

4) Account-based Accounting: For the record-keeping of
transactions, blockchains utilize an accounting model. Com-
pared to other blockchains, such as the equally well-known
Bitcoin blockchain that uses the Unspent Transaction Output
(UTXO) model, or its successor the extended UTXO [17]
utilized by the Cardano blockchain, whereas Ethereum employs
the account-based accounting model.

The account-based model can be best understood through
the analogy of a bank account. This approach mirrors how
a banking account operates. Like a bank account that tracks
the inflow and outflow of funds, thereby reflecting the current
balance, the account-based model in Ethereum maintains a
state that records the balance of Ether. Thus, it is inherently
stateful. Each transaction results in a direct adjustment to this
balance, akin to a deposit or withdrawal in a bank account.
This model’s stateful nature ensures that at any given moment,
the system can accurately reflect the total amount of Ether
held in each account, offering an up-to-date view of account
balances within Ethereum.

5) Token Minting: Token minting refers to the process of
generating new tokens. Fungible tokens are typically minted
by their creator either at the project’s launch or gradually
over time. This issuance is governed by predefined rules or
algorithms embedded within the project’s smart contracts.

The minting of NFTs involves participants other than the
original token creator, commonly known as token minters.
These individuals engage in the process by invoking a specific
function within a smart contract, designated as mint in the
ERC-721 token standard. Executing this function results in an
increase in the total supply of NFTs while simultaneously
assigning the newly minted tokens to the blockchain address
of the minter.

The minting process for NFTs is frequently facilitated
through a dedicated minting platform. Prospective minters or
investors must contribute a predefined amount, as determined
by the creator, to initiate the minting process. This contribution
enables them to mint one or multiple NFTs, depending on the
stipulations outlined in the smart contract. Beyond enabling the
creation of new NFTs, this process also serves as a mechanism
for directly transferring ownership from the NFT creator to
the NFT minter.

B. Rug Pull Detection Methods

This section examines two main approaches used for rug
pull detection: smart contract code analysis and graph-based
methods. Smart contract code analysis entails a comprehensive
examination of a contract’s source code to extract and interpret
the semantic behavior of transactions. For instance, [18]
leverages this approach to uncover potential vulnerabilities
and fraudulent patterns within smart contracts. Their proposed
method, “Tokeer,” systematically dissects the code to identify
suspicious patterns and functions that may indicate a predispo-
sition to rug pull schemes.

Graph-based techniques, on the other hand, leverage graph
theory and data mining to analyze blockchain network graphs,
as blockchain transactions naturally form graphs [19]. Elmougy

3Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

and Liu [20] describe three graph types for blockchain networks:
money flow transaction graphs (representing how asset flow
over time), address-transaction graphs (showing asset flow
across transactions and addresses), and user entity graphs
(clustering addresses potentially controlled by the same user to
deanonymize them). Graph-based rug pull detection often uses
network embedding techniques, such as graph convolutional
networks (e.g., [21]), to automatically extract features from
the blockchain network.

IV. THE KOSMOSIS APPROACH TO INCREMENTAL
KNOWLEDGE GRAPH CONSTRUCTION

To incrementally construct a KG that integrates data in
a continuous and periodic way, we propose a multi-stage
pipeline, as illustrated in Figure 2. It originated from a
master’s thesis [22] and consists of three stages: Data ingestion,
data processing, and knowledge storage. We use italics to
emphasize on conceptual aspects and typewriter text for
technical operations.

The initial stage, data ingestion, captures the raw data from
the primary data sources (blockchain and social media) as well
as enrichment data sources (e.g., another knowledge base). This
phase is characterized by its versatility in the frequency of
data acquisition: it can be 1) continuous, to capture real-time
updates from sources such as blockchain nodes, 2) incremental
for new posts via the X Streaming Application Programming
Interface (API), 3) periodic, to capture new entries in structured
data sources like relational databases at regular intervals, or 4)
event-based, responding to events that are emitted upon new
entity additions to the KG.

Following the ingestion stage, the data processing stage is
initiated, which is partitioned into distinct workflows tailored
to handle each type of ingested data. This segmentation allows
for specialized processing depending on the structure of the
raw data. For instance, for text data sources, natural language
processing techniques, such as named entity recognition [23],

can be used to ensure that the data is accurately interpreted,
and contextual relationships are discerned.

In the third and final stage, the refined data is loaded into
the knowledge storage, where it is systematically organized
within a triplestore, a type of database optimized for storing
and retrieving data in Resource Description Framework (RDF)
format. The triplestore can then be used for semantic querying
capabilities to extract actionable insights from the KG for
downstream processes. For the KG, we use the EthOn [24]
ontology that formalizes the concepts and relations within the
domain of the Ethereum network and blockchain. EthOn is
written in RDF and Web Ontology Language (OWL).

A. Blockchain Data Processing

The blockchain data processing workflow continuously
ingests new transactions from the blockchain via websocket con-
nections. Websockets enable open, interactive communication
sessions between a client and a server, facilitating real-time data
transfer without the need for repeated polling. Upon receiving
these transactions, the workflow processes and integrates them
into the KG by first extracting the address relationship, followed
by tagging the addresses, and finally fusing the addresses with
the entities of the KG.

1) Address Relation Extraction: In order to provide answers
to “why” and “how” assets were transferred in a transaction,
Kosmosis implements a pipeline module titled Address Relation
Extraction. The responsibility of this module is to extract
the semantic information in a blockchain transaction through
decoding the input data of a transaction using the ABI of the
smart contract a blockchain address is interacting with.

First, the ABI is requested from Etherscan [25] and Sourcify
[26] via their respective REST APIs. If the ABI cannot be
successfully fetched from one of the aforementioned sources,
the module resorts to reconstructing the ABI from the smart
contract byte code, which is available at any time since the
bytecode is deployed on the blockchain. This operation enables

IDE/
Front-end

Ethereum
VM

Ethereum
Blockchain

1. Compile

Solidity Source Code

ABI

2. Deploy

Bytecode Opcodes

Block
n

Web Application

4. Decode

ABIBytecode

3. Receive

Block
n+i

Deploying Contracts to Ethereum Reading Contract Data from Ethereum

Figure 1. Schematic representation of deploying and reading from smart contracts. Adapted from Takeuchi [16].

4Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

Legend: Data Flow Knowledge Extraction StepLoad Subgraph

Triplestore

Address Relation
Extraction

Knowledge Storage

Attributions
Database

(structured data)

Enrichment Data Sources

Golden Knowledge Graph API
(structured data)

Primary Data Sources

Data Ingestion

Address TaggingWebsocket
(continuously)

Text
Entity Resolution

Relation
Extraction

Named Entity
Recognition

Attributions
Entity Resolution

Golden Entity
Resolution

Blockchain
Entity Resolution

X Filtered Stream API
(unstructured data)

HTTP Requests
(incrementally)

RDBMS Client
(periodically)

HTTP Requests
(event-driven)

Connector

Data Processing

Blockchain Node
(semi-structured

data)

Knowledge Processing Step

Figure 2. A high level overview of the Kosmosis pipeline.

the decoding of transactions and the interaction with smart
contracts beyond their compiled state.

The initial step involves the disassembly of the bytecode
of the smart contract. This operation, referred to as DISASM,
decomposes the bytecode into a series of readable opcodes and
associated data. Disassemblers (e.g., pyevmasm [27]) facilitate
this step by translating the bytecode back into a form that
represents the original instructions and operations defined
within the smart contract.

Following disassembly, the algorithm initializes by creating
an empty array intended to store the ABI and defining lists of
opcodes that either change the state or read from the state of
the blockchain. These opcodes include SSTORE, CREATE, CREATE2 for
state-changing operations, and SLOAD for state-reading operations,
reflecting the fundamental actions a smart contract on the EVM
can perform [11].

The core of the algorithm iterates over selector/offset pairs
within the disassembled bytecode. Selectors serve as identifiers
for functions in the EVM, facilitating the mapping to the
corresponding functionality. If a given offset does not match any
destination within the program’s destinations, the iteration skips
to the next pair, ensuring only valid functions are considered.

Upon finding a valid function destination, the algorithm
retrieves the function definition and assigns tags based on its
behavior. This tagging process involves analyzing the opcodes
contained within the function and any related jump destinations.
The purpose is to categorize functions according to how they
alter the blockchain state, using a depth-first search algorithm
to navigate through the function call graph.

An AbiFunction object is then created for each valid function,
with its payable status determined inversely by the presence of
a notPayable marker at the corresponding offset. The algorithm
next assigns mutability attributes (nonpayable, payable, view,
or pure) based on whether the function alters state, reads state,
or neither. This classification is crucial for understanding how
functions interact with the blockchain and their implications
on transaction costs and permissions.

Finally, the algorithm decides on the inclusion of inputs and
outputs in the function signature, informed by the presence
of specific tags. For instance, tags indicating data retrieval or
state mutation influence whether parameters are classified as
inputs or outputs. This granular control ensures that the ABI
accurately reflects the interface of the smart contract, allowing
for effective transaction decoding.

Currently, the method for extracting semantic information
from smart contract transactions relies partly on predefined
heuristics, such as recognizing specific function names like
“mint.” However, we acknowledge that scammers could circum-
vent these simplistic heuristics by obfuscating or renaming
functions. Future improvements will incorporate advanced
transaction pattern analysis rather than function naming alone,
enhancing resilience against simple obfuscation techniques.

2) Address Tagging: Since the exact identity of a real-world
entity controlling a blockchain address is often unknown, it
can still be categorized and tagged accordingly. The address
tagging module tags the sender and receiver address based on
their extracted relationship from the preceding address relation
extraction module. For instance, an EOA deploying a smart

5Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

contract is tagged as deployer in case of a contract creation
transaction. Likewise, if an EOA is sending Ether to an NFT
contract T via a contract function containing the word “mint,”
the EOA is tagged as is tagged as NFT minter of T . Tags
are subclasses of EOAs and contract accounts, extending the
address concept of the EthOn ontology.

3) Blockchain Entity Resolution: The blockchain entity
resolution module is responsible for resolving blockchain
addresses to either new entities or existing ones in the KG, by
using the extracted information from preceding steps. It begins
with mapping the result data from the preceding steps into the
RDF format, adhering to the ontology defined by the KG. This
ensures that the data is structured in a way that is compatible
with the KG’s existing schema.

Following the mapping to RDF, the next phase involves
fusing this RDF data with the KG. This is accomplished
through a two-step process. Initially, a subgraph that is relevant
to the processed data is loaded into the system. This step,
commonly referred to as “blocking,” narrows down the scope
of the resolution process to the most relevant segments of the
KG, thereby enhancing the entity resolution process.

Subsequently, the system proceeds to match the newly
processed data with the corresponding entities within the KG.
This matching process is crucial for identifying where the
new data fits within the existing structure and for ensuring
that it is integrated in a meaningful way. In certain cases,
the fusion process may also involve the clustering of entities.
This is particularly relevant for blockchain data, where unique
characteristics of the data can be leveraged to enhance the
integration process.

For instance, when dealing with blockchains that utilize an
account-based accounting model, address clustering heuristics
can be employed to further refine the fusion process. One such
heuristic is the deposit address reuse, as proposed by Victor
[28]. Kosmosis uses deposit address reuse for blockchain data
from Ethereum to resolve entities more effectively.

B. Text Processing

The workflow starts with the input of unstructured data
from the X Filtered Stream API [29], which is incrementally
streamed and parsed via a long-lived HTTP request into the
pipeline. The first step in processing this data is named entity
recognition, where the system identifies and classifies named
entities present in the text into predefined categories, such as
the names of persons, organizations, and locations.

The next step is relation extraction. This process involves
identifying and extracting relationships between the named
entities that were previously recognized. For instance, it could
determine that a person named “Alice” works for a company
named “Acme.”

The final step in the text processing workflow is the entity
resolution, achieved through blocking and matching. For each
new entity, the system identifies all other entities within the
KG that need to be considered for matching. Considering the
growing size of the KG, through the incremental updates, it is
important to limit the matching process to as few candidates

as possible [30]. The method of limiting candidates is known
as blocking, which confines the matching process to entities
of the same or most similar entity type.

Following the blocking that serves as a preliminary filtering
step, the matching is performed. This involves a pairwise
comparison of the new entities with those existing entities in
the KG identified during the blocking phase. Its objective
is to identify all entities that are sufficiently similar and,
therefore, potential candidates for matching. This pairwise
comparison relies on a nuanced assessment of similarity that
encompasses both the properties of the entities and their
relational connections within the KG. By evaluating both
property values and the nature of relationships to other entities,
the system determines the degree of similarity between entities.

C. Enrichment Data Processing

Enrichment data enhances the data obtained from primary
data sources with supplementary context regarding real-world
entitys. Attributions involve the mapping of blockchain ad-
dresses to their corresponding real-world entities. This task is
largely dependent on data sourced from a network of experts,
such as team members from blockchain projects. The input
data for the attribution process is typically not consistent in
its timing, as it depends on when the experts provide updates
or when new information becomes available. As a result, the
enrichment data processing workflow is designed to operate at
regular intervals, ensuring that the KG is updated systematically
and remains as up-to-date as possible.

To further enrich the KG, data from external knowledge
bases is integrated. In our case, we use the Golden Knowledge
Graph due to its concentrated information on tech startups
and cryptocurrencies. This external graph offers a wealth
of information about crypto projects, including details about
their founders, team members, and project descriptions. Such
depth of data provides a valuable context that can significantly
improve the understanding of entities in the constructed KG.

The workflow for integrating knowledge from an external KG
is event-driven, activated once the knowledge storage indicates
the addition of new entities from the social media platform
X. Then, the workflow triggers a process to pull in additional
background information from the Golden Enrichment API [31].
It uses the X username that has been newly included in the
KG as unique identifier to fetch relevant data.

D. Quantity Structure of the Knowledge Graph Data

In our prototype implementation, data was ingested at rates
averaging 10-15 transactions per second (each averaging 5KB)
from Ethereum blockchain nodes and roughly 200 tweets
per minute (each averaging 2KB) from the X filtered stream
API. This combined ingestion rate corresponds approximately
between 3.4 to 4.9 MB per minute of raw data. Our prototype
runs on a standalone cloud server instance with 32 GiB RAM
and 8 vCPUs (AWS EC2 m5.2xlarge) with a 512GB SSD,
managing real-time data ingestion and processing workloads.
The semantic enrichment introduces minimal latency (less

6Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

than 5 seconds per transaction batch), thus allowing for near-
real-time KG updates. The KG constructed by Kosmosis
accumulates triples at an approximate rate of 2.5 to 6 million
triples per day, depending on transaction activity and the level
of detail extracted from social media.

While the described hardware configuration proved adequate
for prototype-level or small- to medium-scale deployments,
a production implementation aimed at analyzing multiple
blockchain networks or higher data volumes would necessitate
scaling to multiple compute nodes, each handling dedicated
tasks such as blockchain data ingestion.

V. CONCLUSION AND FUTURE WORK

In this paper, we demonstrated how to build a knowledge
graph from blockchain and social media data using the Kos-
mosis approach to incremental knowledge graph construction.
It complements our previous use case paper [6] that provided
a real-world example of how Kosmosis can detect fraudulent
activity, with a high-level technical discussion about the
Kosmosis pipeline.

In the exemplary scenario, a threat actor known as Homer_eth
executed five NFT project heists within two months, accumu-
lating over $2.8 million in profits. We summarized our user
story, in which Kosmosis provides a knowledge graph that
improves the detection of such fraudulent schemes. Kosmosis
fuses on- and off-chain data, thus, it becomes the basis for
semantic querying and reasoning over a graph of entities and the
relationships among them, facilitating analyses for cybercrime
and fraud prevention, with the current focus on rug pulls as a
major fraud scheme.

The initial findings of our research on Kosmosis have shown
promising results, indicating the potential of our approach in
identifying and preventing rug pulls. However, there are ample
improvement opportunities for Kosmosis in future work.

It will be necessary to refine the filters used in the ingestion
of data from the X Filtered Stream API. The current process
of data ingestion depends on the presence of direct links to
blockchain addresses in social media posts. For instance, the
ability to link the user Homer_eth with the EtherReapers smart
contract was solely facilitated by the explicit mention of the
smart contract address in Homer_eth’s announcement post on
X. This example underscores the limitations of the current
approach, which may overlook relevant connections in the
absence of direct references. Consequently, a more sophisticated
approach is required to ensure a broader and still relevant
dataset is captured to associate X users with their respective
blockchain addresses.

Additionally, the implementation of knowledge fusion, the
process of identifying true subject-predicate-object triples [32],
sourced from the blockchain and social media stands out as a
critical next step. By fusing multiple records representing the
same real-world entity into a single and consistent representa-
tion [33], knowledge fusion would allow for a more accurate
representation of real-world entitys in the knowledge graph.

Currently, our prototype is limited to blockchains utilizing the
account-based accounting model, like Ethereum. Recognizing

the diversity in blockchain architectures and their unique fea-
tures, we aim to allow for the integration of blockchains using
a different accounting system, like Bitcoin. This expansion
is essential for broadening the applicability and utility of
Kosmosis across different blockchain platforms.

In conclusion, the Kosmosis pipeline supports the ingestion
of unstructured, semi-structured, and structured data, as well as
the ingestion of new data at different time intervals. It supports
continuous ingestion in a stream-like fashion, incrementally,
periodically, or event-based ingestion. During construction, the
semantics of blockchain transactions are extracted to address
“why” and “how” crypto assets were transferred.

REFERENCES

[1] Chainalysis, “The 2023 crypto crime report,” Chainalysis, Feb.
2023, [Online]. Available: https://go.chainalysis.com/2023-
crypto-crime-report.html (visited on 01/31/2025).

[2] T. Sharma, R. Agarwal, and S. K. Shukla, “Understanding
rug pulls: An in-depth behavioral analysis of fraudulent nft
creators,” ACM Trans. Web, vol. 18, no. 1, Oct. 2023, ISSN:
1559-1131. DOI: 10.1145/3623376.

[3] A. Khan, “Graph analysis of the ethereum blockchain data: A
survey of datasets, methods, and future work,” in 2022 IEEE
International Conference on Blockchain (Blockchain), IEEE,
Espoo, Finland: IEEE, 2022, pp. 250–257.

[4] F. Béres, I. A. Seres, A. A. Benczúr, and M. Quintyne-Collins,
“Blockchain is watching you: Profiling and deanonymizing
ethereum users,” in 2021 IEEE International Conference
on Decentralized Applications and Infrastructures (DAPPS),
Online: IEEE, 2021, pp. 69–78. DOI: 10.1109/DAPPS52256.
2021.00013.

[5] X. Zhu et al., “Intelligent financial fraud detection practices in
post-pandemic era,” The Innovation, vol. 2, no. 4, 2021.

[6] P. Stangl and C. P. Neumann, “The Kosmosis Use Case of
Crypto Rug Pull Prevention by an Incrementally Constructed
Knowledge Graph,” in Proc of the 2nd Workshop on Data
Engineering for Data Science (DE4DS) in conjunction with the
21st Conference on Database Systems for Business, Technology
and Web (BTW’25), Bamberg, DE, Mar. 2025, forthcoming.

[7] C. P. Neumann and R. Lenz, “The alpha-Flow Use-Case
of Breast Cancer Treatment – Modeling Inter-Institutional
Healthcare Workflows by Active Documents,” in Proc of the
19th Int’l Workshops on Enabling Technologies: Infrastructures
for Collaborative Enterprises (WETICE 2010), Larissa, GR,
Jun. 2010, pp. 12–22. DOI: 10.1109/WETICE.2010.8.

[8] ZachXBT [@zachxbt], “Homer.eth (formerly @homer_eth) rug
pull analysis,” X, X Corp., May 26, 2022, [Online]. Available:
https://x.com/zachxbt/status/1529973318563946496 (visited on
12/05/2023).

[9] T. Bauer et al., “Reddiment: Eine SvelteKit- und ElasticSearch-
basierte Reddit Sentiment-Analyse,” German, Ostbayerische
Technische Hochschule Amberg-Weiden, Technische Berichte
CL-2022-06, Jul. 2022. DOI: 10.13140/RG.2.2.32244.12161.

[10] B. Hahn et al., “Twitter-Dash: React- und .NET-basierte Trend-
und Sentiment-Analysen,” German, Ostbayerische Technische
Hochschule Amberg-Weiden, Technische Berichte CL-2022-07,
Jul. 2022. DOI: 10.13140/RG.2.2.15466.90564.

[11] G. Wood, “Ethereum: A Secure Decentralised Generalised
Transaction Ledger,” (Ethereum project yellow paper), Parity
Technologies, 2024, [Online]. Available: https : / / ethereum .
github.io/yellowpaper/paper.pdf (visited on 01/29/2024).

[12] S. Wang, D. Li, Y. Zhang, and J. Chen, “Smart contract-based
product traceability system in the supply chain scenario,” IEEE
Access, vol. 7, pp. 115 122–115 133, 2019.

7Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

https://go.chainalysis.com/2023-crypto-crime-report.html
https://go.chainalysis.com/2023-crypto-crime-report.html
https://doi.org/10.1145/3623376
https://doi.org/10.1109/DAPPS52256.2021.00013
https://doi.org/10.1109/DAPPS52256.2021.00013
https://doi.org/10.1109/WETICE.2010.8
https://x.com/zachxbt/status/1529973318563946496
https://doi.org/10.13140/RG.2.2.32244.12161
https://doi.org/10.13140/RG.2.2.15466.90564
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf

[13] P. Stangl and C. P. Neumann, “FoodFresh: Multi-Chain Design
for an Inter-Institutional Food Supply Chain Network,” in Proc
of the 14th International Conference on Cloud Computing,
GRIDs, and Virtualization (Cloud Computing 2023), Nice,
France, Jun. 2023, pp. 41–46. DOI: 10.48550/arXiv.2310.19461.

[14] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An overview
of blockchain technology: Architecture, consensus, and future
trends,” in 2017 IEEE International Congress on Big Data
(BigData Congress), Boston, MA, USA: IEEE, 2017, pp. 557–
564. DOI: 10.1109/BigDataCongress.2017.85.

[15] O. Marin, T. Cioara, L. Toderean, D. Mitrea, and I. Anghel,
“Review of Blockchain Tokens Creation and Valuation,” Future
Internet, vol. 15, no. 12, p. 382, Nov. 27, 2023, ISSN: 1999-
5903. DOI: 10.3390/fi15120382.

[16] E. Takeuchi, “Explaining ethereum contract abi & evm byte-
code,” Medium, Jul. 16, 2019, [Online]. Available: https://
medium.com/@eiki1212/explaining-ethereum-contract-abi-
evm-bytecode-6afa6e917c3b (visited on 12/07/2023).

[17] M. M. Chakravarty et al., “The extended utxo model,” in
Financial Cryptography and Data Security: FC 2020 Interna-
tional Workshops, AsiaUSEC, CoDeFi, VOTING, and WTSC,
Kota Kinabalu, Malaysia, February 14, 2020, Revised Selected
Papers 24, Springer, 2020, pp. 525–539.

[18] Y. Zhou et al., “Stop pulling my rug: Exposing rug pull risks
in crypto token to investors,” 2024.

[19] H. Huang, W. Kong, S. Zhou, Z. Zheng, and S. Guo, “A
survey of state-of-the-art on blockchains: Theories, modelings,
and tools,” ACM Computing Surveys (CSUR), vol. 54, no. 2,
pp. 1–42, 2021.

[20] Y. Elmougy and L. Liu, “Demystifying fraudulent transactions
and illicit nodes in the bitcoin network for financial forensics,”
in Proceedings of the 29th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, ser. KDD ’23, Long
Beach, CA, USA: Association for Computing Machinery, 2023,
pp. 3979–3990. DOI: 10.1145/3580305.3599803.

[21] L. Chen et al., “Phishing scams detection in ethereum transac-
tion network,” ACM Trans. Internet Technol., vol. 21, no. 1,
Dec. 2020, ISSN: 1533-5399. DOI: 10.1145/3398071.

[22] P. Stangl, “Design and Implementation of an Incremental
Knowledge Graph Construction Pipeline for Investigating
Crypto Asset Fraud,” Masterarbeit, Ostbayerische Technische

Hochschule Amberg-Weiden, Apr. 2024. DOI: 10.5281/zenodo.
14518573.

[23] J. Li, A. Sun, J. Han, and C. Li, “A survey on deep learning for
named entity recognition,” IEEE Transactions on Knowledge
and Data Engineering, vol. 34, no. 1, pp. 50–70, 2020.

[24] J. Pfeffer, “Ethon: Ethereum ontology,” ConsenSys Software
Inc., Dec. 7, 2023, [Online]. Available: https://ethon.consensys.
io/ (visited on 12/07/2023).

[25] Etherscan, “Etherscan: The ethereum blockchain explorer,”
Etherscan LLC, Dec. 7, 2023, [Online]. Available: https : / /
etherscan.io/ (visited on 12/07/2023).

[26] Sourcify, “Sourcify: Source-verified smart contracts for trans-
parency and better ux in web3,” 2023, [Online]. Available:
https://sourcify.dev/ (visited on 12/07/2023).

[27] F. A. Manzano and J. Little, “Pyevmasm: Ethereum virtual
machine disassembler and assembler,” Crytic, 2024, [Online].
Available: https: / /github.com/crytic /pyevmasm (visited on
01/25/2024).

[28] F. Victor, “Address Clustering Heuristics for Ethereum,” in
Financial Cryptography and Data Security, J. Bonneau and
N. Heninger, Eds., vol. 12059, Cham: Springer International
Publishing, 2020, pp. 617–633, ISBN: 978-3-030-51279-8. DOI:
10.1007/978-3-030-51280-4_33.

[29] X Corp., “Filtered stream introduction,” X Corp., 2024,
[Online]. Available: https: / /developer. twitter.com/en/docs/
twitter - api / tweets / filtered - stream / introduction (visited on
01/25/2024).

[30] M. Hofer, D. Obraczka, A. Saeedi, H. Köpcke, and E. Rahm,
“Construction of Knowledge Graphs: State and Challenges,”
2023, eprint: 2302.11509 (cs.AI).

[31] Golden Recursion Inc., “Golden Enrichment API: Enrich re-
search, sales, and marketing with fresh, canonical knowledge.,”
Golden Recursion Inc., 2024, [Online]. Available: https : / /
golden.com/product/api (visited on 01/25/2024).

[32] X. L. Dong et al., “From data fusion to knowledge fusion,”
Proc. VLDB Endow., vol. 7, no. 10, pp. 881–892, Jun. 2014,
ISSN: 2150-8097. DOI: 10.14778/2732951.2732962.

[33] J. Bleiholder and F. Naumann, “Data fusion,” ACM Computing
Surveys, vol. 41, no. 1, pp. 1–41, Jan. 15, 2009, ISSN: 0360-
0300, 1557-7341. DOI: 10.1145/1456650.1456651.

8Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

https://doi.org/10.48550/arXiv.2310.19461
https://doi.org/10.1109/BigDataCongress.2017.85
https://doi.org/10.3390/fi15120382
https://medium.com/@eiki1212/explaining-ethereum-contract-abi-evm-bytecode-6afa6e917c3b
https://medium.com/@eiki1212/explaining-ethereum-contract-abi-evm-bytecode-6afa6e917c3b
https://medium.com/@eiki1212/explaining-ethereum-contract-abi-evm-bytecode-6afa6e917c3b
https://doi.org/10.1145/3580305.3599803
https://doi.org/10.1145/3398071
https://doi.org/10.5281/zenodo.14518573
https://doi.org/10.5281/zenodo.14518573
https://ethon.consensys.io/
https://ethon.consensys.io/
https://etherscan.io/
https://etherscan.io/
https://sourcify.dev/
https://github.com/crytic/pyevmasm
https://doi.org/10.1007/978-3-030-51280-4_33
https://developer.twitter.com/en/docs/twitter-api/tweets/filtered-stream/introduction
https://developer.twitter.com/en/docs/twitter-api/tweets/filtered-stream/introduction
2302.11509
https://golden.com/product/api
https://golden.com/product/api
https://doi.org/10.14778/2732951.2732962
https://doi.org/10.1145/1456650.1456651

	Introduction
	Kosmosis Objectives & Use Case
	Over-Aching Objectives of Kosmosis
	Summary of the Kosmosis Use Case of Rug Pull Prevention
	Kosmosis Extension

	Background
	The Ethereum Blockchain
	Blockchain Data Structure
	Smart Contracts
	Externally Owned Account
	Account-based Accounting
	Token Minting

	Rug Pull Detection Methods

	The Kosmosis Approach to Incremental Knowledge Graph Construction
	Blockchain Data Processing
	Address Relation Extraction
	Address Tagging
	Blockchain Entity Resolution

	Text Processing
	Enrichment Data Processing
	Quantity Structure of the Knowledge Graph Data

	Conclusion and Future Work

