
Automated Vulnerability Scanner for the Cyber
Resilience Act

Sandro Falter∗, Gerald Brunkh†, Max Wess‡ and Sebastian Fischer§

Dept. of Computer Science and Mathematics
Ostbayerische Technische Hochschule Regensburg

Regensburg, Germany
Email:

sandro.falter@st.oth-regensburg.de∗, gerald.brukh@st.oth-regensburg.de†,
max.wess@st.oth-regensburg.de‡, sebastian.fischer@oth-regensburg.de§

Abstract—This paper explores the mitigation of the compliance
burdens faced by manufacturers of digital products under the
Cyber Resilience Act. After providing a concise overview of
the Cyber Resilience Act and pinpointing pivotal areas where
tool-based interventions could reduce the regulatory strain on
manufacturers, we introduce two prototypes: a digital checklist
for product classification and a prototype to streamline the
analysis and monitoring of the security state of software along the
software development life cycle. As the second prototype is based
on Static Application Software Testing and Software Component
Analysis, we validate the approach through benchmark tests.
While Static Application Software Testing tools show promise
in identifying vulnerabilities, additional tests are needed for
full compliance with the Cyber Resilience Act. In general,
the prototypes serve as an entry point for identifying possible
automation potential to alleviate the compliance burdens of
manufacturers.

Keywords—cra; cyber resilience act; vulnerability scanner;
reporting; iot; cloud

I. INTRODUCTION

A few years ago, Richard Clarke summarized the impor-
tance of cyber security with the following pointed statement:
“If you spend more on coffee than on IT security, you will
be hacked ” [1]. The statement seems exaggerated at first, but
appears in a new light, especially in the area of cyber security,
when you consider a report issued by the World Economic
Forum [2].

The report shows that the rapid advancements in the area
of IoT have created a lack of standards and regulations.
Governments, individual organizations, and households rely on
IoT devices to power their infrastructure. However, the lack
of standardization and cybersecurity considerations left them
vulnerable to attacks that stifle future adoption of IoT [2, p.5].

The study reports that 82% of respondents have low con-
fidence that connected devices and related technologies are
protected against the unethical and irresponsible use of the
technology [2, p.8]. Furthermore, 73% of respondents have
low confidence that connected devices are secured and users
are protected against attacks [2, p.14]. Forecasts show that
this problem will continue to worsen in the coming years.
According to the report, global cybercrime is expected to grow

15% per year over the next five years, raising yearly induced
costs of cybercrime to $ 10.5 trillion a year [2, p.16].

To address these issues, the EU proposed a new regulation
called the Cyber Resilience Act (CRA) on 15th September
2022 [3]. The regulation focuses on products with digital
elements and introduces new mandatory cybersecurity require-
ments for hardware and software products throughout the
whole lifecycle.

1) Risk Assessment: Emphasis on Security by Design,
products shall be delivered without known vulnerabilities.
Regular tests and security reviews need to be performed.

2) Documentation: To prove conformity, the CRA also
requires reports about the tests carried out to show the
absence of vulnerabilities. In addition, a Software Bill of
Materials (SBOM) must be provided listing the included
third-party libraries, packages, and dependencies.

3) Vulnerability Reporting: Known vulnerabilities must
be reported within 24 hours to the European Union
Agency for Cybersecurity (ENISA).

In a nutshell, the CRA requires the monitoring of the
security state of products with digital elements along the whole
life cycle, including the development phase, release phase,
and operation phase. These compliance guidelines lead to
additional overhead for manufacturers of digital products.

To address these problems, this paper attempts to provide
an overview of possible solutions and approaches that could
reduce the overhead of companies with digital products. The
paper focuses on solutions that can be implemented in practice
and benefit companies during operations thus answering the
following research questions:

1) RQ 1: Which areas of complying with the CRA could
be covered by tool support?

2) RQ 2: How could prototypes look that implement this
tool support?

3) RQ 3: How could the performance of the tools be
measured?

The paper is structured as follows: in Section 2, the related
work is given. In Section 3, a CRA compliance checklist is

13Copyright (c) IARIA, 2024. ISBN: 978-1-68558-156-5

CLOUD COMPUTING 2024 : The Fifteenth International Conference on Cloud Computing, GRIDs, and Virtualization

presented as one part of the paper. In Section 4, the second
part, a vulnerability scanner, and the related performance
analysis is shown. Subsequently, in Section 5, we give a short
discussion and in the end in Section 6, the conclusion is given.

II. RELATED WORK

The introduction of the CRA in 2024 is expected to boost
research activities in cybersecurity and compliance. However,
in academia, there are limited research efforts for providing
tool-based assistance to help manufacturers with aligning with
the CRA. This necessitates a more comprehensive approach
to understand the current research landscape. Past reports by
ENISA, such as [4] or [5], offer guidelines applicable to CRA
compliance, but lack clear recommendations. While numerous
studies focus on compliance checking of software processes,
such as Ardila et al.’s literature review [6] and Barati et al.’s
framework for GDPR compliance verification [7], they do not
directly address cybersecurity and compliance as required by
the CRA. Caris et al. [8] developed a framework and a web-
based application to aid small and medium-sized companies
in achieving cyber resilience. In the non-academic sector,
various compliance management software like ZenGRC from
RiskOptics [9] and Cloudsmith’s artifact management platform
[10] assist in compliance checking, with Cloudsmith also
addressing CRA compliance through vulnerability scanning
and software bill of materials creation. However, academic
response to CRA challenges remains limited, contrasting with
early efforts in the commercial sector toward CRA compliance.

III. CRA COMPLIANCE CHECKLIST

To further combat the limited academic response to CRA
challenges, a web-based application tailored to streamline the
compliance process for individual products was developed.
This application is designed with a focus on user accessibility,
presenting CRA requirements in a format that is straight-
forward and digestible. Users are empowered to utilize this
digital tool to navigate through requirements related to CRA
adherence.

The initial function of the application is to discern prod-
ucts that are not subject to CRA oversight, such as those
governed by specific regulatory exceptions or those that are
open-source in nature. Subsequently, for products that fall
within the purview of CRA regulations, the tool systematically
categorizes them into Class I, Class II, or a default category.
It provides a comprehensive list of product types laid out by
the CRA to assist in accurate classification. Upon selection
of the most appropriate product type by the user, the appli-
cation provides detailed information regarding the product’s
classification and the subsequent obligatory criteria that must
be satisfied for CRA compliance.

In the third phase, the user engages with the application by
addressing specific compliance-related requirements laid out
by the CRA. These questions are structured to elicit responses
that not only affirm compliance but also allow for commentary,
thereby creating a record that can enhance the understanding of
CRA compliance or link to relevant analyses or subject matter.

Moreover, the tool dispenses practical recommendations and
best practices to aid manufacturers in meeting each require-
ment with greater ease. This feature is particularly beneficial
in simplifying the CRA’s implications for product manufac-
turers and streamlining the compliance process. The insights
and documentation generated through this interactive tool are
invaluable, serving as a robust foundation for the compilation
of the manufacturer’s EU declaration of conformity.

Figure 1 illustrates the user journey for a microprocessor
manufacturer, serving as a visual guide to the various options
and functionalities available within the prototype. When a
Product is considered excluded from the CRA, users are
presented with the option to proceed with the analysis of
the current product. This feature is designed to accommodate
the possibility if the product may be exempt at present, the
requirements outlined by the CRA could become applicable
in the context of future product developments. Beyond the
standard compliance verification pathway, the prototype offers
the flexibility to navigate across different sets of questions.
This adaptability ensures a personalized experience, enabling
users to tailor the compliance process to meet their specific
needs and circumstances.

Fig. 1. User Story Chart for a Microprocessor Manufacturer. This diagram
outlines the step-by-step process within the compliance tool, from entering
the product name to receiving a comprehensive overview of the product’s
compliance with the CRA

To enhance the understanding of the compliance status,
users are provided with a comprehensive summary upon
completion of the checklist. This summary offers a clear and
concise overview of the compliance state, facilitating a better
grasp of the overall situation. For the purposes of this paper,

14Copyright (c) IARIA, 2024. ISBN: 978-1-68558-156-5

CLOUD COMPUTING 2024 : The Fifteenth International Conference on Cloud Computing, GRIDs, and Virtualization

this overview is depicted in Figure 2, which serves to visually
represent the final compliance assessment.

Fig. 2. Example overview of Compliance Assessment for Microprocessor
v3.2. This summary displays e.g. the product’s exemption status, classification
under the CRA, and the fulfillment of security features

The following requirements ensure that the Compliance
Checklist operates smoothly, provides a user-friendly expe-
rience, and effectively guides users through the CRA compli-
ance process:

A. Functional Requirements

1) FR 1: As a user, I want the tool to check if my product
falls within the regulations of the CRA

2) FR 2: As a user, I want the tool to categorize my product
into the associated class, according to the rules of the
CRA

3) FR 3: As a user, I want to get a list of all necessary
requirements for my specific product

4) FR 4: As a user, I want to be able to document the
compliance of my product with each requirement

5) FR 5: As a user, I want to save my documentation and
be able to edit them again later

6) FR 6: As a user, I want to export my documentation as
a PDF document

B. Quality/Non-Functional Requirements

1) NFR 1: User-friendly structure
2) NFR 2: Understandability even for users with little

technical knowledge

IV. VULNERABILTY SCANNER

The second tool was developed in response to the CRA’s re-
quirement to analyze and monitor the security state of software
with digital elements along the whole software lifecycle. In
the first step, we analyzed the structure of current DevSecOps
approaches to adapt similar solutions to the field of IoT and the
CRA. Conventional DevSecOps pipelines implement security

practices from the earliest stages of planning and design and
also cover operational stages after shipping the product [11,
p.4]. This includes the following stages:

1) Manual Code Reviews
2) Software Component Analysis (SCA)
3) Static Application Security Testing (SAST)
4) Penetration Tests
5) Unit, Integration, System and Acceptance Tests
6) Dynamic Application Security Testing (DAST)
7) Configuration Management Testing
8) Security Monitoring

The prototype of the software focuses on a holistic approach
and is intended to map central elements of this DevSecOps
pipeline that can be automated. We identified the Software
Component Analysis and Static Application Security Testing
as most suitable for automation, as they can be generalized
for different code repositories. For example, Penetration Tests
and Unit Tests are challenging to automate and generalize as
they are highly specific for a respective code base. Based on
this analysis we defined the following requirements for the
prototype.

A. Functional Requirements

1) FR 1: As a user, I am able to scan for vulnerabilities in
a given project to assist with my self-assessment

2) FR 2: As a user, I want to have a visualization of all
detected vulnerabilities to get a better understanding of
the current security status of the project

3) FR 3: As a user, I want to be able to schedule scans to
get regular reporting on the current security state of the
project

4) FR 4: As a user, I would like to generate an SBOM
report that provides an overview of all the components
of a given repository

5) FR 5: As a user, I would like to get an overview of all
included vulnerabilities in the dependencies listed in the
SBOM

6) FR 6: As a user, I would like to scan repositories in
the following languages as they are mainly used in IoT
Development: C, C++, Python

B. Quality/Non-Functional Requirements

1) NFR 1: Usability and simplicity of operation
2) NFR 2: Flexibility of Deployment of the Application
3) NFR 3: Integration into the Development process
4) NFR 4: Flexible Expandability of the Application
In a nutshell, the application aims to assist users with self-

assessment for CRA compliance by scanning repositories for
vulnerabilities and providing reports. It includes features, such
as visualization of detected vulnerabilities, scheduling scans
for regular reporting, generating SBOM reports, analyzing de-
pendencies, and supporting languages commonly used in IoT
development (C, C++, Python). Non-functional requirements
prioritize usability, flexibility of deployment, integration into
development processes, and flexible expandability.

15Copyright (c) IARIA, 2024. ISBN: 978-1-68558-156-5

CLOUD COMPUTING 2024 : The Fifteenth International Conference on Cloud Computing, GRIDs, and Virtualization

C. Architecture of the Tool

1) Design Decisions: The design decisions are based on the
previously defined requirements. The application is segregated
into a server-client architecture, where the user interface
constitutes the frontend service developed using Vue.js [12],
while the backend encompasses multiple services responsible
for repository analysis and resource management. The Hy-
pertext Transfer Protocol (HTTP) is employed to facilitate
communication between the front and backend. A web-based
frontend enables the flexible distribution of the prototype
to all conventional operating systems, like Linux, Windows
and macOS. Certain functionalities within the application are
augmented through the integration of third-party software.
This third-party software is conceptualized as an additional
microservices and is accessible via a terminal interface. Third-
party applications are Git [13] for repository management, Syft
[14] to create the initial textfiles listing all dependencies of
the analyzed code repository, and additional Static Application
Security Testing Tools like Semgrep [15], Flawfinder [16]and
CppCheck [17]. Initially, it was planned to use Horusec [18] as
well. However, technical problems during the evaluation com-
plicate a representative comparison with the other scanners.
These tools are utilized for vulnerability detection through
code analysis. These tools are integrated into the backend
Docker container [19] to streamline the scanning process.
Third-party services are used to retrieve personal information
regarding the target repositories to be analyzed and to provide
additional data on the Software Component Analysis. These
services are the GitHub API [20] and the sonatype OSS Index
[21].

2) Structure of the Prototype: Figure 3 shows the Deploy-
ment View of the created prototype. The system is distributed
into multiple nodes, which are the user’s computer, the docker
execution environment, and the two external nodes Git Hub
and the sonatype OSS Index API. The client can simply access
the application via a web browser, no additional dependencies
are required to use the application. The NGINX reverse proxy
will serve the front end, which also includes a web server.
In addition, the NGINX reverse proxy is responsible for the
routing between the backend and frontend docker containers.
After receiving the website, the client can provide his Git
Hub Account credentials to a formula in the frontend and the
website will then proceed to fetch an overview of the user’s
repositories from the GitHub API. After this, the client can
select one or multiple target repositories for a vulnerability
analysis or SBOM generation. After starting the vulnerability
scan, the backend will fetch the respective target repositories
from GitHub and then proceed with scanning the repositories
with the SAST vulnerability scanners. For the SBOM gen-
eration, the backend needs to include additional vulnerability
information which is provided by the OSS index database. The
backend therefore fetches the necessary data from the OSS
index for the respective packages and dependencies included
in the target repositories.

Fig. 3. Deployment overview of the prototype. The Vulnerability Scanner
consists of a Vue.js frontend and a Python backend. Docker Compose is used
to orchestrate the containers.

D. Performance of the Vulnerability Scanner

The performance of the vulnerability detection tool is
largely dependent on how well the respective SAST tools
work. There are multiple approaches to evaluate the perfor-
mance of SAST tools. Most approaches are based on bench-
marks. The benchmarks contain one or more repositories for
which the number of vulnerabilities is known. The individual
scanners are then used to analyze the benchmark repositories
and results are compared. We based this evaluation on the
approach of [22] and selected the Juliet Test Suite for C/C++
1.3.0 [23] and Wireshark 1.8.0 [24] as benchmark repositories.
Both repositories are published and maintained by the National
Institute of Standards and Technology (NIST). The Juliet Test
Suite Benchmark consists of 64099 synthetic test cases. The
Wireshark Benchmark, on the other hand, is modeled on a
real project. The vulnerabilities are therefore not synthetically
generated but were discovered through vulnerability analysis
in the project. We suspected that individual SAST developers
might adapt their tool to the synthetic benchmarks, which is
why the additional Wireshark data set is intended to improve
the quality and significance of the results.

1) Evaluation Approach: For evaluation the scanners we
used the following approach:

(a) Preprocess Ground Truth Data: The Benchmarks and
their files are preprocessed. All files of the Wireshark
Benchmark are used for the evaluation. For the Juliet
Test Suite we excluded sophisticated text cases that span
across multiple files. The benchmarks contain additional
ground truth data, which includes information, such as
the line number, type and location of the vulnerability.
These datasets are loaded into a database.

(b) Analyze the Benchmark repositories with the SAST Scan-
ners: We perform vulnerability detection on each bench-
mark repository with the following scanners - Semgrep
1.41.0, Flawfinder 2.0.19, and Cppcheck 1.4.0. All the
scanners were used in their default configuration. The

16Copyright (c) IARIA, 2024. ISBN: 978-1-68558-156-5

CLOUD COMPUTING 2024 : The Fifteenth International Conference on Cloud Computing, GRIDs, and Virtualization

TABLE I
RESULTS OF THE JULIET BENCHMARK

Juliet Test Suite for C++ 1.3.0, - 40626 vulnerabillities
Flawfinder Semgrep CppCheck

True Poitives 11159 0 3662
False Positives 189617 9556 7191

Precision 5,6% 0% 33,7%
Recall 27,4% 0% 9%

TABLE II
RESULTS OF THE WIRESHARK BENCHMARK

Wireshark 1.8.0 - 767 vulnerabillities
Flawfinder Semgrep CppCheck

True Poitives 14 0 0
False Positives 1466 231 55

Precision 1% 0% 0%
Recall 1,8% 0% 0%

results are also loaded into the database to simplify the
comparison between results and ground truth data.

(c) Comparision between Scanner Results and Ground Truth
data The results and ground truth data are available in
the database. There are now several ways to compare
the results. In this evaluation, we have assumed that we
evaluate an exact match on the file path and the line of
code as a true positive. This is necessary because all
scanners support a different output format and provide
different information on the detected vulnerability. The
file path and line number are specified across all scanners.
If a scanner detects a vulnerability and matches the file
location and the line number exactly to on entry in the
ground truth dataset then this is considered a true positive.

2) Results: Tables I and II show the results of the scanning
and the comparison. The Juliet Test Suite consists of 28
Million lines of code with a total of 40626 vulnerabilities.
Each vulnerability points to a specific file location and line
in the code. As Table I shows, Flawfinder performed the
best out of all scanners. It detected 11159 of the 406226
vulnerabilities correctly. However, it produced over 189617
false positives in the process. This leads to a low precision
rate. The precision is defined as the number of true positives
compared to the total number of scanner findings. Here just
5,6% of detected Flawfinder vulnerabilities are actual vulner-
abilities. The recall rate is better, at least around one-quarter
of all vulnerabilities have been detected. The other scanners
especially Semgrep performed badly. No true positives have
been detected and therefore the recall and precision are at
0%. Cppcheck performed better. 9% of all vulnerabilities were
found, but nearly every third of them was a true positive.
Therefore developers using Cppcheck face less noise than
developers using Flawfinder, however, fewer vulnerabilities are
detected in general. All scanners performed worse on the non-
synthetic Wireshark Benchmark. Only Flawfinder was able to
generate True Positives. But with a Precision rate of 1% users
will get 99 false positives for one actual vulnerability.

V. DISCUSSION

In general, the SAST scanners were able to detect some
vulnerabilities but not enough to reach full compliance with
the Cyber Resilience Act. There are multiple reasons to explain
the performance. As observed, the scanners performed better
with the synthetic Juliet Benchmark than the non-synthetic
Wireshark Benchmark. SAST scanners work by applying a
set of fixed rules to a given codebase. The quality of the
results depends on the quality of the rule databases which can
be accessed by the scanner. The Juliet Benchmark has been
specifically created to benchmark SAST tools. Therefore, the
vulnerabilities included in the Juliet Benchmark are more in
line with the actual rule sets and capabilities of SAST tools.
The Wireshark Benchmark is based on actual code which
includes some vulnerabilities. The reason for performance
differences for example between Semgrep and Flawfinder
can be explained by the number of rules available for each
scanner. Taking a closer look at the code repositories on
GitHub one can conclude that Flawfinder defines 169 rules
[25] for pattern matching, and Semgrep defines 13 rules [26].
The quantity does not state anything about the quality of the
rule sets but must be considered as a factor when comparing
the performance of the scanners. In addition, SAST tools
don’t analyze the code during runtime, the scanners lack
context awareness and therefore can not detect vulnerabilities
under more realistic conditions. In addition, some scanners
produce many false positives which creates additional noise
for developers and makes identifying actual security risks in
the code more difficult. Some scanners provide configuration
options to reduce the amount of false positives, but this often
involves a trade-off of detecting fewer true positives as a result.

VI. CONCLUSION

This study explored new approaches and possible solutions
to reduce the compliance overhead of manufacturers of digital
products that fall under the Cyber Resilience Act. We provided
a quick overview of the Cyber Resilience Act and identified
key areas where tool-based assistance could reduce the burden
for manufacturers. The first prototype is a digital checklist
that helps clients classify their products following the new
risk classes introduced by the Cyber Resilience Act. The tool
enables the documentation of the compliance process and
helps identify action items to meet the compliance criteria
of the Cyber Resilience Act. The second prototype represents
an initial attempt to streamline the analysis and monitoring of
the security state of software along the software development
life cycle. To achieve this we identified key testing stages
along a DevOps pipeline and identified Static Application
Security Testing and Software Component Analysis as two
central testing steps that can be automated and improve the
security state of a software. Subsequently, a prototype has been
developed and tested to validate the approach. The evaluation
showed that our approach can be a first foundation to develop
a more holistic approach to monitoring the security state of
the software. The SAST tools can detect some vulnerabilities,
but to achieve full compliance with the Cyber Resilience

17Copyright (c) IARIA, 2024. ISBN: 978-1-68558-156-5

CLOUD COMPUTING 2024 : The Fifteenth International Conference on Cloud Computing, GRIDs, and Virtualization

Act, additional tests are necessary to identify weaknesses and
cybersecurity risks in the code.

REFERENCES

[1] R. Lemos, “Security Guru: Let’s Secure the Net,” 2024, [Online;
accessed: 2024-02-27].
URL https://www.zdnet.com/article/security-guru-lets-secure-the-net/

[2] S. Ahmed, M. Carr, M. Nouh, and J. Merritt, “State of the Connected
World,” Tech. rep., World Economic Forum, Jan. 2023.

[3] European Commission, “Regulation of the European Parliament and of
the Council on horizontal cybersecurity requirements for products with
digital elements and amending Regulation (EU) 2019/1020,” 2022,
[Online; accessed: 2024-02-27].
URL https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:
52022PC0454

[4] C. Skouloudi, A. Malatras, R. Naydenov, and G. Dede, “Guidelines for
Securing the Internet of Things,” Tech. rep., ENISA, 2020.

[5] ENISA, “Baseline Security Recommendations for IoT in the Context
of Critical Information Infrastructures,” Tech. rep., European Union
Agency For Network And Information Security, Nov. 2017.

[6] J. P. Castellanos Ardila, B. Gallina, and F. Ul Muram, “Compliance
Checking of Software Processes: A Systematic Literature Review,”
Journal of Software: Evolution and Process, 34(5), p. e2440, 2022, ISSN
2047-7481, doi:10.1002/smr.2440.

[7] M. Barati, G. Theodorakopoulos, and O. Rana, “Automating GDPR
Compliance Verification for Cloud-hosted Services,” in 2020 Inter-
national Symposium on Networks, Computers and Communications
(ISNCC), pp. 1–6, Oct. 2020, doi:10.1109/ISNCC49221.2020.9297309.

[8] J. F. Carı́as, S. Arrizabalaga, L. Labaka, and J. Hernantes, “Cyber
Resilience Self-Assessment Tool (CR-SAT) for SMEs,” IEEE Access, 9,
pp. 80741–80762, 2021, ISSN 2169-3536, doi:10.1109/ACCESS.2021.
3085530.

[9] RiskOptics, “RZenGRC,” 2024, [Online; accessed: 2024-02-27].
URL https://reciprocity.com/product/zengrc/

[10] cloudsmith, “cloud native artifact management,” 2024, [Online; ac-
cessed: 2024-02-27].
URL https://cloudsmith.com/product/cloud-native-artifact-management

[11] F. Lombardi and A. Fanton, “From DevOps to DevSecOps Is Not
Enough. CyberDevOps: An Extreme Shifting-Left Architecture to Bring
Cybersecurity within Software Security Lifecycle Pipeline,” Software
Quality Journal, 31(2), pp. 619–654, Jun. 2023, ISSN 1573-1367, doi:
10.1007/s11219-023-09619-3.

[12] “Vue.Js,” 2024, [Online; accessed: 2024-02-27].
URL https://vuejs.org/

[13] “Git,” 2024, [Online; accessed: 2024-02-27].
URL https://git-scm.com/

[14] “Anchore/Syft,” Anchore, Inc., Jan. 2024.
[15] “Semgrep — Find Bugs and Enforce Code Standards,” 2024, [Online;

accessed: 2024-02-27].
URL https://semgrep.dev/

[16] “Flawfinder Home Page,” 2024, [Online; accessed: 2024-02-27].
URL https://dwheeler.com/flawfinder/

[17] “Cppcheck - A Tool for Static C/C++ Code Analysis,” 2024, [Online;
accessed: 2024-02-27].
URL https://cppcheck.sourceforge.io/

[18] “Horusec,” 2024, [Online; accessed: 2024-02-27].
URL https://horusec.io/site/

[19] “Docker: Accelerated Container Application Development,” May 2022,
[Online; accessed: 2024-02-27].
URL https://www.docker.com/

[20] “GitHub: Let’s Build from Here,” 2024, [Online; accessed: 2024-02-27].
URL https://github.com/

[21] S. Inc, “Sonatype OSS Index,” 2024, [Online; accessed: 2024-02-27].
URL https://ossindex.sonatype.org/

[22] C. Gentsch, “Evaluation of Open Source Static Analysis Security Testing
(SAST) Tools for C,” Technical Report DLR-IB-DW-JE-2020-16, DLR
German Aerospace Center, Jan. 2020.

[23] National Institute for Standards and Technology, “Juliet C/C++ 1.3 -
NIST Software Assurance Reference Dataset,” 2017, [Online; accessed:
2024-02-27].
URL https://samate.nist.gov/SARD/test-suites/112

[24] National Institute for Standards and Technology, “Wireshark 1.8.0 -
NIST Software Assurance Reference Dataset,” 2014, [Online; accessed:
2024-02-27].
URL https://samate.nist.gov/SARD/test-suites/94

[25] D. A. Wheeler, “Flawfinder/Flawfinder.Py at Master · David-
a-Wheeler/Flawfinder · GitHub,” https://github.com/david-a-
wheeler/flawfinder/blob/master/flawfinder.py.

[26] “Semgrep-Rules/c/Lang/Security at Develop · Semgrep/Semgrep-
Rules · GitHub,” https://github.com/semgrep/semgrep-
rules/tree/develop/c/lang/security.

18Copyright (c) IARIA, 2024. ISBN: 978-1-68558-156-5

CLOUD COMPUTING 2024 : The Fifteenth International Conference on Cloud Computing, GRIDs, and Virtualization

