
Generation of Distributed Denial of Service Network Data with Phyton
and Scapy

Stefan Görtz
Computer Science and Mathematics
Ostbayerische Technische Hochschule

Regensburg, Germany
email:

stefan1.goertz@st.oth-regensburg.de

Sebastian Fischer
Computer Science and Mathematics
Ostbayerische Technische Hochschule

Regensburg, Germany
email:

sebastian.fischer@oth-regensburg.de

Rudolf Hackenberg
Computer Science and Mathematics
Ostbayerische Technische Hochschule

Regensburg, Germany
email:

rudolf.hackenberg@oth-regensburg.de

Abstract—Distributed Denial of Service attacks are
among the most common and widespread network
attacks. Due to their nature, they are difficult to de-
fend. Intrusion detection systems, based on machine
learning, are a promising approach to counter this
threat. But to train these systems, data sets with
Distributed Denial of Service attacks are needed. An
implemented Python program, which creates Denial
of Services packets and simulates distributed sending
by multithreading, is presented. Unlike synthetically
generated data with the use of simulators, real network
traffic is generated. This eliminates errors and offers a
better basis of data, as machine learning algorithms
need data that is as error-free as possible in order to
learn efficiently.

Keywords—DDoS; Scapy; Synflood; Udpflood; PCAP;
IDS.

I. Introduction

Distributed Denial of Service (DDoS) attacks are among
the most common network-based attacks and cause major
economic damage. In the third quarter of 2022, the number
of DDoS attacks increased sharply by 90%, compared to
the third quarter of the previous year [1]. Internet of
Things (IoT) devices are particularly vulnerable to these
attacks, as they are accessible via the Internet and usually
exchange data with cloud servers.

Detecting DDoS attacks is difficult, because the attack
packets are indistinguishable from ordinary network traffic
[2] and the packages come from many different sources.
An intrusion detection system (IDS) is usually used to
detect these attacks. However, conventional IDSs are no
longer sufficient for more sophisticated attacks. The use of
an artificial intelligence-based intrusion detection system
(iIDS) is a promising approach to detect DDoS attacks.
But for the development of an iIDS, attack data is needed
to train the iIDS’ machine learning modules. Since real
data is not easily available and not classified, generated
data is mostly used. Therefore, this paper presents an
approach to generate real training data using Python and
Scapy. It aims at a possible solution to the following
question: How can DDoS network data on IoT devices
suitable for machine learning be generated?

The paper is structured as follows: in section 2, the
related work is introduced, in section 3 the theoretical

foundations are shown, then our methods are presented
in section 4 and the results are shown in section 5. Section
6 contains the discussion of the results. Subsequently, in
section 7, we draw a conclusion and in the end in section
8, an outlook is given.

II. Related Work

Singh et al. [3] use the network simulation software NS2
to generate a network of 8 clients. They generate network
traces of attack data, which consists injected packets,
mixed with an attack based on a DDoS dataset. Through
this dataset, a DDoS attack of 130 attack hosts on one
target is generated for the duration of 50 seconds with a
maximum throughput rate of 90,000 bps.

Arora and Dalal [4] use NET stress, a network stressing
tool to introduce DDoS Attacks. They generate TCP, as
well as UDP connections and carry out UDP flood and
IGMP Flood attacks for the duration of 50 secs and 38
secs while benchmarking the network performance.

Baly et al. [5] use the graphical networksimulator GNS3
to create a topology of a webserver, three computers and
one intruder with a Kali Linux distribution. The intruder
carrys out DDoS attacks, captured by wireshark as pcap
files.

Alzahrani and Hong [6] use the OMNET++ network
simulator to generate DDoS attack network traffic in
a simulated cloud environment. They generate various
DDoS scenarios: Synflooding, HTTP flooding and UDP
flooding. In addition, they generate non-intrusive traffic.

In contrast to the synthetically generated network traf-
fic, with the use of simulators, we generate real network
traffic. Generating network data synthetically has some
potential sources of error. These are eliminated by per-
forming the DDoS attacks in a real network environment.
Furthermore, we can conduct attacks with longer dura-
tions and more individual attack hosts.

III. Theoretical Foundations

This section lays the theoretical introduction for DDoS
data generation with Python using our method.

8Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

Fig. 1. UDP flooding

A. Denial of Service
Denial of Service (DoS) attacks aim to make a service

unavailable, that is accessible via the Internet, unusable
for legitimate visitors [7]. A distinction is made between
two different attack categories, on the one hand attackers
can aim to overload the network and hardware resources,
for example bandwidth, memory and CPU cycles of the
target, on the other hand, the behavior of the network
protocols used, for example TCP or UDP, can be abused
[8]. In the case of a successful attack, the entire resources
of the attack target or protocol instance are consumed
by the attacker and legitimate requests can no longer be
processed [9].

B. Distributed Denial of Service
DDoS attacks use the DoS techniques with the help of

many attack hosts. The attack hosts are devices, accessible
through the Internet, which are infected with malicious
code and involuntarily participate in the network attacks
[8].

C. Anatomy of DDoS Attacks
Most DDoS attacks (64% in 2022) exploit the Trans-

mission Control Protocol (TCP), followed by the User
Datagram Protocol (UDP) with 22% [10]. The motivation
of most DDoS attacks is political or economic. In so-called
ransom DDoS attacks, cybercriminals blackmail their tar-
get into paying a ransom or holding out the prospect of
a DDoS attack. The most commonly targeted industry
segments include the aviation industry, government in-
stitutions, telecom facilities and media houses. The most
frequent attacks occurred at intervals of ten to twenty
minutes, followed by attacks lasting one to three hours
[11].

D. UDP Flooding
UDP defines a minimal network protocol for connec-

tionless data transfer with no guarantee of complete and
correct data transfer. Applications create an UDP header
for their data and transfer it via Internet Protocol (IP).

This DDoS attack variant uses a large number of packets
to exhaust the hardware resources of the recipient. Ac-
cordingly, UDP flooding attacks belong to the first DDoS
category. To carry out the attack, a high volume of UDP
packets with spoofed IP address is sent to random ports

of the target. UDP implementation on the receiver side
searches for the corresponding application that accepts
UDP packets on the addressed port. If no application
is found, it responds with an Internet Control Message
Protocol (ICMP) error message [12]. Figure 1 depicts the
sequence of an UDP flooding attack. By permanently
addressing different ports, it is ensured that the recipient
sends such ICMP error messages. The attack is successful
when the volume of malicious packets is such that the
victim’s bandwidth is consumed and legitimate requests
cannot be answered.

E. SYN Flooding
Besides UDP flooding attacks, synchronize (SYN) flood-

ing attacks are the most common type of attack. They
exploit TCP, and thus belong to the second category of
DDoS attacks. TCP provides reliable, bilateral data trans-
mission between two network-enabled applications. Data
is transmitted as TCP segments over the IP. Checksums
and the division of data into sequences ensure a complete
and error-free transmission. As in the event of an error,
individual TCP segments are sent again [13].

A TCP connection is described by two sockets and is
uniquely identifiable by its parameters: socket 1 source
IP address, source port and socket 2 destination IP
address and destination port. The data to be sent is
divided into TCP segments, each of which is assigned a
sequence number, to ensure correct data transmission. For
this purpose, the window size is defined within the TCP
header as a set of data, after which the recipient checks
it for completeness and acknowledges it. In addition,
various control bits can be set as flags, for example, for
the establishment or termination of the connection [13].

Connection setup: A TCP instance with no active
connection is in the LISTEN state, while waiting for
incoming connections. The connection between two TCP
instances is established by a 3-way-handshake (see Figure
2), to synchronize the sequence numbers [13][14]:

1) Host A sends a packet with a random inital sequence
number x and the SYN flag set.

2) Host B responds with a set SYN and ACK flag,
acknowledges the sequence number of the first mes-
sage ACK number = x+1 and its own random inital
sequence number y. A half-open connection now
exists. The state of the connection changes on the
receiving host from LISTEN to SYN-RECEIVED.

3) Host A acknowledges the message from Host B
with ACK number = y + 1 and set ACK flag. The
connection between the two hosts is now active and
has the state ESTABLISHED.

SYN flooding is a DoS attack on a host with a TCP
instance. The goal of the attack is to create so many half-
open TCP connections on the attacked host that no more
legitimate requests can be accepted. For each incoming

9Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

Fig. 2. TCP 3-way-handshake

attacker connection request, a TCP connection must be
stored in the backlog queue with its state. The attacker’s
goal is to overflow this storage structure and prevent
legitimate connections from being accepted. To perform
the attack, a host opens a TCP connection by sending a
synchronize packet. The destination responds with a SYN-
ACK packet.

The state of the connection changes from LISTEN
to SYN-RECEIVED. These connections are stored in
the backlog, where the connections dwell until the
sender acknowledges the receiver’s response or the SYN-
RECEIVED timer expires. But as the attack hosts are
spoofed, they never acknowledge the connection. The
attacker is aiming to completely block the backlog. The
TCP standard does not define a universal approach for
a full backlog. Common implementations now ignore new
requests or remove the oldest requests from the backlog.
However, an attacker with enough resources can still con-
tinuously overfill the backlog.

IV. Methods
To generate the DDoS network traffic, a Python pro-

gram was implemented that uses the Scapy library, to cre-
ate network packets. Using Scapy, the packet parameters
can be set individually. This allows spoofing of the source
IP and source Media-Access-Control (MAC) address. In
addition, network packets of different protocols can be
generated, to realize the two DoS attacks described above.
UDP packets on the one hand, and TCP packets with the
SYN flag set, on the other hand.

A. Test Setup
To generate the DDoS network data, a test environment

(see Figure 3) was installed with a selection of different

IoT devices as attack targets: Amazon Echo 2 and smart
cameras from the manufacturers Antela, Nedis, SV3C and
Tapo.

These devices are located in a Wi-Fi network created
by an Unifi Access Point nanoHD. The Wi-Fi network is
integrated into the network created by an Ubiquiti Edge
Router via an Unifi Switch Flex Mini. The IoT devices
gain access to the Internet via this router.

To record the data traffic, a tcpdump instance runs on
the Unifi Access Point nanoHD. This instance intercepts
the Wi-Fi internal data traffic via its network interface.
The tcpdump recording runs continuously to capture both,
normal network traffic from the IoT devices, and attack
traffic. To perform attacks on the IoT devices, the attacker
connects to the Ubiquiti router.

Fig. 3. Network diagram of the test environment

B. Implemented Python Program
The objectdiagram of the implemented Python DDoS

data generation program can be seen in Figure 4. DDoS
attacks are carried out in two stages. In the first stage, the
attack is planned. Either manually or randomly generated
attacks are planned automatically, for which an attack
planner class has been written. In both cases, a target is
selected from the IoT test setup, then an attack protocol,
either synflooding or updflooding is selected. Next, the
attack host network is planned. Each host is identified
by a combination of a spoofed IP address, as well as
a spoofed MAC address. The number of hosts and the
number of packets, to be sent per host, is specified. The
planned attack is written to a comma-separated values

10Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

Fig. 4. Objectdiagram of the implemented Python DDoS data generation program

file that serves as persistent storage. After the attack
planning is completed, the attack packets are created by
a PacketWriter class with the help of Scapy and written
to a pcapng file.

In the second stage, the actual attack is carried out
by the pcapsender class. The previously created pcapng
files are read into the Random Access Memory (RAM)
by Scapy. A threadpool is created depending on the cpu
count of the attacker PC. The read packets are divided
into chunks for parallelized transmission, depending on
the number of cpu cores used. Afterward, the packet
chunks are passed to tcpreplay by Scapy and processed
in parallel.

C. Packet design
On ISO OSI Layer 2, both packet types have a spoofed

MAC address. In ISO OSI layer 3, both types of packets
contain a spoofed IP address which ensures that no IP
addresses from private areas are used. Additionally, this
layer contains the destination address of the attack target.
ISO OSI Layer 4 is individually designed according to
the attack protocol and contains either the UDP or TCP
header.

The depicted Python function (see Figure 5) of the
PacketWriter class takes a host dictionary from the
previously created host network, the attack target IP
address and its TCP port as parameters. A TCP packet is
generated from the transferred data, the spoofed sending

def createSYNpacket(self, host,
target_IP , target_PORT):

src_MAC = host.get("src_MAC")
src_IP = host.get("src_IP")
src_PORT = host.get("src_PORT")

seqN = random.randint(0, 65535)
rndm_raw = random.randint(1,1453)
payload = Raw(b’SYNFLOOD’ + b’X’∗rndm_raw)

packet = Ether(src=src_MAC)
/ IP(dst=target_IP , src=src_IP) \
/ TCP(sport=src_PORT, dport=target_PORT ,
flags="S", seq=seqN, window=0)\
/ payload

return packet

Fig. 5. Python function for TCP synchronize packet creation

parameters are taken from fields of the host dictionary.
A random sequence number is generated for the TCP
header. The payload receives a binary coded flag and
is provided with a random payload length to increase
the variance. Finally, the synchronize flag is set and
the window number is defined with 0. The package is
assembled layer by layer through Scapy and returned to
a packet list.

11Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

Analogous to the createSYNpacket function (see Figure
5), the Python function createUDPpacket creates UDP
packets. The spoofed sending parameters are taken from
a passed host dictionary. The sending port is randomly
assigned for more variance. Likewise, the destination port
is randomized to ensure that most packets do not reach
an UDP application by chance. The payload contains a
binary encoded flag to mark the packet as an attack packet
in the context of data labeling. In addition, the payload
is padded with a random length of binary characters to
increase the variance of the packets.
D. Packet sending

For sending, Scapy passes the prepared packages to the
tcpreplay instance, installed on the attack computer.
This creates a temporary pcapng file. This process is the
bottleneck of the program, besides the number of threads.
However, a loop factor can be defined, so that the same
packet is sent several times. This can increase the speed, at
the expense of variance. In the case of UDP flooding, this
is less serious, since only the payload length represents an
increase in the data set. Whereas with the synchronize
packets of a synflooding attack, additionally, the same
sequence number is sent. This accumulation can also occur
in DDoS attacks by real botnets, depending on how the
flooding function is implemented. If the loop factor is used,
the packet transmission rate increases continuously, since
the packets which are read from the temporary pcap file
can be stored in the RAM.
E. Data Processing

The records created by tcpdump are exported and
processed at cyclic intervals. The network data set can
thus be continuously expanded. These pcaps are then
read and processed by another Python program. Attack
packets are marked as such and labeled with the type
of DDoS attack that the data set is suitable for super-
vised learning procedures. The Python library Scapy is
also used for this purpose; its rdpcap function reads in
the recorded packets and converts them afterwards into
Python dictionaries. Each dictionary is extended by the
fields intrusion (boolean) and attacktype (string, SYN-
FLOOD or UDPFLOOD), this implementation allows an
easy extension with further attack variants in the future.
For each packet, it is checked, if the payload contains an
intrusion flag. If the test is positive, the intrusion flag is
set and the attacktype is noted. If the test is negative, the
intrusion flag is set to false and the attacktype is set to
none. Optionally, the intrusion flag can be removed from
the payload. Otherwise, the payload should not be used for
evaluation by machine learning. Finally, the now labeled
package dictionaries are inserted into a SQL database for
further use.

V. Results
This section describes the results of the generated DDoS

data by the implemented Python program. It generates

TABLE I
DDoS attack effects on IoT devices

DDoS effects on IoT Devices
IoT device Attack type Effect
Amazon Echo synflood success
Amazon Echo udpflood no success
Nedis Cam Gray synflood success
Nedis Cam Gray udpflood success
Tapo Cam C100 synflood success
Tapo Cam C100 udpflood success
Antela Speed Cam synflood success
Antela Speed Cam udpflood no success
Nedis cam white synflood success
Nedis cam white udpflood no success
SV3C camera synflood success
SV3C camera udpflood no success

DDoS attack data of the two most common DDoS variants.
Continuous data logging in the test environment generates
records of idle network traffic intermingled with the net-
work traffic of DDoS attacks. As a result, the records also
contain the beginning and ending of the attacks. This is
important to train machine learning applications on attack
detections.

The following impact of the attacks on the IoT devices
could be observed. The SYN flooding attacks were suc-
cessful in every case. The devices were unreachable within
a few seconds up to a maximum of 60 seconds, for the
duration of the attack. Table I depicts the measured effects
of the DDoS attacks on the IoT devices.

UDP flooding attacks did not cause every device to fail.
This is probably because the IoT devices do not process
incoming UDP packets, they ignore them and therefore do
not allocate resources.

VI. Discussion
This section discusses the research question defined

at the outset. To generate realistic DDoS network data,
the attacks carried out must mimic real DDoS botnets.
An adequately large host network must be simulated
for this purpose. Each of these hosts has an individual
combination of spoofed IP and MAC addresses. This
means that the network traffic reflects a large number of
senders, even though the packets are sent from the same
attacking host. This ensures a high variance in the data
captured.

The following points address the requirements for the
generated data:

1) Packets: Care is taken during packet generation
to ensure that valid packets are generated for the
protocol in question. This is ensured by evaluating
the tcpdump captures. Malformed packets can be
detected and corresponding errors have to be fixed,
to generate a record of real network traffic.

2) Distribution: To simulate not only DoS attacks,
multiple packets are sent simultaneously by using
parallelization with threads.

12Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

3) Attack duration: Various attack scenarios are sim-
ulated. The attack duration takes place in intervals
ranging from ten minutes to several hours. Weighing
whether to maximize the attack quantity or to follow
the parameters as described in the section Anatomy
of DDoS Attacks.

4) Non attack traffic: In order to generate qualitative
datasets, it is important that the network recordings
do not only consist of attacks. So, idle communica-
tion of the IoT devices is also recorded.

VII. Conclusion
Finally, we evaluate the advantages and limitations

of generating DDoS attack data with the implemented
Python program.

A. Advantages
The required type and scope of attacks can be defined

individually as part of the attack planning process. This
allows data sets to be created according to the user’s needs.
For example, very long attacks or many attacks, in short
succession, can be carried out.

Unlike synthetically generated data, the actual sending
of the packets ensures that the network data is correct
and error-free. In addition, the network behavior during
the attack is authentic. There are fewer potential sources
of error in contrast to synthetically generated data, for
example, by network simulators. Also in distinction from
available DDoS data sets, the data can be generated
variably and adjusted according to individual needs.

If a physic attack network were to be implemented for
DDoS data generation, this would be accompanied by
high material costs for the hardware. In contrast, the
implemented Python program is a cost-efficient solution
for data generation [15].

B. Limitations of DDoS Python implementation
The DDoS attack program is limited by the number of

threads on the attack host. Real DDoS botnets include sev-
eral thousand hosts. This is not feasible by multithreading
with a single attack host. The data transfer rate with the
Python program is also lower than in a DDoS attack with
a resource-strong botnet.

C. Augmentation of the training data
For the purpose of training data generation, augmen-

tation techniques are used to extend or adapt the exist-
ing training data set. The main weakness of the DDoS
program is the limited simulatability of a large botnet.
Therefore, it is a good idea to first generate a set of
realistic DDoS attack datasets as large as possible and
then use data manipulation to adjust the training data.
Each packet in the network record has a timestamp at
which it is captured.

By manipulating the timestamp, multiple attacks that
occurred in succession can be combined into a parallel
attack to represent a larger attack. This is only limited

by the number of spoofed hosts. Augmentation can be
done either as part of the package labelling process or
retrospectively in the SQL database.

D. iIDS for defending against DDoS attacks
DDoS attacks are difficult to defend against, and exist-

ing defenses and prevention measures can be largely mit-
igated by the attacker. An iIDS is a promising approach.

It usually consists of various modules, which can detect
network anomalies based on machine learning techniques
and deviations from the usual network traffic of IoT
devices. In addition to anomaly detection, the iIDS can
classify attacks and distinguish between DDoS attacks and
man-in-the-middle attacks [16]. In order to develop an own
iIDS, extensive training data is needed. The implemented
and described Python program is an approach to generate
this training data.

VIII. Outlook
The Python program can be extended to include other

DoS attack variants. Scapy allows the variable creation
of any network packet. This allows ICMP flooding
and HTTP flooding to be implemented. It is planned
to split the attacks across multiple physical hosts to
create a real distribution, in addition to the simulated
distribution through multithreading. For this purpose,
several Raspberry Pis are used to perform simultaneous
attacks on a target. Subsequently, a larger field trial will
be conducted to scale the data generation to a larger
scale. Adding more attack hosts to the experimental setup
gives a true distribution of the attack. In conjunction
with multiple threads, this approaches a larger botnet.

To validate the generated data, it is planned to replicate
publicly available DDoS datasets. Similar host quantity
and variance will be used, also the packet quantity can
be replicated. However, the packet transmission frequency
is limited by the hardware on which the Python program
runs. For further validation, we plan to create a test setup
with an available IDS and train it with our data. This will
allow us to compare the results of our system with the
available one.

References
[1] Infosecurity Magazine, “DDoS Attacks in 2022: Trends

and Obstacles Amid Worldwide Political Crisis,” 2022.
[Online]. Available: https://www.infosecurity-magazine.
com/blogs/ddos - attacks - in - 2022 - trends/ (visited on
06/07/2023).

[2] C. Douligeris and A. Mitrokotsa, “DDoS attacks and
defense mechanisms: Classification and state-of-the-art,”
en, Computer Networks, vol. 44, no. 5, pp. 643–666, Apr.
2004, issn: 13891286. doi: 10.1016/j.comnet.2003.10.003.
[Online]. Available: https : / / linkinghub . elsevier . com /
retrieve/pii/S1389128603004250 (visited on 03/01/2023).

[3] N. Sidhu, K. Saluja, M. Sachdeva, and J. Singh, “Ddos
attack’s simulation using legitimate and attack real data
sets,” J. Scientific And Engineering Research, Jun. 2012.

13Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

[4] Research Scholar, SRM University, Sonepat, (Haryana)
India., S. Arora*, D. S. Dalal, and Professor, Teerthanker
Mahaveer University, Moradabad (U.P), India., “DDoS
Attacks Simulation in Cloud Computing Environment,”
International Journal of Innovative Technology and Ex-
ploring Engineering, vol. 9, no. 1, pp. 414–417, Nov. 2019,
issn: 22783075. doi: 10 . 35940 / ijitee . A4163 . 119119.
[Online]. Available: https ://www. ijitee .org/portfolio -
item/A4163119119/ (visited on 05/10/2023).

[5] A. Balyk, M. Karpinski, A. Naglik, G. Shangytbayeva,
and I. Romanets, “Using graphic network simulator 3
for ddos attacks simulation,” International Journal of
Computing, vol. 16, pp. 219–225, Dec. 2017. doi: 10 .
47839/ijc.16.4.910.

[6] S. Alzahrani and L. Hong, “Generation of DDoS Attack
Dataset for Effective IDS Development and Evaluation,”
Journal of Information Security, vol. 09, no. 04, pp. 225–
241, 2018, issn: 2153-1234, 2153-1242. doi: 10.4236/jis.
2018.94016. [Online]. Available: http://www.scirp.org/
journal/doi.aspx?DOI=10.4236/jis.2018.94016 (visited
on 03/06/2023).

[7] Global Journal of Computer Science and Technology,
vol. 14, no. E7, pp. 15–32, 2014, issn: 0975-4172. [Online].
Available: https : / / computerresearch . org / index . php /
computer/article/view/100887.

[8] D. Mahajan and M. Sachdeva, “DDoS Attack Pre-
vention and Mitigation Techniques - A Review,” In-
ternational Journal of Computer Applications, vol. 67,
no. 19, pp. 21–24, 2013. doi: 10 . 5120 / 11504 - 7221.
[Online]. Available: https : / / www . researchgate . net /
publication / 258790077 _ DDoS _ Attack _ Prevention _
and_Mitigation_Techniques_-_A_Review (visited on
06/07/2023).

[9] S. S. Kolahi, K. Treseangrat, and B. A. S. Sarrafpour,
“Analysis of udp ddos flood cyber attack and defense
mechanisms on web server with linux ubuntu 13,” 2015
International Conference on Communications, Signal
Processing, and their Applications (ICCSPA’15), pp. 1–5,
2015.

[10] A. N. S. Team, 2022 in review: DDoS attack trends and
insights, en-US, Feb. 2023. [Online]. Available: http://
www . microsoft . com / en - us / security / blog / 2023 / 02 /
21/2022- in- review- ddos- attack- trends- and- insights/
(visited on 03/01/2023).

[11] O. Yoachimik, “Cloudflare DDoS threat report for 2022
Q4,” The Cloudflare Blog, 10.01.2023. [Online]. Available:
https://blog.cloudflare.com/ddos- threat- report-2022-
q4/ (visited on 06/07/2023).

[12] Kamaldeep, M. Malik, and M. Dutta, “Contiki-based
mitigation of UDP flooding attacks in the Inter-
net of things,” in 2017 International Conference on
Computing, Communication and Automation (ICCCA),
Greater Noida: IEEE, May 2017, pp. 1296–1300, isbn:
9781509064717. doi: 10.1109/CCAA.2017.8229997. [On-
line]. Available: http://ieeexplore. ieee.org/document/
8229997/ (visited on 03/01/2023).

[13] IETF Datatracker, RFC ft-ietf-tcpm-rfc793bis: Trans-
mission Control Protocol (TCP), 2022. [Online]. Avail-
able: https : / / datatracker . ietf . org / doc / html / rfc9293
(visited on 06/07/2023).

[14] Defenses against TCP SYN flooding attacks. 2006. [On-
line]. Available: https://www.netconf.co.uk/ipj/ipj_9-
4.pdf (visited on 06/07/2023).

[15] S. Alzahrani and L. Hong, “Generation of ddos attack
dataset for effective ids development and evaluation,”
Journal of Information Security, vol. 09, pp. 225–241,
Jan. 2018. doi: 10.4236/jis.2018.94016.

[16] J. Graf, K. Neubauer, S. Fischer, and R. Hackenberg,
“Architecture of an intelligent intrusion detection system
for smart home,” in 2020 IEEE International Conference
on Pervasive Computing and Communications Work-
shops (PerCom Workshops), 2020, pp. 1–6. doi: 10.1109/
PerComWorkshops48775.2020.9156168.

14Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

