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Abstract—The surge in Internet of Things (IoT) devices and
data generation highlights the limitations of traditional cloud
computing in meeting demands for immediacy, Quality of Service,
and location-aware services. Fog computing emerges as a solution,
bringing computation, storage, and networking closer to data
sources. This study explores the role of Deep Reinforcement
Learning in enhancing fog computing’s task offloading, aiming
for operational efficiency and robust security. By reviewing
current strategies and proposing future research directions, the
paper shows the potential of Deep Reinforcement Learning in
optimizing resource use, speeding up responses, and securing
against vulnerabilities. It suggests advancing Deep Reinforcement
Learning for fog computing, exploring blockchain for better
security, and seeking energy-efficient models to improve the
Internet of Things ecosystem. Incorporating artificial intelligence,
Our results indicate potential improvements in key metrics,
such as task completion time, energy consumption, and security
incident reduction. These findings provide a concrete foundation
for future research and practical applications in optimizing fog
computing architectures.

Keywords-fog computing; deep reinforcement learning; task
offloading; cybersecurity.

I. INTRODUCTION

In recent years, technological evolution has signific-
antly transformed communication and interaction paradigms,
primarily driven by advancements in smartphones and cloud
computing. Smartphones, with their pervasive presence, have
become the primary interface for Internet interaction, heavily
reliant on cloud computing’s power for data processing and
storage. This synergy has fuelled an exponential increase in
global mobile data traffic, highlighting the profound impact
of a dual-layer architecture, comprising end-user devices and
cloud environments. Simultaneously, the Internet of Things
(IoT) has emerged as a transformative force, reshaping hu-
man interaction with the physical world [1]. IoT’s pervasive
network of interconnected smart devices supports a plethora
of everyday tasks, promising revolutionary applications with
significant societal impacts. However, the high number of
IoT devices and the voluminous data they generate present
considerable challenges, particularly in meeting stringent re-
quirements like real-time responsiveness, Quality of Service
(QoS), and location-aware services [2]. The traditional cloud-

IoT architecture struggles under these demands, revealing lim-
itations in scalability, latency, and response times. While cloud
computing offers robust data processing capabilities, it often
falls short in addressing the unique requirements of IoT ap-
plications. This has led to the exploration of new architectures
and solutions, aiming to bridge the gap between IoT devices
and cloud computing processing power. Fog computing, a
paradigm shift, was endorsed by the NIST[3]through its ’Fog
Computing Conceptual Model. Fog computing emerges as
a critical enabler for overcoming these challenges, offering
a decentralized computing infrastructure. By processing data
closer to the edge of the network, where data is gener-
ated and collected, fog computing significantly reduces the
latency and bandwidth demands placed on the cloud. This
not only enhances the efficiency and quality of services but
also opens new avenues for real-time analytics, decision-
making, and intelligent task offloading [4]. The importance
of fog computing, as outlined by NIST, lies in its ability
to provide a scalable, responsive, and flexible computing
model, essential for the expansive and diverse ecosystem
of IoT. Fog computing does not replace cloud computing
but complements it, forming a multi-layered architecture that
leverages the strengths of both centralized and decentralized
approaches. This symbiosis is crucial for supporting the ever-
growing, dynamic demands of IoT applications, ensuring that
the digital transformation across sectors is both resilient and
sustainable. Thus, understanding and harnessing the potential
of fog computing becomes imperative for unlocking the full
promise of the IoT. In the realm of fog computing, task
offloading emerges as a pivotal strategy, especially for mobile
devices grappling with resource-intensive applications [5].
This process essentially relocates the execution of tasks from
local devices to the more robust resources of the fog or cloud.
However, this transition is not unproblematic. The decision
to offload involves careful considerations of time, energy,
security, and cost efficiency. The intricate balance between
local execution and cloud processing hinges on these factors,
underscoring the need for well-defined offloading policies.
Moreover, as modern services increasingly integrate artificial
intelligence, the sophistication and resource demands of tasks
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escalate. Offloading, therefore, extends beyond mere compu-
tation to include other resources like storage. This necessitates
advanced middleware technologies that judiciously determine
the offloading criteria, addressing the challenges of resource
heterogeneity, user requirements, and complex network en-
vironments. Furthermore, in fog computing scenarios, task
offloading becomes an intricate puzzle of decisions – which
tasks to offload, where to assign them, and the order of
their execution. These decisions must navigate a landscape
peppered with heterogeneous resources, varied user needs, and
the dynamic nature of mobile environments. The complexity
is further amplified by the differences between edge and cloud
resources, making the quest for an optimal offloading solution
an ongoing challenge in fog computing. In this paper, we
aim to identify current challenges in task offloading within
fog computing environments. We specifically propose innov-
ative solutions based on Deep Reinforcement Learning (DRL)
that focus on optimizing resource allocation and improving
security mechanisms. While DRL has the potential to address
various issues, our study concentrates on these two key areas,
providing a foundation for future research to explore additional
applications of DRL in fog computing. Therefore, Section
II presents a state of the art of the main topic. Section III
presents a general view of research challenges, Section IV
proposes a solution and, finally, we end up our discussion
which concludes the paper.

II. STATE OF THE ART

A. Security and Efficiency in Fog Computing

Security and efficiency are paramount in fog computing
due to the distributed nature of task offloading. The potential
risks include data breaches, unauthorized access, and the
interception of data during transmission between devices and
fog nodes. These risks necessitate robust security measures
[6][7] to protect sensitive information and ensure the integrity
and confidentiality of data. Efficiency in fog computing is
closely related to the optimization of resource allocation,
energy consumption, and latency reduction. Efficient task
offloading mechanisms are essential to maximize the use of
limited resources, minimize energy consumption, and ensure
timely processing of tasks. This is particularly important for
latency-sensitive applications, where delays can have signi-
ficant implications [8]. Fog computing, essential for bringing
computation closer to the data sources, enhances real-time
data processing capabilities. . However, this shift introduces
significant security and privacy challenges, from data leakage
to unauthorized access, which could hinder their adoption.
Research highlights these challenges and proposes methods,
such as improved encryption and authentication, to safeguard
these decentralized computing models [9]. Addressing these
concerns is essential for leveraging fog and edge computing’s
full potential in enhancing IoT systems efficiency. In terms of
security, DRL can be applied to develop intelligent defence
mechanisms against various cyber threats, including intrusion
detection and response [10]. The capability of a DRL model

to continuously interact with the environment offers signi-
ficant advantages in the context of fog computing security.
This adaptive interaction allows the DRL model not only to
learn and identify patterns of normal and abnormal behaviors
effectively but also to predict and respond to potential security
breaches proactively. Such dynamic learning and predictive
capability make DRL an invaluable tool for enhancing the re-
silience of fog computing environments against evolving cyber
threats. Moreover, this continuous learning process enables the
model to adjust its strategies in real-time, further fortifying
the system’s defense mechanisms against sophisticated and
previously unseen attacks. Once a threat is identified, the
system can autonomously take actions to mitigate or isolate the
attack, enhancing the resilience of the fog nodes. For instance,
a DRL agent can dynamically adjust security policies or recon-
figure network settings in real-time to counteract ongoing or
anticipated cyber threats, thereby maintaining system integrity
and availability. as a result the exploration of fog computing’s
state of the art reveals significant advancements in the realms
of security and efficiency in task offloading mechanisms. Here,
’efficiency’ specifically refers to performance efficiency, which
includes enhancements in computational speed, resource util-
ization, and reduction in latency. Our discussion on security
focuses on measures that protect data integrity and prevent
unauthorized access.

B. Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) is grounded in the
principles of Reinforcement Learning (RL), a fundamental
concept within the scope of machine learning. Before delving
into DRL, it is pertinent to discuss RL itself. Reinforcement
Learning is a type of machine learning where an agent learns
to make decisions by performing actions in an environment
and receiving rewards or penalties. The objective is to learn
a policy, a strategy of actions, that maximizes the cumulative
reward over time. An RL agent operates within an environment
modeled as a Markov Decision Process (MDP), [11] [12]
characterized by a set of states s, a set of actions a, and a
transition function P (st+1|st, at). The process involves the
agent observing the current state, selecting and performing
an action, receiving a reward based on the action’s outcome,
and transitioning to a new state, with the goal of maximizing
cumulative rewards [13] [14].

In the context of reinforcement learning, we are dealing
with an agent that operates within an environment modeled
as an MDP. Figure 1 illustrates the concept of the Agent-
Environment Interface in RL, where the agent learns to choose
actions that maximize the expected cumulative reward over
time, thus establishing the optimal policy. The policies can be
stochastic or deterministic, with probabilistic outcomes that
necessitate a method of maximizing expected rewards through
a value-based approach.

The agent observes a state st from the set of possible states
s, takes an action at from the set of possible actions a, receives
a reward rt, and transitions to a new state st+1 based on the
transition dynamics of the environment. The agent’s behaviour

26Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-156-5

CLOUD COMPUTING 2024 : The Fifteenth International Conference on Cloud Computing, GRIDs, and Virtualization



Agent

Environment
rt+1

st+1

Reward rtState st Action at

Figure 1. Reinforcement learning feedback loop diagram.

is dictated by a policy π, which maps states to a probability
distribution over the actions. The goal of the agent is to
maximize the cumulative reward over time. This cumulative
reward, when considering a finite horizon t, is defined by:

R(π) = max
π

E

[
T∑

t=0

γtR(st, at)

]

Here, γ is the discount factor, which balances immediate
and future rewards. A discount factor close to 1 values future
rewards almost as highly as immediate rewards, while a
discount factor close to 0 leads to a myopic evaluation of
policies, valuing immediate rewards much more than future
rewards. In real-world scenarios, environments and policies
can be stochastic, meaning that the outcomes and transitions
can be probabilistic rather than deterministic [14].

To accommodate for this, we consider the expected cumulat-
ive reward when following a policy π. In the DRL setting, we
often use function approximators like deep neural networks
[15]to estimate the value of taking an action in a particular
state (the Q-value), which is denoted as Q(s, a). The optimal
Q-value function Q∗(s, a) satisfies the Bellman optimality
equation [16], which is given by:

Q∗(s, a) = E
[
r(s, a) + γmax

a′
[Q∗(s′, a′)|s, a]

]
The a′ in this equation represents all possible future actions

from the subsequent state s′, and the notation |s, a indicates
the conditional aspect of being in state s and taking action
a. The maximization is over the possible actions a′ in the
subsequent state, guiding the agent toward the most rewarding
future action.

The loss function for training the Q-network in DRL is
formulated to minimize the difference between the current
prediction of the Q-network and the target Q-value given by
the Bellman equation. It can be expressed as:

L(θ) = E
[(

rt + γmax
a′

[
Q(st+1, a

′; θ−)−Q(st, at; θ)
])2

]
In this expression, θ represents the weights of the Q-

network, and θ− denotes the weights of a separate target net-
work, which helps stabilize the learning process. By iteratively
minimizing this loss function, the DRL agent updates its policy
and learns to make better decisions over time.

C. Blockchain Technology

Blockchain is a system designed for peer-to-peer networks
that are decentralized, allowing for a secure and tamper-proof
ledger maintained by the network participants themselves [17].
This contrasts with centralized systems; blockchain operates
without a single point of control. It gained initial prominence
with the launch of Bitcoin, the first cryptocurrency, and has
since expanded its applications across various fields, such
as finance, agriculture, health, and more. The structure of a
blockchain can be thought of as a series of data blocks that are
securely linked together using cryptographic principles. Each
block contains a collection of transactions and is connected
to the previous block via a cryptographic signature known as
a hash. Should any alteration be attempted on a completed
block, the hash will change, signalling a break in the integrity
of the chain. Blocks are added to the blockchain through a
consensus process, which often requires computational work
to validate new entries. This process includes the use of a
nonce, a number found by a network participant that when
used in a hashing function, satisfies certain conditions set
by the blockchain protocol. As the chain grows, altering
any information retroactively becomes increasingly complex.
Typically, each block includes certain information, such as a
timestamp, its own unique identity, the hash of the previous
block, a Merkle tree root which summarily represents the
included transactions, and a nonce value, among other transac-
tion details. This chained data structure ensures the fidelity and
security of the transaction history, making blockchain a robust
and trustworthy technology for recording transactions over
time. In traditional blockchain systems, there is an inherent
delay in processing transactions.

For blockchain technology, delays result from the time it
takes for a transaction to be verified and added to a block, as
well as by generating blocks and their corresponding arrival
at all other nodes. The process involves multiple nodes in the
network validating the blocks and transactions, which ensures
security and decentralization but also introduces latency. In
contrast, real-time blockchain aims to reduce these delays
significantly, offering a solution where transactions are pro-
cessed and confirmed in a much shorter timeframe. This is
achieved through various means, such as different consensus
mechanisms, increased block generation speed, or off-chain
transaction channels. Real-time blockchain is particularly be-
neficial for applications requiring fast and reliable transaction
processing, like financial services, gaming, and IoT operations,
where traditional blockchain delays could hinder performance
and usability.

III. RESEARCH CHALLENGES

A. Outline the Current State of Research

The journey of task offloading strategies in fog computing
has been marked by a continuous search for optimizing key
performance metrics, such as delay, energy consumption,
security, and cost efficiency. Initial approaches focused on
delay minimization through innovative algorithms like Exact
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Solutions and game-theoretic models, aiming to reduce latency
for delay-sensitive tasks. Strategies evolved to address energy
efficiency, with proposals ranging from incentive-based cloud-
IoT offloading schemes to software-defined networks (SDN)
based architectures, enhancing flexibility and decision-making
in offloading policies. As the complexity of fog environments
and the diversity of IoT applications grew, the focus expanded
to delay, security, and energy considerations, adopting al-
gorithms that could dynamically balance these critical factors.
Techniques, such as partial task offloading and energy-aware
scheduling emerged, incorporating more exacted decision-
making frameworks to cater to the specific requirements of
varied applications, from vehicular fog computing to health-
care. The reliability and cost efficiency of offloading decisions
also gained prominence, with strategies developing to ensure
that fog computing architectures could support increasingly
demanding applications without compromising on service
quality or operational costs [18]. This broadened the scope
of task offloading strategies to include considerations like
resource allocation prediction, task scheduling, service latency,
and quality loss trade-offs, pushing towards more adaptable
solutions. Figure 2 represents the concept of task offloading
in a Fog-Computing computing architecture involving IoT
devices, fog computing nodes, and cloud servers. The process
of task offloading is meticulously designed to streamline
the interaction between IoT devices and the multi-layered
architecture. This process begins at the IoT layer, where end
devices, embedded with sensors and other local computing
resources, initially generate tasks. These tasks, depending on
their complexity and the immediate computational capacity
available at the edge, may require offloading to more capable
layers for efficient processing. In the next step, fog nodes
assess the incoming tasks for their computational and storage
needs and decide whether to process them within this layer or
forward them further. This decision-making is critical and is
based on factors, such as the task’s requirements, the available
resources, and the desired efficiency in terms of time and
energy consumption. For tasks that are either too demanding
for the fog layer or optimized for centralized processing,
the final offloading destination is the cloud layer. This layer,
characterized by its vast computational and storage capabilit-
ies, is equipped to handle high-demand tasks offloaded from
the lower layers. The virtual cloud server, supported by an
underlying physical server infrastructure, ensures that these
tasks are executed efficiently, leveraging the cloud’s resources.
This offloading mechanism ensures that tasks generated by IoT
devices are processed in the most appropriate layer, optimising
resource utilization across the system and enhancing overall
performance and security also [19].By dynamically allocating
tasks based on their needs and the available resources at
each layer, the architecture supports a flexible and efficient
processing model.

Kishor et al. [20] have employed metaheuristic algorithms,
such as the Smart Ant Colony Optimization (SACO), to
facilitate efficient task offloading. These algorithms draw in-
spiration from natural processes and have shown considerable

Cloud Layer

Fog Layer

IoT Layer

FN 1
FN 2

FN 3

FN N

Offload task data
to fog nodes

Offload task data
to cloud servers

Result

Wired connection
Wireless connection
End devices
Cloud-Fog gateway
Access point

Figure 2. The architecture of task offloading in a fog computing environment.

promise in optimising resource allocation and minimizing
latency, thereby enhancing the Quality of Service (QoS) in IoT
applications. The SACO algorithm, in particular, has demon-
strated its effectiveness by significantly reducing task offload-
ing time compared to traditional methods, such as Round
Robin and throttled scheduler algorithms. By mimicking the
foraging behaviour of ants, SACO efficiently distributes tasks
across fog nodes, ensuring optimal utilization of resources
and timely data processing. It becomes evident that such
innovative offloading strategies are pivotal in overcoming the
limitations of cloud computing in the context of real-time,
sensor-based applications. Jiang et al. [21] introduced a delay-
aware task offloading scheme for shared fog networks, aiming
to efficiently schedule tasks with varying delay sensitivities. A
mathematical model is developed to represent fog networks,
with a solution method based on problem-specific analysis.
Simulations show the effectiveness of the proposed scheme,
removing impractical assumptions from previous works and
offering insights for improved task offloading in fog comput-
ing. The article also explores the balance between efficiency
and fairness in optimization problems in cloud and edge
computing, considering different objective functions like min-
imizing task inefficiency. The authors reference related works
and focus on resource management for networked systems,
cloud/edge computing, and big data systems in their research.
Ke et al. [22] introduced a priority-aware task offloading
scheme in vehicular fog computing using DRL. This scheme
encourages vehicles to share their idle computing resources
through dynamic pricing, taking into account task priority,
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service availability, and vehicle mobility. The problem is
framed as a Markov decision process, with a soft actor-
critic based DRL algorithm developed to maximize utility.
Extensive simulations confirm the effectiveness of the pro-
posed scheme over traditional algorithms. The study by Shi et
al. [23] specifically focuses on priority-aware task offloading
in vehicular fog computing, comparing the proposed algorithm
with random, greedy-based algorithms, and Double Deep Q-
Network. Results demonstrate that the proposed algorithm
surpasses the others in mean utility, task completion ratio, and
average delay. It ensures high-priority tasks are completed first
and performs better in task completion and offloading delay.
Overall, the study validates the efficiency of the proposed
algorithm in dynamic vehicular environments. In summary, the
current state of task offloading in fog computing is character-
ized by a blend of energy-efficient algorithms, customizable
offloading strategies, and innovative incentive mechanisms.
These approaches collectively aim to enhance the capabilities
of fog computing, addressing the diverse and evolving needs
of IoT and mobile environments.

B. The Limitations of Existing Task Offloading Mechanisms

In the evolving landscape of fog computing, task offloading
presents a spectrum of security challenges. While fog com-
puting ostensibly enhances security by minimizing reliance
on centralized storage and extensive Internet connectivity, it
inherits a suite of vulnerabilities from cloud computing. This
content tries to resolve a critical examination of potential
security risks inherent in task offloading processes. One of
the typical security vulnerabilities arises from the physical and
operational remoteness of cloud services, which fog computing
seeks to ameliorate [24]. Despite this, the transference of tasks
to Fog Nodes (FNs) introduces complexities in safeguarding
data integrity and confidentiality. The main point of the issue
lies in the inherent limitations of FNs – their constrained
computational resources and diminutive stature complicate the
execution of robust security algorithms essential for mitig-
ating threats like man-in-the-middle attacks, eavesdropping,
and denial-of-service attacks. Moreover, the application of
security measures, though imperative, adds to the energy
demands of these devices, which leads to the necessity to
make a compromise between required security and operational
efficiency. This is further complicated by the latency issues
arising from cryptographic operations, as edge devices, often
comprised of small-scale servers, struggle with timely data
encryption, for instance, thus increasing the latency within the
network. The integration of middleware IoT security solutions
propose a bridge between cloud and fog computing; however,
vulnerabilities remain, especially in scenarios involving ses-
sion resumption algorithms. These algorithms, designed for
efficiency, could potentially be exploited by attackers to hijack
sessions, suggesting a pressing need for improvement in secure
session management. While new methods cover the security
and privacy concerns within fog computing, there exists a
palpable gap in addressing the concurrent optimization of
delay, energy consumption, and security. The dynamic nature

of fog networks, where nodes can seamlessly join or exit,
further complicates the security paradigm, necessitating novel
approaches to ensure the integrity and privacy of these fluid
systems. Leveraging machine learning algorithms for attack
detection in fog environments represents a promising frontier.
These algorithms could potentially enhance data security and
processing by identifying and mitigating threats in real-time.
However, the practical implementation of such solutions is
restricted by the limited computational resources of FNs,
underscoring the need for innovative solutions that balance
security, efficiency, and resource constraints. The task offload-
ing process introduces a new set of challenges that require
comprehensive strategies to address. Future research should
aim at developing solutions that not only secure the fog com-
puting environment but also optimize performance metrics,
such as delay and energy consumption, thereby ensuring a
secure, efficient, and resilient fog computing ecosystem. In the
realm of computational offloading, the imperative for robust
security frameworks encompasses a dual-faceted approach.
Firstly, it necessitates the establishment of mechanisms, such
as confidentiality, integrity, availability, access control, and
authentication. These measures are pivotal in safeguarding
the communication between IoT devices and fog computing
(FC) servers, thus ensuring the protected execution of com-
putation offloading processes. The challenges posed in this
domain often mirror those encountered within cloud com-
puting; however, the unique characteristics of FC, including
the limited resources of IoT devices and the reliance on
wireless access, exacerbate the complexity of implementing
effective security solutions. The second facet positions the
FC server as a bulwark for the security of IoT devices,
recognizing that these resource-constrained entities are often
ill-equipped to support advanced security algorithms, such
as group signatures. This realization prompts a paradigm
where the security functionalities traditionally resident on
IoT devices are instead offloaded to EC servers, which then
assume the role of executing these tasks on behalf of the IoT
devices. This shift, while pragmatic, introduces a spectrum
of security considerations necessitated by the heterogeneity
of IoT devices. This diversity encompasses varying commu-
nication standards, dynamic security configurations, and the
constant evolution of security threats, thereby mandating a
multifaceted and comprehensive approach to security within
the FC ecosystem. Merging this perspective with the earlier
discussion on fog computing and task offloading illuminates
the broader spectrum of security risks and challenges across
different computing paradigms. The intersection of fog com-
puting and FC delineates a complex landscape where the
task of securing offloaded computations becomes increasingly
intricate. The offloading of computational tasks or security
functions to FC servers, while pragmatic, open a torrent of
privacy concerns, arguably more daunting than those faced in
cloud computing environments. In addressing privacy concerns
within fog computing, the application of Oblivious Random-
Access Machine (ORAM)[25] techniques, traditionally used
to obscure user access patterns in cloud environments, is
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TABLE I.COMPARISON OF TASK OFFLOADING METHODS IN FOG COMPUTING.

Criteria/Method DRL [23] Metaheuristic Methods [20] Exact Solutions [21]

Efficiency
Computational Speed High due to adaptive learning High Low

Scalability Excellent, adapts to large-scale
environments

Good, but may require adjustments
for scale

Very limited

Resource Utilization Optimized through continuous
learning

Better optimized than heuristics but
varies

Highly optimized but impractical for
large systems

Energy Consumption Reduced through efficient offloading
decisions

Lower than heuristics but not as
efficient as DRL

Optimized but at the cost of
computational resources

Security
Data Privacy Enhanced by learning optimal

offloading without exposing data
Better than heuristic but less than

DRL
High, but often not the focus of

design
Attack Resistance Improved through dynamic

adaptation to threats
Better through diversity of solutions

but slower to adapt
High for known threats, low for new

threats
System Integrity Maintained through continuous

monitoring and adaptation
Good, with potential for periodic

updates
High, but static and may be bypassed

over time
Authentication & Access

Control
Advanced, can integrate with
state-of-the-art mechanisms

Moderate to high, depending on the
method

High, but rigid and may not adapt
well to new access patterns

Overall Performance Superior due to adaptability, learning
capabilities, and ability to optimize

for multiple objectives
simultaneously

Very good, offering a balance
between solution quality and

computational effort, but can be
unpredictable

Excellent in terms of achieving
optimal solutions but at the cost of

practicality in dynamic or large-scale
environments

crucial. However, to maintain the latency advantages of fog
computing, it can be mentioned the ThinORAM scheme [26],
emerges as a tailored solution. ThinORAM adapts ORAM for
fog computing, effectively balancing performance, security,
and privacy without the significant drawbacks of increased
energy consumption, latency, and computational overheads.
This approach not only aligns with the operational dynamics of
fog computing but also sets a precedent for future research to
develop security solutions that navigate the trade-offs between
security, privacy, and system performance, fostering a secure,
efficient, and resilient distributed computing ecosystem.

C. The Potential of DRL to Surmount These Limitations

In fog computing, task offloading mechanisms face various
limitations, particularly in terms of security. These mechan-
isms often struggle with ensuring data privacy, maintaining
integrity, and preventing unauthorized access, as fog nodes
are typically distributed and closer to end-users, increas-
ing vulnerability to attacks. Moreover, resource management,
latency, and network bandwidth are additional challenges
that impact the efficiency and reliability of offloading tasks
in fog environments. Deep Reinforcement Learning (DRL)
presents a promising solution to overcome these challenges by
enabling adaptive and intelligent decision-making in dynamic
and uncertain environments. DRL can optimize resource alloc-
ation, improve task scheduling, and enhance security measures
through its ability to learn and adapt from the behaviour of
the system and threats. However, there is a significant research
gap in fully exploiting the potential of DRL for security
enhancement in fog computing. While DRL can potentially
address issues like anomaly detection and response to evolving
threats, more research is needed to develop robust DRL
models that are specifically tailored for the unique challenges

of fog computing environments, ensuring they are effective
against a wide range of security threats while also optimising
computational efficiency.

D. The Potential of Combining DRL with Blockchains

Combining DRL with blockchain technology could further
secure task offloading by creating a decentralized and trans-
parent ledger, reducing risks of tampering and ensuring data
integrity, thus boosting overall efficiency and reliability in fog
computing environments. In fog computing, the necessity for
immutable storage stems from the need to ensure data integrity
and prevent unauthorized alterations. This is vital for maintain-
ing trust in distributed computing environments, where data
is frequently offloaded and processed across various nodes.
Immutable storage guarantees that once data is recorded, it re-
mains unchanged, providing a reliable foundation for decision-
making processes and system operations, and safeguarding
against data breaches or manipulations.

Further research challenges concern security considerations
with blockchain integration. While blockchain promises en-
hanced security and immutability, its integration into fog
computing for task offloading raises critical security questions.
The inherent complexity and new interfaces introduced by
blockchain can potentially open up new vulnerabilities or
exacerbate existing ones. It is imperative to scrutinize how
security mechanisms of blockchains align with the unique
demands and threat models of fog computing environments.
This scrutiny is crucial to ensure that the solution does not
inadvertently compromise the very security it aims to bolster.

The application of blockchain in fog computing is not
without its efficiency challenges. The nature of blockchains,
characterized by slower transaction speeds and block genera-
tion times, poses significant questions regarding its suitability
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for task offloading scenarios, which require rapid response
times between the fog layer and IoT devices. The feasibility
of achieving time-predictable transactions with blockchain is
a concern, given the latency-sensitive nature of many fog
computing applications. While blockchain technology presents
a promising solution for enhancing security and integrity in fog
computing environments, it is vital to optimize and adapt its
application to meet the specific efficiency benchmarks required
for effective task offloading. This approach underscores the
potential of blockchain as a key technology in fog computing,
provided that its implementation is fine-tuned to align with the
unique demands of this context.

IV. PROPOSED SOLUTION

A. Overview of the Proposed Solution

Cloud computing’s security risks stem from its centralized
data handling and the physical gap from users’ devices. Fog
computing, a complementary approach that situates computing
resources closer to the data source or edge of the network,
offers improved security by reducing reliance on Internet
connectivity for data processing and storage. Despite these
advantages, fog computing is not without its challenges. It
inherits some of the security risks of cloud computing and
introduces new ones due to the limited capabilities and re-
sources of FNs, which can affect task offloading and security
algorithm execution. Implementing security measures in fog
computing can also lead to increased energy consumption
and latency due to the encryption demands on smaller-scale
servers. A middleware solution is proposed in this article that
can maintain security as much as possible at the same time as it
does not reduce the task offloading speed through blockchain.
However, we are aware of this matter that future research in
fog computing security could should focus on more optimising
the balance between delay, energy consumption, and security.
To address the challenge of enhancing system robustness
and security against phishing attempts within fog computing
environments, it is pivotal to recognize the complexities in-
troduced by the vast data generated by interconnected IoT
devices. These devices, operating within a smart ecosystem,
contribute to a data-intensive environment that necessitates
efficient offloading to fog or cloud layers for subsequent
processing and storage. The critical concern arises when these
devices, in an attempt to offload data, inadvertently direct their
computations or sensitive data to compromised neighbouring
fog servers. Such incidents, often resulting from sophisticated
phishing attacks, underscore the vulnerability of the system
and spotlight the imperative need for fortified security meas-
ures. This situation not only raises significant security concerns
but also adversely affects network performance and energy ef-
ficiency, particularly when dealing with the intricacies of man-
aging overloaded fog computing nodes. The interplay between
ensuring robust security protocols and maintaining optimal
network performance becomes increasingly complex, however
, a of the promising avenue for enhancing system security
lies in the integration of blockchain technology [27] [28].
The inherent blockchain characteristics of decentralization,

transparency, and immutability present a novel approach to
securing data transactions across the network. By leveraging
blockchain technology within the fog computing paradigm, it
is possible to establish a secure, tamper-proof system for data
exchange and processing. This approach not only mitigates
the risk of unauthorized access and phishing attacks but
also contributes to the overall efficiency and reliability of
the network infrastructure. This integration is anticipated to
address the prevailing security challenges effectively, thereby
enhancing the resilience and trustworthiness of the system
against potential cyber threats. Integrating an efficiency en-
hancement algorithm with blockchain within a fog computing
environment involves a sophisticated coordination mechanism
that leverages both technologies to optimize performance and
security simultaneously. Imagine an algorithm that dynamic-
ally adjusts the distribution of tasks based on near real-time
network conditions and device capabilities, while also ensuring
data integrity and security through blockchain’s decentral-
ized ledger. This algorithm operates continuously, analysing
the state of the network, including workload distribution,
device energy levels, and current latency metrics. The synergy
between the dynamic efficiency enhancement algorithm and
the blockchain ensures not only optimal resource utilization
but also robust security, creating a resilient and adaptable fog
computing ecosystem. Blockchain ensures that data related
to task offloading is securely stored and remains unaltered.
This integrity is crucial for sensitive applications, ensuring
that the offloaded tasks and their outcomes are reliable and
trustworthy. In line with this, Figure 3 illustrates a diagram of
task offloading strategy in fog computing environment. This
strategy integrates blockchain technology to enhance system
security [29]. Blockchain’s immutability and transparency are
key features that stand out for task offloading processes.
Once a transaction is recorded on a blockchain, it cannot
be altered, providing a secure and trustworthy audit trail.
This immutability ensures that the record of task offloading
decisions and actions is preserved accurately, fostering trust
among participants. Moreover, the transparency inherent in
blockchain allows all network participants to view and verify
transaction histories, ensuring the integrity and verifiability of
the task offloading process. Furthermore, blockchain offers
advantages over other immutable storage solutions through
features like smart contracts, which automate and enforce task
offloading processes without human intervention. It must be
mentioned that the concerns raised regarding the efficiency and
response times of blockchain technology in the context of task
offloading between the fog layer and the IoT layer are valid.
However, our research aligns with recent advancements in the
field. Notably, a study by Lee et al. [30] demonstrates a novel
approach to integrating real-time scheduling principles into
blockchain systems, aiming to ensure time-sensitive transac-
tions. This method addresses the critical challenge of achieving
time-predictable transactions in blockchain. By modifying the
blockchain architecture to preferentially select transactions
with the earliest deadlines they have shown that it is possible
to meet the stringent response time requirements essential
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DRL Agent BlockchainEnvironment

Action: Offloading decision (FN/cloud)
Perform action at

Result of action
(success/failure)

State: current system state
Provide new state st

Reward: based on action outcome
Provide reward rt

Record action & outcome on Blockchain

Confirm transaction integrity

Figure 3. Sequence diagram of the task offloading strategy using DRL in fog
computing, incorporating blockchain technology.

for efficient task offloading in fog computing environments.
Their work provides a promising direction for enhancing the
efficiency and predictability of blockchain transactions, which
is pivotal for our research on task offloading in fog computing
with deep reinforcement learning.

In the following section, we delineate the process of our
proposed method step by step : We know in the first stage to
optimize the efficiency of fog computing, the task offloading
model must be rigorously defined. Tasks are characterized by
parameters akin to those in blockchain transactions within
the RT-Blockchain system [30]:inter-arrival time (Ti), relat-
ive deadline (Di), and task size (Si). Each task, akin to a
blockchain transaction, undergoes a process of validation and
scheduling for execution, maintaining the integrity of the fog
computing framework.

A sophisticated task offloading algorithm in fog computing
considers the translation of user-level task parameters to
the more granular slot-level parameters for fog nodes. For
instance, given user-level parameters (Ti, Di, Si), the slot-
level parameters can be calculated taking into account network
latencies and computational resources, ensuring the task can
be scheduled effectively within the operational constraints.

B. Deep Reinforcement Learning Integration

Machine learning algorithms present a potential method
for improving attack detection in fog environments, but their
application is constrained by the limited resources of FNs.The
use of DRL within this model stands to many improvements
how tasks are offloaded in fog environments. By dynamically
learning the optimal policy for task offloading based on state
(S), action (A), and reward (R), the DRL agent responds to
the complexities of the network. This optimization is grounded
in a reward function, R(S,A), which motivates actions that
minimize latency and maximize resource utilization while
ensuring security.

C. Time-Predictable Transaction Framework Adaptation

Adapting the time-predictable transaction framework in-
volves setting the upper bounds for fog computing task

processing (Cfog
gen ) and validation time (Cfog

val ), paralleling the
blockchain model. This adaptation ensures that tasks are of-
floaded and processed within the constraints of fog computing,
optimizing both security and efficiency without compromising
the predictability of the system:

Cfog
gen = α× Cblock

gen (1)

Cfog
val = β × Cblock

val (2)

Where α and β are scaling factors that adjust the blockchain
constants Cblock

gen and Cblock
val for fog computing realities.

D. Demand Bound Function and Load in Fog Computing

Incorporating the Demand Bound Function (DBF) from the
blockchain model into fog computing ensures that the system
load does not exceed its capacity. The adapted DBF for fog
computing is defined as:

DBFi(∆) = max(0,

⌈
∆− (Di − Ti)

Ti

⌉
× Ci) (3)

This equation calculates the cumulative demand that tasks
impose on the fog computing resources within a specific
interval (∆), ensuring that the system load remains within
capacity and tasks are completed within their deadlines:

Load(∆) =
1

∆

n∑
i=1

DBFi(∆) (4)

E. Schedulability and Security Analysis

We propose a method to evaluate the schedulability of tasks
in fog computing that parallels blockchain’s validation theor-
ems. This analysis ensures that offloaded tasks are feasible
within the deadlines and system capacities, thereby enhancing
security.

The DRL model will include security considerations, learn-
ing to recognize and mitigate potential threats. This model will
be formulated to optimize not just for efficiency but also for
robust security measures, such as validating task authenticity
and preventing overloading of nodes.

F. Algorithm and Evaluation

The algorithm that combines DRL with the time-predictable
task offloading framework will be evaluated on metrics, such
as efficiency, security, and adherence to time constraints.
Evaluation will incorporate real-time data and the following
predictive formula for schedulability:

Schedulability =

∑
Completed Tasks∑
Scheduled Tasks

(5)

While Formula (5) provides a straightforward metric for
evaluating the efficiency of our task offloading strategy by
comparing the number of completed tasks to the total sched-
uled tasks, it’s crucial to understand the underlying factors
contributing to uncompleted tasks. These may include network
latency, which delays task execution, resource constraints that
prevent tasks from being processed, security protocols that
interrupt task execution for safety reasons, or other operational
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inefficiencies. By analyzing these factors in depth, we can
gain more insights into the system’s performance and identify
targeted improvements for our fog computing solution

V. CONCLUSION AND FUTURE WORK

In conclusion, this study’s exploration into the integration
of Deep Reinforcement Learning (DRL) and blockchain tech-
nology within fog computing environments not only reveals
critical insights but also opens new avenues for future re-
search. While our findings underscore the potential of this
integration to enhance security and efficiency in task offload-
ing, they also highlight the need for further optimization of
blockchain technology to meet the specific demands of fog
computing. We observed that DRL’s effectiveness in dynamic
decision-making is significantly influenced by the availability
and quality of training data. Moreover, current blockchain
implementations face challenges like transaction speed and
resource consumption that could affect their suitability for
time-sensitive fog computing applications. Future research
should delve into these challenges, seeking more scalable
and efficient blockchain solutions and refining DRL models
for better adaptation to fog computing’s complexity. Specific-
ally, exploring heuristic approaches like Fuzzy Reinforcement
Learning could provide valuable insights into handling un-
certainty in decision-making processes, an inherent aspect of
fog computing environments. Additionally, investigating other
heuristics, such as genetic algorithms and swarm intelligence,
could offer alternative strategies for optimizing task offloading
and resource allocation, further enhancing the adaptability and
performance of fog computing systems.
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