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Abstract — One of the challenges of modern cloud computer 
security is how to isolate or contain data and applications in a 
variety of ways, while still allowing sharing where desirable. 
Hardware-based attacks such as RowHammer and Spectre 
have demonstrated the need to safeguard the cryptographic 
operations and keys from tampering upon which so much 
current security technology depends. This paper describes 
research into security mechanisms for protecting sensitive 
areas of memory from tampering or intrusion using the 
facilities of Systems Management Mode.  The work focuses on 
the creation of a small, dedicated area of memory in which to 
perform cryptographic operations, isolated from the rest of the 
system. The approach has been experimentally validated by a 
case study involving the creation of a secure webserver whose 
encryption key is protected using this approach such that even 
an intruder with full Administrator level access cannot extract 
the key. 

Keywords- key-enclave; hardware security; system-
management mode. 

I. INTRODUCTION

Computer security is largely concerned with erecting 
boundaries between entities: users, privilege levels, 
processes. Wherever a resource crosses a boundary, it creates 
the potential for compromise, either through passive 
information leakage (as in the case of timing attacks, where 
the exact details of how long an operation takes inadvertently 
discloses some information) or the potential for active 
tampering (as in RowHammer [1], where writing to one 
memory location indirectly affects another through non-
obvious electrical coupling between parts of a memory chip). 

A. Motivation 

Attacks based upon covert channels and side channels 
depend on unexpected interactions; RowHammer for 
example, can be used to achieve privilege escalation via a 
previously-unexpected interaction between physically 
proximate memory components [2] . Since there was no 
correlation between physical and virtual addresses, as 
different processes and the kernel would commingle pages 
arbitrarily, low-privilege pages could easily be found which 
happened to be adjacent to highly sensitive system ones, 
allowing tampering. The same applies between virtual 
machines and hypervisor control structures. As detailed later, 
the more coarse-grained the sharing gets, the more limited 

the avenues of attack become, though any level of shared 
caching can be an avenue of attack [3]. 

As encryption keys are typically stored in RAM, a 
successful compromise of a system via techniques such as 
these can reveal those keys used to protect data at rest on the 
system, e.g., full-disk encryption, and data in transit to/from 
the system, e.g., via an SSL connection. 

The ability to improve segregation of memory to securely 
store keys etc. separately from less sensitive data has 
previously required a system to have dedicated features, e.g., 
Intel’s SGX integrated with the processor. The consequences 
of an attack that compromises such facilities can be 
widespread:  In the case of SGX, this protection was 
defeated in 2018 via side-channel attack [4], forcing Intel to 
update SGX’s deployment mechanism to be able to check 
whether the Spectre [5] attacks were properly mitigated on 
the target hardware. 

B. An alternative approach to creating an enclave 

The current generation of Intel processor architectures 
have a feature called Systems Management Mode (SMM) 
which can be used during the boot process to create an area 
of RAM (SMRAM), which is subsequently ‘locked’ and thus 
rendered inaccessible/unusable by ‘userland’ code. This 
offers the possibility of creating a secure memory enclave for 
the storage of cryptographic keys and the code which 
manipulates them (negotiation, verification etc.) The locked 
area can only be accessed by returning to SMM mode which 
automatically executes the code that has been securely 
locked in that area. This fact led to the following research 
hypothesis for the work: 

Secure isolation can be practically implemented using 
only the long-established Systems Management Mode 
mechanisms, giving better security isolation than existing 
techniques such as process separation. 

The work described in the remainder of this paper shows 
how this can be used to create a secure enclave. It is worth 
noting that some other processor architectures, e.g., ARM, 
have equivalent facilities and the proposed technique for 
enclave creation is thus generalisable. 

The material in the paper is based on the PhD thesis of 
the first author and is published here for the first time [6]. 

The remainder of the paper is structured thus: In Section 
II previous work on providing secure key stores is 
considered. This acts as a baseline for comparison with the 
technique presented here. Section III describes the proposed 
solution to this problem whilst Section IV discusses how the 
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approach was evaluated. The results of the evaluation are 
given in Section V. Conclusions and proposals for further 
developing the approach are given in Section VI. 

II. BACKGROUND

The provision of cryptographic services to a system 
depends upon the inviolability of any stored keys. As such 
services form the basis of secure computing, a secure place 
to store them is referred to as a Trusted Computing Base 
(TCB). Finding a means of creating such a TCB in RAM is 
thus an important security problem. This section therefore 
reviews various attempts at organising and protecting 
memory, dating from early multi-tasking operating systems 
and the consequent need to provide process separation 
through to recent hardware crypto-key enclaves before going 
on to review the solution-space technique of System 
Management Mode. 

A. Protecting memory 

1) Memory management/virtual memory 
The idea of programs sharing system resources without 

interfering with each other can be traced back to the MIT 
‘Compatible Time Sharing System’ [7]. Prior to this, only 
one process would be executing hence the idea of 
‘interference’ did not apply. 

Modern processor architectures implement some form of 
virtual memory mapping [8]: the memory a user process can 
access at address 0x10000, for example, may be stored in 
any arbitrary page of physical memory, or indeed be entirely 
absent and filled in by the operating system when an attempt 
is next made to access that, known as a ‘page fault’. 

To reduce the overhead of loading this mapping from 
memory, processors generally feature Translation Lookaside 
Buffers (TLBs), a set of cached address mappings. 
(Architectures have varying approaches to this; on MIPS, the 
operating system explicitly populates TLB entries as needed; 
x86 and more recent ARM variants populate TLB entries 
directly within the hardware without OS involvement, while 
the original ARMv2 had 512 explicit memory mappings 
within the MEMC1 memory controller chip as Content 
Addressable Memory.) 

A key concept in ensuring that concurrently executing 
programs cannot interfere with each other or access their 
data is that each process be allocated its own set of memory 
pages and be unable to access RAM outwith those bounds. 
Attacks such as RowHammer, Heartbleed [9] and Spectre 
have shown that such OS-enforced restrictions can be 
circumvented and thus a more secure approach is required 
when storing particularly sensitive information such as 
encryption keys. 

2) RAM Encryption 
TRESOR [10] demonstrated that a general-purpose 

computer system can be operated with almost all of its main-
memory encrypted while at rest, albeit with a significant 
performance penalty, using a modified Linux kernel. There 
is some overlap with the research this paper describes: 
TRESOR uses the processor debug registers as an area of 
storage which cannot be accessed via Direct Memory Access 
(DMA). This was intended to protect against DMA attacks, 

among others, but was not successful in that respect since 
this cannot protect the associated code: TRESOR-Hunt [11]  
demonstrated a successful attack on this protection, using 
code injection via DMA - an attack which could not be 
prevented through software mechanisms alone. 

TreVisor [12] extended the techniques of TRESOR to a 
hypervisor level in combination with techniques from 
BitVisor [13] to incorporate Intel VT-d (IOMMU) protection 
from DMA attack. 

On other platforms, the ARMORED [14] project applied 
TRESOR techniques to the Android operating system on 
ARM architecture processors as a countermeasure to their 
own FROST [15]  attack, which used a cold boot attack to 
retrieve information from mobile handsets running 
Android 4.0 despite the disk encryption employed. 

3) Address Space Layout Randomisation - ASLR 
Traditionally software systems (and operating systems in 

particular) locate certain critical pieces of information at 
well-known, or at least predictable, memory addresses. 
Having its origins in the (Linux) PaX project [16] ASLR 
involves varying the location of memory contents over time 
thus making it more difficult for an attacker to find those 
critical locations. 

4) Swap encryption 
A cold boot attack can retrieve RAM contents for a brief 

period after a system is shut down, but the system’s virtual 
memory persists indefinitely after shutdown unless explicitly 
wiped. To avoid this, keeping that data encrypted is an idea 
which long predates efforts to encrypt or otherwise protect 
the RAM, including the encrypted swap space [17] 
extensions to the virtual memory (VM) system originally 
proposed as an enhancement of the original 4.4 BSD 
approach [7]. The much slower nature of disk storage meant 
the extra overhead of this encryption was more widely 
accepted early on. 

B. Other approaches to key protection 

The approaches outlined above are general in that they 
seek to prevent cross-process interference between any two 
processes. Given the sensitive nature of crypto-services/keys, 
i.e. the consequences of their compromise, work has been 
done specifically on preventing inappropriate access to such 
keys: This sub-section reviews some typical attempts to 
provide such an enclave. 

1) Process separation 
Process separation in a cryptographic context is a 

software system design principle that demands that all 
handling of keys and cryptographic operations be performed 
in a separate process from the ‘worker’ process thus relying 
on the properties of the OS memory management system to 
deny the ‘worker’ any access to sensitive information. Its 
importance to the current work that the performance of our 
SSM-based solution is compared with a ‘process separation’ 
solution in experiment 4b (See Section IV).  

2) Process isolation 
The commercial content delivery network (CDN) 

Cloudflare has an interesting implementation of TLS/SSL in 
two respects. First, they offer ‘Keyless SSL’ [18] in which 
the site’s private key is handled remotely. Secondly, the 
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SSL/TLS handling is performed in a separate isolated 
instance of the Nginx web server — an example of defence 
in depth which ensured that when a bug was found in their 
HTML parsing implementation, the information disclosed 
could not include site private keys, unlike with the 
widespread Heartbleed bug in OpenSSL [19] — only a 
kernel or hardware level exploit could have exposed the key, 
not an application level one. 

3) VM isolation/hypervisors 
Microsoft recently released a software-only 

implementation of a similar approach, Credential Guard [20], 
in which authentication keys are held in a dedicated virtual 
machine running on top of the Hyper-V hypervisor platform. 
This way, even a kernel compromise of the main operating 
system is not sufficient to extract credentials for reuse: no 
more ‘Pass The Hash’ privilege escalation once a system is 
compromised. Only a compromise of the underlying 
hypervisor itself, or the hardware isolation mechanisms, 
would suffice: a much smaller attack surface compared to the 
full OS. 

4) Trusted Platform Module  
The primary alternative to the general approach outlined 

above, where enhanced security is needed compared to direct 
key handling without extra isolation, is to use a dedicated 
cryptographic hardware device. Some PCs and servers are 
now equipped with a Trusted Platform Module (TPM) which 
provides a dedicated cryptographic and storage facility, with 
a fixed set of algorithms, limited storage and minimal 
performance [21]. 

5) Intel Software Guard Extensions - SGX 
Intel Software Guard Extensions aim to deliver similar 

benefits within the main processor through architectural 
extensions, with an encrypted area of main memory rather 
than one isolated by the memory controller hardware. SGX-
Shield [22] reviews the main limitations of this 
implementation and proposes an implementation of ASLR 
(varying the location of memory contents to make attacks 
more difficult) within this enclave for additional protection 
from outside interference. 

This isolation is a mixed blessing, providing a hiding 
place for less benign code as well [23], while failing to 
protect against variants of the Spectre attack [4]. The TaLoS 
project [24] has significant similarities to the final 
experiment in Section V, in that it seeks to protect the 
encryption keys and traffic over an SSL/TLS connection but 
using SGX rather than SMM to isolate the data in question. 

C. System Management Mode (SMM) 

The approach considered in this paper is based upon the 
System Management Mode of the x86 family of processors 
(see Figure 1). As its operation provides the security 
guarantees necessary for creating a key enclave, it is 
discussed here in detail. 

Figure 1. System Management Mode 

The defining characteristic of SMM is that while the 
processor core is executing code in that mode, it asserts the 
SMIACT2 output line. This signal is interpreted by the 
Memory Controller Hub (MCH): when asserted, addresses 
are decoded differently, enabling access to the otherwise-
inaccessible SMRAM area. Physically, this is just part of the 
main RAM, but gated by the memory controller to prevent 
non-SMM access. In early SMM implementations, the 
address used was 0xA0000, which is also used by legacy 
graphics support: any attempt by non-SMM code to read or 
write this area will access the video memory instead. 

The location of SMRAM is defined by the SMBASE 
register, initially set to 0x30000 (192 kilobytes from the 
bottom of the memory space); setting the G_SMRAME 
control flag on the processor’s SMRAMC (SMRAM control) 
register puts 128 kilobytes of SMRAM at a base address of 
0xA0000, or 640 kilobytes, while setting T_EN (TSEG 
Enable) grants access to a larger area higher up. The address 
layout is depicted in Table I. 

TABLE I. THE X86 PROCESSOR MEMORY MAP

Address Size Content 
(normal) 

Content 
(SMM) 

0xF0000 64k BIOS ROM 

0xC0000 192k Device ROM/Upper Memory 
Blocks 

0xA0000 128k Legacy video SMRAM 

0x00000 640k Legacy (DOS) memory 

It is important to note that SMM is not a privileged mode of 
execution as such, despite common references to it as ‘ring -
1’ or ‘ring -2’ as if it were a more privileged alternative to 
ring 0 in which kernel code executes. For example, Wojtczuk 
and Rutkowska [25] refers to “escalation from ring 3 to 
SMM” — in reality, SMM code is entered in ring 0, and can 
transition to a reduced privilege level if desired. 

In all cases, access to the SMRAM area is permitted only 
if the access is by the processor core (as opposed to any other 
peripheral), and then only if either SMIACT is asserted or 
the D_OPEN control bit in the system chipset is set to permit 
this. As a result, SMRAM has robust protection against any 
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sort of DMA attack: attempted access from the PCI bus or 
elsewhere is not valid at any time. 

1) Bootstrapping SMM 
As noted earlier, access to the dedicated area of memory 

SMM uses (the SMRAM) is gated by the memory controller. 
In order to bootstrap the SMI handler, however, it must be 
possible to load this memory area before the first SMI 
instance. This is permitted by the D_OPEN control bit in the 
chipset: when set, this bit permits access to SMRAM without 
being in SMM. After initialisation is complete, this bit 
should be cleared and the D_LCK (Lock) bit set, rendering 
all the SMM control registers read-only until the processor is 
reset.  

This should be done very early in the system boot 
process by the system BIOS before activating any 
peripherals or executing any other code to prevent malicious 
code using SMM as a hiding place; older BIOS 
implementations often failed to secure the state properly 
during the boot process, leaving the way open for a variety of 
SMM rootkits at least as far back as 2009 [26].  

2) Using SMM for security 
Soon after malicious use of SMM’s isolation property 

was demonstrated, more benign uses were found, with 
HyperGuard [27] in 2008, HyperCheck [28] in 2010, 
HyperVerify [29] in 2013 and a US patent on the concept 
being granted in 2014 [30]. 

The TrustZone-based Real-time Kernel Protection (TZ-
RKP) [31] applies the same concepts to an ARM system, 
using ARM’s TrustZone mechanism in place of SMM. 
(TrustZone was created later, with a ‘Secure World’ entered 
by invoking a Secure Monitor Call exception.) 

The underlying concept in each case is to generate then 
periodically verify cryptographic hashes of critical structures 
or code, in HyperGuard’s case, by walking the Page Tables 
to identify all executable pages marked for supervisor access. 
At the time, this was not wholly sufficient since the 
processor could still execute non-supervisor pages with 
supervisor privilege; the later development of Supervisor 
Mode Execution Protection (SMEP) by Intel [32] closed this 
loophole. 

The level of privilege at which code executes in x86 
Protected Mode is determined by the two least significant 
bits of the CS (Code Selector/Segment) register, so the code 
at a single address in memory may normally be executed at 
any privilege level without modification. This has its origins 
in the 80286’s implementation of Protected Mode, prior to 
the 80386’s introduction of paged virtual memory: as the two 
mechanisms were orthogonal, prior to SMEP a page could be 
user writable (ring 3) yet run at kernel privilege (ring 0). 

III. PROPOSED SOLUTION

This work aims to secure a network-connected system 
against remote or transient physical attack, using a simple 
web server as the model and endeavouring to protect it 
against unauthorised information disclosure, in particular, 
disclosure of the cryptographic keys which are used to 
authenticate the server to clients. The keys and the code used 
to negotiate and verify them are protected by storing them in 

SMRAM as outlined in the previous section. The approach is 
clearly generalisable to securing the authentication material 
on the client end as well: client cryptographic keys, stored 
passwords, and payment mechanisms could also be 
improved. This section thus describes how a secure proof-of-
concept webserver was created which uses an SMM enclave 
to protect the keys it uses for serving HTTPS requests. 

The starting point in creating the proof-of-concept server 
was an OpenSSL example TLS server [33] which was linked 
with Google’s SSL implementation: BoringSSL [34] to 
which was added code implementing the SMM key 
protection from the previous section. The server runs as a 
normal unprivileged application (‘ring 3’) under Linux and 
used TLS 1.2.  

Key design goals for the proof-of-concept server were a 
minimal overhead in each transition to/from SMM, and 
presenting a minimal attack surface on the SMM component 
while enabling the application counterpart to run with 
minimal privileges. From the programmer’s perspective, the 
enclave functions in a manner akin to a physical hardware 
device, passing messages in both directions via a page of 
physical memory.  

A. Overall operation 

Three actions are necessary at boot time: 
- A public/private key pair are generated (see Section 

III.A.1 “Key Negotiation” below) 
- The private key and the code for verifying a candidate 

public key are placed in the SMRAM page. 
- The SMRAM is locked (using technique described in 

Section II.C.1) 
In subsequent operations, i.e., when the webserver wishes 

to serve a page, there is a need to pass information to the 
code now locked in SMRAM. This is achieved through the 
use of a small (4Kb) area (known as the ‘mailslot’) which is 
accessible from both inside and outside of SMM (See Figure 
2). 

Figure 2. API/Using SMM for signature verification 

Userland code inserts any public key to be verified into 
the mailslot, transitions into SMM (See Section III.A.2 - 
“Transitioning to SMM” below) which causes a jump to the 
code in the SMRAM. That code has access to both the 
mailslot RAM and the SMRAM - verifies the public key 
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against the private key held in SMRAM and places the result 
of verification(true/false) in the mailslot RAM and exits from 
SMM causing a return to the calling userland code. 

To make use of the cryptographic enclave services, the 
userspace code must first allocate and lock a page of physical 
memory, determining the underlying physical address via the 
Linux /proc/self/pagemap virtual file and communicating 
this to the SMM enclave at initialisation time. This shared 
page can then be used as a mailslot for exchanging data: the 
userspace (ring 3) code interacts directly with the SMM 
cryptographic code, without transitions to/from the kernel in 
between. 

1) Key negotiation 
To protect the most sensitive data requires the 

construction of some sort of containment to which access 
from all other components is restricted or prevented — but 
with just enough interaction permitted to enable the intended 
use of the keys (or other material) in question. For an 
SSL/TLS web server, the sensitive data is created as a 
public/private key pair. As the name implies, the public part 
of the pair may be freely exported and shared — indeed, it is 
provided to every client connecting, as part of the initial 
protocol handshake — while the private key is never to be 
disclosed to anyone else. To prove the identity of the server, 
a Certificate Signing Request (CSR) is generated and signed 
using the private key; after completion of appropriate checks, 
a Certification Authority (either one trusted by the general 
public and the software they use, such as LetsEncrypt, or an 
internal entity such as the US Department of Defense’s 
internal CA) usually signs that CSR to produce a certificate. 
Any entity can issue certificates, it is merely a matter of 
policy which issuers are trusted or not for any given 
situation; for experimental purposes, a self-issued certificate 
is equally suitable. 

2) Transition to SMM 
The process of transitioning to SMM is worth examining 

as it incurs an overhead and as it needs to be accomplished 
each time a cryptographic verification operation is required, 
minimising that overhead is a worthwhile goal. 

Entry to SMM requires triggering an SMI (System 
Management Interrupt). Ordinarily, hardware interrupts 
cannot be triggered directly from user mode applications; 
first a system call would be required, to effect a transition to 
kernel mode (‘ring 0’ on x86), then the corresponding kernel 
code would trigger the interrupt on the application’s behalf. 
This, however, incurs additional overhead, two mode 
transitions rather than one. A more efficient approach is for 
the application to write to the I/O address 0xb2 as explained 
below.  

Most modern processors implement a unified hardware 
memory map, in which RAM and devices occupy the same 
address space; x86 has two distinct memory spaces, a 64 
kilobyte legacy space accessed via the IN/OUT set of 
instructions, and a much larger space accessed via standard 
memory operations. 

For devices mapped into the main memory space, the 
usual memory permissions apply: the appropriate 4 kilobyte 
(or larger) page could be mapped with appropriate 
permission bits set. The I/O space has different, fine-grained 

permissions: the I/O Permissions Bitmap (IOPB) within the 
Task State Segment (TSS) controls whether access is granted 
or not to any given byte within the I/O address space. On 
Linux, the ioperm system call may be used to enable access 
to any specified I/O address. 

To make use of the cryptographic enclave services, the 
userspace code must first allocate and lock a page of physical 
memory, determining the underlying physical address via the 
Linux /proc/self/pagemap virtual file and communicating 
this to the SMM enclave at initialisation time. This shared 
page can then be used as a mailslot for exchanging data: the 
userspace (ring 3) code interacts directly with the SMM 
cryptographic code, without transitions to/from the kernel in 
between. 

IV. EVALUATION PROCESS

In order to show that the proposed solution is practicable 
(and establish the hypothesis) three aspects of the proof-of-
concept webserver’s behaviour were evaluated: 
functionality, security, and performance. Functionality was 
demonstrated by testing with a) a number of web-browsers 
(Experiment 1) and b) an industry-standard test suite 
(Experiment 2). Security is shown by reasoning from 
properties of the SMM system. Performance was tested by a) 
examining the impact on execution time of the overhead of 
entering and exiting SMM through micro-benchmarking 
(Experiment 3) and  b) comparing the time taken to serve 
pages i) with no key protection (Experiment 4a) ii) with 
‘process-separation’ based key-protection (Experiment 4b)  
and iii) with SMM-based key protection (Experiment 4c). A 
summary is given in Table II below.  

TABLE II. LIST OF VALIDATION EXPERIMENTS PERFORMED AND 

PURPOSE

Num Experiment Purpose 

1 Use with range of 
browsers 

Verifying basic webserver functionality 

2 Qualys - SSL 
Labs 

Verifying webserver SSL protocol 
compliance 

3 Micro-
benchmarking 

Measuring the ‘real-time’ overhead 
imposed by entering and exiting SMM 

4a Comparison of 
webserver 
performance with 
crypto operation 
performed  with 3 
different levels of 
protection 

Measuring the rate that pages could be 
served with crypto-keys handled in-
process, i.e., with no protection 

4b Measuring the rate that pages could be 
served with crypto-keys handled in a 
separate process, i.e., with process-
separation protection 

4c Measuring the rate that pages could be 
served with crypto-keys handled in 
SMM 

As the webserver’s cryptographic code is unmodified – a 
standard x86/x86-64 implementation of the elliptic curve 
algorithms – the key performance metric is the additional 
overhead introduced by transitions to and from SMM. For 
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context, this should be compared with the overhead entailed 
in a context switch between usermode processes (as applies 
where the cryptographic code is run in a separate process, as 
CloudFlare does in their content delivery network’s edge 
devices) and user-kernel mode transitions particularly after 
implementation of the Kernel Page Table Isolation (KPTI) 
changes to mitigate the Spectre/Meltdown security issues. 
Experiments 3 and 4b quantify these. 

For a better indication of the real-world performance 
impact, standard HTTPS benchmarking — downloading 
static content over encrypted connections in each 
configuration tested — gives indicative throughput speeds 
(Experiment 4). 

A. Functionality 

Once the HTTP-over-TLS (HTTPS) server was 
implemented, a variety of protocol interactions were tested. 
Initially, standard HTTPS clients (wget, curl, Mozilla Firefox 
and Google Chrome) were used to verify basic functionality 
(Experiment 1), and any issues encountered resolved; after 
this, the more comprehensive industry standard test suite - 
SSL Labs from Qualys [35] - was employed (Experiment 2). 

B. Security 

The webserver’s resistance to RowHammer and Spectre 
attacks was analysed. While web server performance testing 
is a well studied and long-established field [36][37], security 
is more nebulous. In this context, the architecture is intended 
to provide isolation, and substantial literature has already 
studied the various possible routes to accessing SMRAM 
[25]  — cache aliasing, Memory-Type Range Registers 
(MTRR) manipulation; and early BIOS implementations 
which neglected to enable D_LOCK timeously). It can also 
be verified empirically that the SMRAM-protected data/code 
is not exposed, even to the kernel via a scan of the Linux 
/dev/mem device, which can be configured to expose the 
kernel’s view of the entire memory space. Since the SMM 
protected data has no functioning address except while the 
processor is executing in SMM, exploits such as Spectre 
cannot access this data. (Physical level attacks such as 
RowHammer or address line fault injection could still be 
effective.) 

1) RowHammer 
The RowHammer attack allows modification of bits in 

physically adjacent areas of memory, which could 
theoretically be used to exfiltrate information from the SMM 
enclave. Integrity checking would provide some protection 
against this, while ASLR would make such an attack almost 
impossible — just shifting the code and data by a small 
random number of bytes each time the system is booted 
would mean the attacker was operating blindly (able to flip 
some bits, but without knowledge of which instruction or 
piece of data is being affected), while the use of ‘canary’ 
values around the code and data would make such an 
attempted attack very unlikely to go undetected. Moreover, 
given sufficient knowledge of the memory arrangement in 
use, simply adding a single disused row between the SMM 
code and data area and memory used by the system would 

frustrate any RowHammer attempt: it would corrupt only 
that buffer space, with no effect on the SMM area. 

Also, on the specific test hardware used for the majority 
of this experimentation, the DDR2 memory installed is much 
less susceptible to RowHammer attacks anyway: exploiting 
this generally requires DDR3 or newer, due to the smaller 
feature size and faster access. 

A similar approach would also be effective against most 
direct hardware attacks, such as address line glitching: 
without knowing the exact address to target, a successful 
attack would be very much more difficult than against a 
system without this protection. 

2) Spectre/Meltdown 
The most recent memory protection attacks against 

vulnerable Intel and ARM processor architectures pose two 
potential threats against an SMM protection implementation. 

Firstly, the Meltdown techniques can be used directly to 
extract otherwise protected data, for example from kernel 
buffers, by using the address of that data indirectly then 
observing side-effects of that operation. This is not 
applicable to SMM code or data, since there is no address 
which refers to that memory in the first place. This was 
empirically verified by Eclypsium[38]. 

Secondly, the Spectre attacks have been used against 
system firmware executing in SMM to bypass bounds checks 
(ibid.) — that issue is avoided entirely in this work by using 
only fixed size parameters, with no bounds checks or 
boundaries to be violated. 

C. Performance 

For the performance assessment, two approaches are 
used: first (Experiment 3), microbenchmarks, measuring the 
individual components involved in transitions to and from 
SMM and kernel mode in isolation ; secondly (Experiments 
4a - 4c), to measure the overall performance of a web server 
using different isolation mechanisms, to be able to compare 
SMM isolation’s performance overhead against versions 
with no isolation of key handling and one which uses 
process-level isolation which would protect against process 
level compromise, but not a root or kernel level one as SMM 
isolation does. 

1) Experiment 3 - Microbenchmarking the mode 
transition cost 

The experiment described here investigates the 
performance aspects of using SMM, detailing the 
performance impact of each transition to and from SMM 
compared to transitions to kernel space and back which is the 
dominant factor in the overall performance of the SMM-
isolated server. 

After prototyping work on the Bochs hardware 
simulation, a physical target system was required for 
performance tests.  A Lenovo ThinkPad X200 was obtained 
and loaded with the Libreboot free software project’s variant 
of the open-source Coreboot firmware (Libreboot), including 
its SMI handler code which could then be freely modified in 
theory. An unmodified ThinkPad T60, with similar hardware 
but retaining the original manufacturer’s BIOS, served as 
control, backup and development system, allowing testing of 
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SMM code under the Qemu-KVM virtualisation system in 
conjunction with the related SeaBIOS project[39].  

The first performance tests focused on comparing the raw 
latency penalty imposed by the architecture on transitions 
between userspace and either kernel mode or SMM as 
appropriate. This would give an early indication of the 
viability of the overall approach to explore later, as well as 
determining how much effort might be required to optimise 
the design for performance to be viable. 

Each test consists of executing the function under test 
multiple times, recording the elapsed time and calculating 
the time per iteration from that. To ensure consistency, each 
test was repeated multiple times and checked for outliers. 
Timing is measured in two ways: the system ‘time of day’ 
clock which records times in microseconds and, for the T60 
and virtualised system, the processor Time Stamp Counter 
read via the ‘read time-stamp counter’ (RDTSC) instruction. 
On recent Intel processors, including those in use here, the 
time stamp counter advances at a constant rate regardless of 
power saving modes or clock speed, making this a useful 
timing measurement. (On earlier implementations, the TSC 
rate varied with processor speed, making this usage more 
problematic.) 

The operations tested are listed in Table III. Each set of 
measurements was performed on each test system, to provide 
a baseline for interpreting performance figures later (see 
Section V.C). Table IV shows the test platforms used for 
benchmarking in the experiments.  

TABLE III. OPERATIONS TESTED IN MICRO-BENCHMARKING

Operation Purpose 

NOP SMI Round trip to/from SMM 

open-close System call requiring access to kernel memory 

getpid() Trivial system call to reflect minimal kernel 
transition cost 

signing Execute a cryptographic operation - specifically 
generate a signed certificate 

TABLE IV. TEST PLATFORMS FOR BENCHMARKING

Model X200 T60 Qemu-VM 

CPU Core 2 Duo 
P8400 

Core 2 Duo 
T5600 

Core 2 Duo 
T5600 

Clockspeed 2.26 GHz 1.83GHz 1.83GHz 

RAM 4 GiB 3 GiB 1 GiB 

BIOS Libreboot Lenovo 
original 

SeaBIOS 

The test code was compiled with level 2 optimisation (‘-
O2’), for x86-64, in each case. To gather statistical details 

about the distribution of each individual operation, the test 
code optionally records the TSC value after each; for the 
overall operations, to avoid the extra overhead, a consecutive 
sequence of runs is timed without recording timestamps in 
between, by compiling with the BATCHONLY flag. For the 
1,000,000 iterations of getpid(), 8,000,000 bytes of 
values are written out to memory, almost four times the size 
of the L2 cache, although writing the values to disk is 
deferred until after the timed portion. Ordinarily the 
getpid() function is accessed via vDSO for performance 
reasons— the kernel puts a copy of the PID in the process’s 
own memory space and provides a function to retrieve that 
directly, avoiding the userspace-kernel round trip, but in 
order to measure that round trip the legacy system call is 
used here. 

The getpid() system call was chosen as the most 
trivial, since it only copies a non-sensitive constant integer; 
the open system call will be reading the file system cache, 
which is not readable from user mode, so incurs greater 
overhead in a full transition to restore access to kernel data. 
In normal usage getpid() is faster than this, avoiding a 
system call entirely by returning the process’s own copy of 
this value directly via a mechanism known as Virtual 
Dynamic Shared Object (vDSO). 

The ‘signing’ test measured a realistic cryptographic 
operation carried out entirely in SMM. For a web server to 
be accepted as ‘valid’ for a given name, it must present a 
signed certificate asserting ownership of that name, signed 
by either a trusted root Certificate Authority (CA) directly, or 
an intermediate certificate which is itself trusted. 

This is a two stage process. First, a Certificate Signing 
Request must be generated, containing a copy of the server’s 
public key and a signature using the private key (the private 
key itself is never exposed). Secondly, this CSR must be 
submitted to and accepted by the CA. Originally, this was 
done manually using human verification of documents and 
credentials; this still applies for ‘Extended Validation’ 
certificates, but for standard ‘Domain Validation’ certificates 
this process can now be entirely automatic. Specifically, the 
free “LetsEncrypt” CA allows ownership of a name to be 
verified by publishing specific challenge response values in 
the DNS entries of the name in question, without the server 
ever having to be publicly accessible. This is one variant of 
the Automated Certificate Management Environment 
(ACME) protocol; other variants use the TLS SNI handshake 
process and HTTP messages respectively to accomplish 
similar results via other protocols. 

This allows a public-private keypair to be generated 
within the SMM enclave, issued with a valid certificate, then 
used to host a secured website for testing and demonstration 
purposes, without ever exposing the key material externally. 
For testing purposes, however, this external signing step is 
not necessary: a ‘self-signed’ certificate is sufficient. 

2) Experiment 4 - Webserving 
The proof-of-concept webserver application was operated 

(on the local machine to nullify effects of other network 
traffic) with three different levels of key isolation: none (a 
control), process separation, and fully SMM isolated key 
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handling. In each case the multiple HTTPS requests for 
pages of differing sizes where pages were automatically 
generated (via curl etc.) and the rate at which requests 
were served was measured. This allowed a comparison of the 
relative speeds of the three levels, which are discussed in 
Section V.D. 

V. RESULTS

The results of the four experiments were thus: 

A. Experiment 1 - Basic functionality  

Testing with a range of browsers revealed no significant 
errors. 

B. Experiment 2 - Protocol compliance verification 

The results of testing with the comprehensive industry 
standard test suite SSL Labs from Qualys are shown in 
Figure 3. 

Figure 3. Qualys test suite results 

The “T” score indicates a Trust issue — the test server is 
not configured with a publicly trusted certificate, issued by a 
genuine Certification Authority such as Verisign or 
LetsEncrypt — but all cryptographic and protocol aspects 
are correct; the test suite proceeds to simulate the 
cryptographic handshakes of a variety of common browsers. 
With the exception of Google Chrome on Windows XP 
Service Pack 3, which experiences a handshake failure, all 
compatible clients negotiate and connect correctly. It is 
worth noting that no security checks are performed for 
known vulnerabilities, e.g., Heartbleed etc. – this is purely 
for compliance with the standard. 

C. Experiment 3 -  Microbenchmarking the mode transition 
cost 

The timing figures obtained are shown in Tables V, VI 
and VII below. Unfortunately, the X200 system failed during 
testing, so further results could not be recorded; the 

remaining tests had to be performed on the fallback system 
alone, the T60. SMI calls caused the unmodified T60 control 
laptop to freeze; this appears to be a known, long-standing 
issue with the stock Lenovo BIOS[40]. 

TABLE V. EXECUTION TIME FOR SYSTEM CALLS AND SMI
INVOCATIONS

Operation X200  T60  T60 Qemu-KVM 
Units  μs  μs  TSC  μs  TSC 
NOP SMI 448  Not available 1310  2.4m 
getpid  0.4 1.1 620 21 12k

open/close 3 7.1 3900 26  26k 
signing  Not 

available 
878 1.606m 905  1.65m 

TABLE VI. EXECUTION TIME (TSC TICKS) ON BARE METAL

Operation Minimum 1st Quartile M e d i a n 3rd Quartile Maximum
getpid 1133 1155 1155 1155 5211503 
open-
close 

6347 6479 6512 6545 3776872 

signing 1534995 1542285.25 1544378 1547757.75 2924856

TABLE VII. EXECUTION TIME (TSC TICKS) UNDER KVM 

Operation M inimum 1st Quartile M e d i a n 3rd Quartile M axi m um

NOP 
SMI 

2235276 2326436.75 2921712.5 3618389 26339800

getpid 2 0 2 2 9 2 0 2 9 5  2 0 3 1 7  2 0 3 6 1 33031357
open-
close 

4 4 9 0 2 4 5 3 9 7  4 5 4 9 6  4 5 5 9 5 29565196

signing 1536480 1 5 4 30 6 9 1546578  1596921 12533972

The relative performance of the two hardware test 
platforms is indicated by comparing the first two columns 
indicating the T60 has just under half the speed of the X200 
on system calls, while comparing the two pairs of T60 
figures (‘T60’ represents the test code running directly under 
Linux, ‘T60 Qemu-VM’ represents the same code executed 
under Qemu-VM simulation) indicates the relative 
performance penalty of the simulation system itself: 
approximately three orders of magnitude slowdown (a factor 
of 1,000). On the most trivial system call, the additional 
overhead of simulation dominates (as shown by the much 
smaller difference between getpid and open/close times), but 
the relative performance of SMI invocation and open/close 
calls is more similar: 88 times slower in simulation versus 
149 times slower on bare metal. 

The maximum times for all operations are extreme 
outliers — around 3-5 million ticks on bare metal, around 
four times as high under KVM. Each indicates the test 
application was interrupted during that operation for between 
2-20 ms. The additional KVM overhead is most apparent 
when comparing the getpid operations (a median more than 
17 times slower), closing to a factor of 7 for open-close and 
no discernable difference on cryptographic operations 
performed in userspace. 

The SMI transition overhead is less uniform, with the 
upper quartile more than 55% higher than the lower — an 
interesting characteristic, worthy of further study elsewhere. 
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One important comparison is between the two full mode 
transitions (userland/SMM and userland/kernel mode). Since 
the secured server developed here achieves the security 
benefits by transitioning into SMM before performing each 
signing operation, the relative performance impact of this 
change is indicated by the relationship between the ‘signing’ 
and ‘SMM’ figures: the signature operation in isolation takes 
a little less than the round-trip to and from SMM, 1.6 million 
processor ticks versus 2.4 million. 

D. Experiment 4 - Performance comparison 

The rate of request processing, i.e., the number of 
requests per second served by the webserver, were measured 
in three configurations (for a range of response sizes 1KiB-
MiB) to identify the additional overhead contributed by the 
use of SMM to isolate the cryptographic private key and 
associated code. The control configuration (no isolation at all 
- so no change of mode  - labelled Q0) was compared with 
the simple option (using a separate user-space process for 
isolation userland to kernel mode transition - Q1) and the 
SMM configuration (userland - SMM transition- Q2). The 
measured rates are shown in Figure 4. 

Figure 4. Relative rate of web requests served against response (page) 
size for each configuration of hardware/enclave type 

The performance overhead of simulation as opposed to 
direct execution is apparent. Across the range of request 
sizes tested, physical hardware is consistently and 
proportionally faster than simulated. As the request size 
increases, the difference between SMM and other modes 
diminishes to less than 10% at the largest size, one MiB.  

VI. CONCLUSION AND FUTURE WORK

This work proves the hypothesis: “Secure isolation can 
be practically implemented using only the long-established 
Systems Management Mode mechanisms, giving better 
security isolation than existing techniques such as process 
separation”. In comparison to the baseline approaches 
(typified by those discussed in Section II) the SMM 
approach to key-protection has been shown to address their 
shortcomings and to be robust in circumstances in which 
they are not.  The performance impact of SMM has been 
explored both on bare hardware and in virtualised form, and 

a proof-of-concept server demonstrated and benchmarked 
successfully. Even on relatively old legacy hardware, with 
additional overhead, the performance impact due to SMM 
isolation was not prohibitive — approximately doubling the 
CPU time per handshake operation, causing a performance 
penalty falling from 50% on the smallest payload sizes 
(where the handshaking process dominates the overall 
workload) to 10% at 1 MiB.  

A. Implications of results 

With a working HTTPS implementation using SMM 
security, Experiment 4 gave the best indication of SMM’s 
performance impact in the worst case. The relative 
performance on simulated hardware corroborates the 
microbenchmark results: performing the cryptographic 
handshake computations in SMM approximately halves the 
rate at which handshakes are performed, causing a 
corresponding slowdown on the smallest requests (where this 
aspect dominates the overall server performance), falling to 
around 10% with 1 MiB requests. The effect of size is to be 
expected: SSL/TLS uses two levels of encryption. First, the 
connection is established using public key cryptography. 
This handshake process negotiates two pairs of keys which 
are then used to encrypt subsequently exchanged data and 
has a fixed computational cost regardless of the volume of 
data transferred later. Secondly, the request and response are 
encrypted using those keys, taking time proportional to the 
volume involved. So, on small requests the former aspect 
dominates performance; on larger requests, the latter 
becomes dominant. The performance shown on the smallest 
requests, 572 1k requests per second, is also consistent with 
the bare metal SMM transition measurements from 
experiment 2 of 448 µs on a processor with approximately 
twice the performance (a higher clock speed and faster 
memory bus). 

Our results demonstrate the upper bound on the 
performance or latency cost of isolating the keys in two 
different ways, validating the original hypothesis about 
SMM’s suitability for this technique. At the smallest extreme 
of payload sizes, where the cryptographic handshake for 
each new connection dominates, the additional SMM 
overhead is of a similar magnitude; as the size increases, the 
impact of this extra overhead on overall throughput rapidly 
diminishes. 

B. Future work 

This work confirms the potential for new uses of SMM in 
a security context. Unlike reactive patching, SMM isolation 
provides proactive protection against issues of low-level 
hardware bugs and protection. Alternative areas for the 
application of SMM to improve security are discussed 
below. 

1) Intrusion countermeasures 
The HyperGuard/HyperCheck projects leveraged SMM 

as an integrity checking mechanism to detect and alert 
compromises of a system. These could be incorporated 
within the application of the SMM: not only would the keys 
in SMM remain protected, but the compromise would also 
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be detected and appropriate defensive responses could be 
triggered. 

2) Operation batching 
When adopting the SMM approach, significant gains in 

throughput are expected (in a server situation) from 
performing multiple cryptographic operations per transition 
to/- from SMM: rather than passing individual requests 
immediately, combine the requests into sets and process a 
full set each time. This would amortise the transition cost 
across however many connection handshakes are being 
performed in that batch, trading increased throughput for 
increased latency determined by the batch size. 

3) Other applications and protocols 
Particularly with the inclusion of other algorithms, the 

key protection and handling techniques demonstrated here 
could be applied to other protocols and applications such as 
SSH authentication, cryptocurrency transactions or a 
credential store akin to Microsoft’s Credential Guard (which 
uses a special-purpose virtual machine to isolate credentials 
from the primary OS on desktop systems).  

4) Handshaking overhead in TLS 1.3 
The latest version of TLS has a faster handshake than TLS 
1.2 used in the experiments but the effect of this on the 
overhead should be verified. 
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