
Gestalt Computing: Hybrid Traditional HPC and
Cloud Hardware and Software Support

Jay Lofstead
Sandia National Laboratories

Albuquerque, NM, USA
email: gflofst@sandia.gov

Andrew Younge
Sandia National Laboratories

Albuquerque, NM, USA
email: ajyoung@sandia.gov

Abstract—Traditional modeling and simulation-based HPC
workloads demand a platform optimized for low latency node-to-
node communication and a write intensive IO load. Cloud-based
applications tend to not need the fast communication and are
frequently heavily read dependent. Both of these workloads are
immensely important and demand larger and larger machines
to handle the demand. Unfortunately, budgets demand that
large scale compute be a shared resource for both workloads
in spite of this opposed design priority. Through the use of
persistent memory (PMEM) devices on node, dynamically we
can reconfigure the nodes to either support fast reading through
using the on node-PMEM as a reading cache or as slow DRAM
to reduce the time spent communicating with logical neighbor
nodes. We outline a vision for a machine hardware and software
architecture dynamically shifting to simultaneously support both
workloads as demand dictates with minimal additional cost and
complexity.

Index Terms—HPC, Cloud, hybrid computing, hybrid work-
loads, persistent memory, job scheduling

I. INTRODUCTION

Modern large scale computing is no longer just used for uni-
form modeling and simulation (modsim) workloads, but also
incorporates data intensive workloads like machine learning
and other data analytics techniques. The tools on both sides
have matured considerably and both offer excellent support for
their respective workloads. The new challenge is the realiza-
tion that traditional HPC workload data is being processed by
these newer data analytic techniques. The arriving challenge
is that the generated modsim data needs to be processed as it
is generated eliminating the need to store raw data.

Traditional HPC platforms are organized to best support
large-scale, scale-up workloads. These are a single task that
work on a single or a small number of very large data items
iteratively to explore physics phenomena in some way. These
very large data items can be 1 PB or larger demanding
spreading the computation across many nodes not just for
processing speed, but also simply to be able to hold the data
in working memory.

These scale-up platforms use high performance, low la-
tency interconnect networks, such as InfiniBand [1] and
Slingshot [2], to reduce the communication overheads of
the frequent data exchange operations. Each large data item
represents something, such as a volume of air in a room.
To look at air flow patterns, the individual air molecules, or
some representative value, must be tracked on a short distance

periodic basis in the entire volume. The aggregate size can
be extremely large if extended to something like the global
atmosphere. To evolve the computation, some force in the form
of air molecules with directional velocity are inserted pushing
the existing molecules forming air currents. To perform the
calculations, the data is split into sub-volumes, each assigned
to a compute unit of some sort, and calculated independently.
Since the force is not confined to any given sub-volume, after
each calculation round, the edges are exchanged with the
logical neighbors to enable more independent computation.
Periodically, all of the data is written to persistent storage
for offline analysis of the simulation evolution. One challenge
being faced today and continuing to worsen is that the storage
IO bandwidth is not growing fast enough to absorb data at
the rate scientists are willing to pay for. In essence, unless
the scientists want to spend the vast majority of their compute
time allocation performing IO to storage, they need to write
far less often than they would prefer. Instead, they want to
perform their data analysis and processing tasks, which can
reduce data volumes dramatically, as part of their computation
process.

The new generation HPC workloads run on platforms
organized to best support large-scale, scale-out workloads.
These are many tasks that are used to process a very large
number of relatively tiny data items and use parallelism to
accelerate the computation. Additional compute nodes are used
to increase compute speed, but each computation is largely
independent, allowing seemingly unlimited scaling with linear
speed increases simply by adding more compute capacity.

This new generation, as it encompasses such a large number
of new markets and types of data processing, has prompted
developing rich, accessible tools that with a little work, can
also process the scale-up data. The quality of these tools has
prompted scientists to demand support for incorporating them
directly into their workflows with no regard to the underlying
hardware and software system support. System administrators
are left trying to best support user demands, but with the wrong
tools.

The underlying software infrastructure required for these
scale-out tools generally fits better in an orchestration system.
Current examples such as Kubernetes [3], OpenStack [4], and
Docker Swarm [5] are optimized to dynamically start and
stop a number of service instances on an as demanded basis.

23Copyright (c) The Government of Sandia National Laboratories, 2022. Used by permission to IARIA. ISBN: 978-1-61208-948-5

CLOUD COMPUTING 2022 : The Thirteenth International Conference on Cloud Computing, GRIDs, and Virtualization

Resource sharing performance penalties are a lower concern
since processing is largely independent.

Further motivating this situation are budgetary concerns
from funding agencies. High-end machines are very expensive
to field and operate and the thought of fielding two machines
of similar scale, but a bit different design just to support
two different workloads is not seen as a responsible use of
budget. Instead, the funding agencies have been prompting the
laboratories to find ways to make these workloads co-exist on
a single, slightly larger platform. This will be slightly more
expensive than one to both field and operate and still be able
to handle the aggregate computational needs.

While cloud bursting [6] and multi-cloud deployments may
be able to address the needs in theory, other policy or security
concerns may demand a fully secured, on site deployment.
Export controlled, sensitive, or classified data or processing
have special requirements of the cloud platform and the
connection with it. Certification [7] can allow workloads and
data for some while higher consequence and more sensitive
information still cannot use these infrastructures. This prompts
a need for hybrid on-site resources that can easily handle both
the traditional modsim workloads as well as the data analytics
workloads.

The cost of provisioning a system to fully support both
workloads is prohibitive. Excess DRAM capacity would go
unused for many workloads while node-local high capacity,
low cost storage (e.g., disk or equivalent) introduces even more
costs and failure points. This excess is financially impossible
in essentially all cases. Instead, there needs to be a technology
that can serve both to expand DRAM capacity as well as serve
as node-local storage. Persistent Memory (PMEM) offers such
a solution.

PMEM devices live on the memory bus and are accessed via
load/store instructions. At the same time, compared to DRAM
prices, they are cheaper for capacity. This makes them ideal
for expanding DRAM capacity at a reasonable cost. PMEM
devices, because they offer the additional persistence property,
also offer a way to store larger data quantities on node with
less concern about failures. This dual property makes PMEM
an intriguing solution to the hybrid device need. Unfortunately,
hardware alone is not sufficient to realize the gestalt platform
ideal.

This paper explores a potential systems and software ar-
chitecture leveraging persistent memory devices, such as the
Intel Optane [8], that could offer higher memory capacity
for heavily compute intensive workloads and near-compute
storage for data throughput-intensive workloads.

The rest of this paper is structured as follows. First, in
Section II, we discuss persistent memory devices, their char-
acteristics, and how we propose they can be used. Section III,
we describe the software environment required to support these
hybrid workloads. Two use cases are presented demonstrating
the potential of this design in Section IV. Next in Section V,
we discuss some related work. Finally, Section VI offers
takeaway requirements and challenges we need to address as
a community to achieve a true gestalt platform capable of

easily supporting any mix of traditional HPC mod-sim and
data analytics workloads simultaneously.

II. PERSISTENT MEMORY

Persistent memory (PMEM) devices offer higher capacity at
lower performance and cost than traditional DRAM devices.
One commercially available option is the Intel Optane [8].
Unfortunately, confusing naming hides these devices among
different technology suppressing marketplace visibility. In
spite of this, considerable work [9]–[16] has been done explor-
ing the potential for use as both extended memory (volatile-
style) and storage (persistent-style) devices. This hybrid nature
offers a dual use technology that can be the key enabling
hardware for a gestalt workload.

Typically, to extend memory into a persistent storage media
requires going through a special interface, such as SATA [17]
or the PCIe [18] bus based NVMe [19] devices. Fast, solid
state devices can be deployed through these interfaces, but
interacting with them is fundamentally different from access-
ing regular memory. Instead of a typical load/store instruction,
working through a device driver of some sort is required. The
access granularity is typically a block, which may range from
4 KB to even 1 MB. Reading a single byte from these devices
causes accessing an entire block at a time. The block is then
managed in the device driver’s memory and the single byte is
returned to the caller.

While systems like mmap [20] can hide a block-storage
device behind a memory-like standard API, all it does is to
translate the memory accesses into block-storage accesses with
a memory page granularity. Systems like DAX [21] can more
directly map devices for access, but it is specialized hardware
for accessing slower devices than PMEM.

Prior to PMEM devices, NVMe devices held the fastest
storage devices title. While NVMe is relatively expensive
compared to spinning media (i.e., disks), the performance is
dramatically different making it a difficult choice to deploy
disks except for large capacity, slow access devices. NVMe
devices are not without their limitations. Ceph [22] rewrote
their low-level device access code because their disk and
SSD (over SATA) optimized code was too slow to enable
streaming to NVMe devices at hardware rates. Achieving the
full performance potential is possible, but takes some work.

Compare that configuration against how PMEM devices are
deployed. PMEM devices are placed on the memory bus and
are accessed via load/store instructions within the CPU. The
access granularity is a cache line. Compatible CPUs have been
modified to tolerate the longer latencies involved with using
PMEM devices to avoid timeouts or other failure conditions.
As far as the machine code is concerned, these are normal
main memory devices with no special software drivers or other
interfaces necessary. The performance characteristics are 3x-
5x faster than an NVMe device.

Alternatively, technologies like CXL [23] offer a way to
place these devices across the interconnect for shared use.
Through a CXL accessible pool, a large scale, shared, persis-
tent store can be configured for the machine simplifying and

24Copyright (c) The Government of Sandia National Laboratories, 2022. Used by permission to IARIA. ISBN: 978-1-61208-948-5

CLOUD COMPUTING 2022 : The Thirteenth International Conference on Cloud Computing, GRIDs, and Virtualization

accelerating data sharing among nodes. A recent announce-
ment that Pacific Northwest National Laboratory and Micron
are partnering to investigate this setup to accelerate HPC with
ML/AI workloads [24].

Standard IO routines are tuned for standard IO interfaces
making NVMe devices easy to deploy. A little software
tuning and significant performance advantages can be realized.
PMEM devices require specialized interface code to achieve
the full potential. The pMEMCPY [16] library demonstrates
that without special tuning, even a highly optimized IO library
can only achieve about half the available performance of a
PMEM device. The extra copies in the OS kernel must be
avoided to get the full performance benefits.

A. Machine Architecture
Our proposed hardware architecture is illustrated in Fig-

ure 1. It consists of a CPU and GPU both with high bandwidth
memory and additional PMEM devices capable of holding
as much as 3x the CPU and/or GPU memory. This 3x
capacity has been used for several DOE Leadership Computing
capacity calculations for burst buffers (e.g., Summit at ORNL).
Adopting this standard makes reasonable sense based on this
standard. This enables compute to swap to the PMEM devices
for significantly longer independent computation phases, the
ability to write data for slower migration off node, and to hold
a significant corpus for data analytics tasks to avoid going off
node to load data.

Fig. 1. Proposed Node-level architecture

The interconnect would need to be a traditional HPC-
style interconnect optimized for low latency, high bandwidth
operation, such as InfiniBand. Storage would be in a large,
shared pool that would serve as scale-up scratch for offloading
from the compute nodes or for staging into the compute area
prior to running an analytics job.

Otherwise, the machine architecture could be relatively
“standard”. For example, the scratch/shared storage pool could
be a large scale distributed or parallel storage system with
various tiers from scratch to campaign storage to archive. This
part of the architecture is typically very similar for cloud
or HPC deployments. The main differentiator would likely
be in a cloud deployment, there is more redundancy with
assumed failures while HPC would focus on more reliability
and ability to recover from failures. With standard components
used across both types of machines, the costs are essentially
the same with the software layer differentiating the operational
aspects.

B. Discussion

PMEM devices can fit into the niche needed to take largely
similar platforms and enable them to dynamically adapt to
whatever workload is deployed on them. With an adequate
software layer on top, this gestalt can be achieved.

Complicating this picture are the pricing differences. PMEM
can achieve around 3x the performance of NVMe devices, but
cost 5x as much. Unless that performance gain is essential and
tuning the IO libraries to fully take advantage of PMEM is pos-
sible, it is unlikely worth the extra cost except in specialized
cases. For the purposes of this paper, we are considering two
cases. The first is where the cost is less important than the raw
achievable performance for time sensitive applications. The
second is the potential for eliminating an entire platform’s cost
by deploying this more expensive technology into an existing
platform and adapting the software infrastructure to form the
gestalt.

III. SOFTWARE

Software infrastructure has a long way to go. The cloud
native structure of using a minimal virtual machine to host
containers for the functionality is the right start. For this
system design, we could configure for deployment a minimum
of two Virtual Machines (VMs) or a spectrum with different
ratios of memory-configured or storage-configured PMEM
devices. HPC system administrators are starting to understand
the benefit of this approach, but are still concerned about
performance loss. Given the financial realities, accepting a
tiny performance loss to support diverse workloads may be
the price paid.

While the cloud-native software infrastructure may seem
to be adequate, it does not support bulk-synchronous parallel
workloads well. Cloud-like infrastructure focuses on spinning
up or down independent service instances, potentially all of the
same type. Scale-up HPC best supports a single large instance
spread across potentially all of the nodes. Startup times should
be very similar to avoid wasted compute times as no process
can really get started until all of them have started. The
same is true for the synchronization points. All task processes
communicate to exchange data after each computation phase.
While alternative programming models, such as Charm++ [25]
and Legion [26] seek to break this dependency, they instead
rely on oversubscription to cores and delayed computation

25Copyright (c) The Government of Sandia National Laboratories, 2022. Used by permission to IARIA. ISBN: 978-1-61208-948-5

CLOUD COMPUTING 2022 : The Thirteenth International Conference on Cloud Computing, GRIDs, and Virtualization

to handle communication overheads and delays. That way
computation is never waiting for data to arrive. Net compute
time may reduce, but wall clock time may increase, but on
fewer resources. Further, re-architecting codes into this model
is considerable, non-trivial effort. Finally, the compatibility
of this scale-up model with cloud software infrastructures is
unproven.

Using containers for software deployment makes sense for
many reasons. First, immutable, stored containers offer a
precise reference to what code was run for future publications
and reproducibility. Second, containers eliminate missing or
conflicting third party library problems. As long as the con-
tainer itself can work, then it can work in any compatible
container hosting environment. Third, Continuous Integra-
tion/Continuous Deployment infrastructure is often designed
to work with containers to perform the regular automated
testing tasks. We propose using containers for all of the
software elements given the natural deployment capabilities
developed in the cloud space in addition to others. A simple
picture of this software architecture is presented in Figure 2.

Ideally, all data would be in containers as well. A prototype
of this model called Data Pallets [27] later updated in Olaya’s
Master’s thesis [28], shows the potential for enhancing not just
reproduciblity, but also traceability and understandability for
workflows.

Immutable rather than ephemeral containers are a key ele-
ment. By preserving, unchanged, the containers, reproducibil-
ity is easier to verify. Associating container hash values with
the resulting output offers a strong connection to how the data
is created.

This reproducibility benefit can be enhanced by storing
the virtual machine images used, along with the container
hash codes, to offer a stronger reproducibility foundation for
research. Long term, hardware emulators would be necessary
to replace obsolete/unavailable CPUs or other infrastructure,
but that is a solvable problem.

Finally, combining all of these together requires a system
such as a fully realized Fuzzball [29], to manage deployment.
Better effort on simplifying the system and improving perfor-
mance is needed. Application startup time should be at most
seconds rather than several minutes, as it stands in the pro-
totype version available today. Fuzzball seeks to support both
traditional scale-up and scale-out workloads simultaneously
with a ground-up re-build of the support infrastructure. This
kind of rethinking of the software layer is essential to a hybrid
platform and it requires PMEM, or some similar concept, to
be able to contain costs while meeting the true gestalt.

IV. USE CASES

The first use case is a traditional modsim workload that
couples with data analytics code on separate, or even the
same, node(s) to form a single workflow. The second use case
is a traditional cloud data analytics workflow. A third is a
traditional modsim alone.

Fig. 2. Proposed software architecture

A. Use Case 1: Modsim + Data Analytics

Consider a case with a large scale physics simulation,
such as LAMMPS [30]. LAMMPS is a molecular dynamics
simulator that shows the behavior of molecules or atoms under
various conditions. Depending on the physics complexity, the
amount of data per process can vary widely. For this use case,
assume the physics is moderately complex and LAMMPS
is configured to run on a few dozen nodes. For example,
a fracture simulator or a material melting would both be
appropriate. In both cases, the material volume would be split
across many processes, but the interaction with neighboring
atoms and molecules affects what happens with each other. On
several additional nodes, analysis code evaluates the data to
determine the presence or absence of a fracture, determined by
inter-atom distances, or does a visualization enabling storing
just the image rather than the raw data.

LAMMPS would run normally pushing data to the analysis
nodes periodically. With moderate physics, LAMMPS can use
more on-node memory swapping from HBM to the PMEM
to reduce the communication overheads. For the data anal-
ysis/visualization processes, they need the data to do their
analysis and rendering making storage a better choice. For
many of these routines, they are already written assuming they
will read from storage rather than memory. Reconfiguring the
PMEM to be storage devices enables these codes to run against
PMEM as storage without modification.

B. Use Case 2: Cloud Data Analytics

For a large scale machine learning model generator, reading
and re-reading LOTS of different data items can be necessary.
To avoid contention in both the interconnect and on storage, it
is best to pull the data down to the nodes once and then read

26Copyright (c) The Government of Sandia National Laboratories, 2022. Used by permission to IARIA. ISBN: 978-1-61208-948-5

CLOUD COMPUTING 2022 : The Thirteenth International Conference on Cloud Computing, GRIDs, and Virtualization

and re-read as appropriate. In this case, deploying all of the
PMEM as storage devices makes the most sense.

C. Use Case 3: Traditional Modsim

Using the LAMMPS example again from above, consider
if LAMMPS is running alone and just needs to push output
to storage periodically. In this case, the PMEM could be con-
figured partially as memory and partially as storage to serve
as a staging area (burst buffer) that is sent asynchronously to
off-node storage during the computation intensive phase.

D. Discussion

For all cases, the underlying hardware can be adapted to
best suit the needs of the particular software involved. In the
first case, the simulation code uses the PMEM as on-node fast
swap, but pushes output to the PMEM on the nodes with data
analytics code for further processing and ultimately permanent
storage. In the second case, the PMEM is all allocated for
read-ahead buffers accelerating the processing. The third case
balances use between two needs enabling both more memory
and node-local fast storage. These cases show the potential of
the hardware/software design.

V. RELATED WORK

Related work focuses on scheduling systems and some
specialized platforms. First the various kinds of scheduling
systems are briefly discussed and then the platforms are exam-
ined. This examined more in depth in previous work [6]. Task
scheduling system generally fall into one of three categories
with some newer systems attempting to bridge either the
categories, platforms supported, or both.

A. Grid Scheduling

Grid systems predate clouds and were limited by deploying
on system specific hardware and software. Cloud abstracted
much of that away making it easier to move code from one
system to another. In spite of that, the grid era has technology
that is still relevant and useful today.

Globus [31] offers a tools suite to handle much of the data
movement needs, but it does not offer the mature compute
differentiation needed by these platforms.

To handle hybrid workloads, cross-platform grid scheduling
was attempted [32]. This work, and all similar work, all
suffered from complexity of different back-end system features
and architectures, among other limitations. In short, it was
unable to expose the desired functionality at a complexity level
acceptable to users.

B. Scale Up Task Scheduling

Traditional HPC, scale-up workloads use long standard
schedulers, such as Slurm [33]. As an open source tool with
strong community support, it has grown to handle most HPC
compute management needs. Slurm has grown new features,
such as multi-resource scheduling [34], but that is different
than what the gestalt is trying to do. For multi-resource
scheduling, it assumes that a resource has a single purpose
and just needs to be scheduled along with another resource

(e.g., burst buffer capacity along with compute notes). We are
proposing a different model with uniform hardware that is
dynamically configured based on the workload needs. This
eliminates the need for the more complex multi-resource
scheduling.

A next generation HPC scheduler, Flux [35] is trying to offer
a hybrid HPC and cloud scheduling capability. However, Flux
is just starting to explore how to incorporate cloud resources
and has only scratched the surface of the vast complexities
involved. It will take considerable time and effort for Flux
to successfully integrate a single cloud platform. Much like
Slurm, this is focused on placing workloads on uniform
platforms strictly optimized for one workload type or the other.
Data movement issues are a daunting problem they have not
addressed.

C. Scale Out Task Scheduling

The scale-out schedulers focus on large numbers of small
tasks that often run quickly and exit. Scheduling throughput
of 1000s of tasks per second is needed to keep the machine
busy. Orchestration systems, discussed later, are a variation on
this approach with some different constraints.

The need to handle scheduling a large number of short
running tasks prompted the creation of Sparrow [36] and
similar systems. This shift from the traditional very large
single task with a long run time demanded these new tools
to better handle resource use.

Spark [37] is another popular system that generally scales
well. Mesos [38] with systems like Aurora [39] and Yarn [40]
offer examples of high throughput task oriented schedulers.

Other systems like Omega [41] were built in frustration
of the need to support heterogeneous clusters that evolved as
new hardware was added over time with broken and obsolete
hardware decommissioned. The priority for a system like this
is to support a wide variety of hardware features and enable a
reasonably efficient mapping from job requirements onto the
available hardware balancing needs against availability. This
is different from our goal of uniform hardware, but varying
software.

Some modern software engineering architectures, such as
function-as-a-service [42], embrace this kind of short task
execution model as a central feature.

D. Container Orchestration

The alternative approach for job scheduling has shifted
more to container management rather than task management.
Systems like Kubernetes [3] and Docker Swarm [5] offer
increasingly rich and complex environments for deploying
long-lived services that can dynamically scale on demand.
This architecture has compatibility issues with traditional HPC
workloads, such as deployment time and potentially resource
sharing. For service orchestration, all instances being fully
deployed at nearly the same time is not as important as all
of them running eventually, but soon. That makes this model
less attractive to those wanting more efficient machine usage.

27Copyright (c) The Government of Sandia National Laboratories, 2022. Used by permission to IARIA. ISBN: 978-1-61208-948-5

CLOUD COMPUTING 2022 : The Thirteenth International Conference on Cloud Computing, GRIDs, and Virtualization

E. Hybrid Schedulers

New systems, like Fuzzball [29], intend to work like Flux,
but are rethinking the environment from the ground up. While
the ideas are inspiring, these systems need considerable work
before they can achieve the goals outlined above. For example,
the software system configuration for Fuzzball requires a full
Kubernetes system install to manage the scale out workload
and it does not address the very large scale data items in terms
of moving compute to different kinds of resources. While
these are planned to be addressed eventually, the fully needed
functionality is still an unsolved and unimplemented problem.

F. Other Related Work

The literature that discusses HPC systems at national labo-
ratories [43]–[45] provides rich information about HPC usage
trends, resource utilization metrics, evolution of supercomput-
ers over time, among many other user- and system-centered
topics. Most of the existing studies on HPC environments—
both historic and also recent—pay little attention to cloud
computing and its benefits, considering integration with clouds
to be secondary or optional in nature. With the shifting work-
load demands, revisiting these investigations is an important
priority.

Among the counterexamples, a study of computing re-
sources at the Texas Advanced Computing Center (TACC) [46]
stands out as it describes a considerable number of cloud-
style jobs being processed as a result of integration of TACC
facilities with Jetstream [47], a cloud computing facility spon-
sored and managed by the USA’s National Science Foundation
(NSF).

Chameleon Cloud [48] offers a bare-metal-as-a-service
cloud option. While this is an NSF supported effort focused
on supporting both research and education, the resources are
not as extreme as leadership computing facilities. Instead, the
focus is on supporting smaller scale efforts with a strong
tie to educational environments rather than production-style
workloads. The bare metal aspect is quite appealing for our
model as the full software stack is deployed at runtime on
a per job basis. Shifting this to be more dynamic to a per
node or per core basis would make this a fine contender for
supporting the gestalt we propose.

An additional advantage of this approach concerns power
usage [49]. By using PMEM devices, the energy footprint can
be reduced. This also applies to ML applications [50].

The final part of the related work concerns cloud burst-
ing. These systems look at how to use a cloud resource as
“overflow” for an onsite or just another large scale compute
resource. Work on these bursting approaches [51]–[53] show
the challenges and potential for making these systems work.
Microsoft, with the Azure platform, offer this as a fundamental
part of their cloud strategy. They encourage users to install an
Azure instance at their premises and to use Microsoft’s private
cloud instances as bursting capacity. This enables customers to
right size their on site compute resources to control costs while
not hitting limits for transient peak workloads. Achieving this
kind of balance for HPC and Cloud would offer an excellent

balance by deploying jobs that do not need the HPC platform
characteristics onto the associated cloud when there is demand
for the HPC platform specific characteristics by jobs. However,
these capabilities still do not exist. Further, the most daunting
problem of moving large data items from one platform to
another is left completely unaddressed.

G. Discussion

The kinds of workloads each of these system classes
addresses is different and difficult to address with a single
scheduler and resource management system. This has led to
the fragmentation of platform development efforts, where each
platform is essentially treated as an independent direction for
research and development and optimized to best address its
own, particular subset of the workloads.

The need for a hybrid use platform as we describe exists
today. With machine learning tools being incorporated into
scientific simulations, both worlds must co-exist simultane-
ously on the same platform or latency will dominate the
computations. For climate simulations [54], [55], machine
learning models are substituting for parts of the model that
may have too many parameters or the physics is not fully
understood. Using models generated from observational data,
reasonable estimates of these effects improve the simulation
model quality overall. Using ML to perform initial analytics
is also growing in popularity.

VI. CONCLUSIONS

Overall, we propose that using persistent memory devices,
along with appropriate system software that can dynamically
on a node-by-node, job-by-job basis make a single platform
capable of efficiently handling both traditional modsim scale-
up workloads coupled with data analytics scale out work-
loads. While persistent memory devices are currently cost
prohibitive, NVMe devices offer a more affordable, and still
relatively performant option that can work similarly with
a little software help. We propose that this architecture be
adopted for future systems.

ACKNOWLEDGEMENTS

Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology & Engineering
Solutions of Sandia, LLC, a wholly owned subsidiary of Hon-
eywell International Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-
NA0003525.

REFERENCES

[1] G. F. Pfister, “An introduction to the infiniband architecture,” High
performance mass storage and parallel I/O, vol. 42, no. 617-632, p. 102,
2001.

[2] D. De Sensi, S. Di Girolamo, K. H. McMahon, D. Roweth, and
T. Hoefler, “An in-depth analysis of the slingshot interconnect,” in SC20:
International Conference for High Performance Computing, Networking,
Storage and Analysis, pp. 1–14, IEEE, 2020.

[3] E. A. Brewer, “Kubernetes and the path to cloud native,” in Proceedings
of the sixth ACM symposium on cloud computing, pp. 167–167, 2015.

28Copyright (c) The Government of Sandia National Laboratories, 2022. Used by permission to IARIA. ISBN: 978-1-61208-948-5

CLOUD COMPUTING 2022 : The Thirteenth International Conference on Cloud Computing, GRIDs, and Virtualization

[4] T. Rosado and J. Bernardino, “An overview of openstack architecture,”
in Proceedings of the 18th International Database Engineering & Ap-
plications Symposium, IDEAS ’14, (New York, NY, USA), p. 366–367,
Association for Computing Machinery, 2014.

[5] J. Turnbull, The Docker Book: Containerization is the new virtualization.
James Turnbull, 2014.

[6] J. Lofstead and D. Duplyakin, “Take me to the clouds above: Bridging
on site hpc with clouds for capacity workloads,” CLOUD COMPUTING
2021, p. 63, 2021.

[7] D. I. S. Agency, “Department of defense cloud com-
puting security requirements guide.” https://rmf.org/wp-
content/uploads/2018/05/Cloud Computing SRG v1r3.pdf, 2017.

[8] O. Patil, L. Ionkov, J. Lee, F. Mueller, and M. Lang, “Performance
characterization of a dram-nvm hybrid memory architecture for hpc
applications using intel optane dc persistent memory modules,” in Pro-
ceedings of the International Symposium on Memory Systems, MEMSYS
’19, (New York, NY, USA), p. 288–303, Association for Computing
Machinery, 2019.

[9] D. Li, J. S. Vetter, G. Marin, C. McCurdy, C. Cira, Z. Liu, and W. Yu,
“Identifying opportunities for byte-addressable non-volatile memory in
extreme-scale scientific applications,” in 2012 IEEE 26th International
Parallel and Distributed Processing Symposium, pp. 945–956, IEEE,
2012.

[10] S. Mittal and J. S. Vetter, “A survey of software techniques for using
non-volatile memories for storage and main memory systems,” IEEE
Transactions on Parallel and Distributed Systems, vol. 27, no. 5,
pp. 1537–1550, 2015.

[11] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy,
R. Sankaran, and J. Jackson, “System software for persistent memory,”
in Proceedings of the Ninth European Conference on Computer Systems,
pp. 1–15, 2014.

[12] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and
D. Coetzee, “Better i/o through byte-addressable, persistent memory,” in
Proceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles, pp. 133–146, 2009.

[13] J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and S. Swanson, “An
empirical guide to the behavior and use of scalable persistent memory,”
in 18th USENIX Conference on File and Storage Technologies (FAST
20), pp. 169–182, 2020.

[14] Y. Shan, S.-Y. Tsai, and Y. Zhang, “Distributed shared persistent
memory,” in Proceedings of the 2017 Symposium on Cloud Computing,
pp. 323–337, 2017.

[15] A. Kalia, D. Andersen, and M. Kaminsky, “Challenges and solutions for
fast remote persistent memory access,” in Proceedings of the 11th ACM
Symposium on Cloud Computing, pp. 105–119, 2020.

[16] L. Logan, J. Lofstead, S. Levy, P. Widener, X.-H. Sun, and A. Kougkas,
“pmemcpy: a simple, lightweight, and portable i/o library for storing
data in persistent memory,” in 2021 IEEE International Conference on
Cluster Computing (CLUSTER), pp. 664–670, 2021.

[17] K. Grimsrud and H. Smith, Serial ATA Storage Architecture and Ap-
plications: Designing High-Performance, Cost-Effective I/O Solutions.
Intel press, 2003.

[18] D. Mayhew and V. Krishnan, “Pci express and advanced switching:
evolutionary path to building next generation interconnects,” in 11th
Symposium on High Performance Interconnects, 2003. Proceedings.,
pp. 21–29, 2003.

[19] T. Coughlin, “Evolving storage technology in consumer electronic
products [the art of storage],” IEEE Consumer Electronics Magazine,
vol. 2, no. 2, pp. 59–63, 2013.

[20] L.-x. Wang and J. Kang, “Mmap system transfer in linux virtual memory
management,” in 2009 First International Workshop on Education
Technology and Computer Science, vol. 1, pp. 675–679, IEEE, 2009.

[21] L. K. Foundation, “Linux Kernel Documentation: Direct Access for
Files.” https://www.kernel.org/doc/Documentation/filesystems/dax.txt,
2014.

[22] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in Pro-
ceedings of the 7th symposium on Operating systems design and
implementation, pp. 307–320, 2006.

[23] S. Van Doren, “Hoti 2019: Compute express link,” in 2019 IEEE
Symposium on High-Performance Interconnects (HOTI), pp. 18–18,
IEEE, 2019.

[24] J. Russell, “PNNL, Micron Work on New Mem-
ory Architecture for Blended HPC/AI Workflows.”

https://www.hpcwire.com/2022/03/09/pnnl-micron-work-on-new-
memory-architecture-for-blended-hpc-ai-workflows/, March 2022.

[25] L. V. Kale and S. Krishnan, “Charm++ a portable concurrent object
oriented system based on c++,” in Proceedings of the eighth annual
conference on Object-oriented programming systems, languages, and
applications, pp. 91–108, 1993.

[26] M. E. Bauer, Legion: Programming distributed heterogeneous architec-
tures with logical regions. Stanford University, 2014.

[27] J. Lofstead, J. Baker, and A. Younge, “Data pallets: containerizing
storage for reproducibility and traceability,” in International Conference
on High Performance Computing, pp. 36–45, Springer, 2019.

[28] P. Olaya, J. Lofstead, and M. Taufer, “Building containerized environ-
ments for reproducibility and traceability of scientific workflows,” arXiv
preprint arXiv:2009.08495, 2020.

[29] CIQ, “Fuzzball: HPC-2.0.” https://ciq.co/fuzzball/, 2022.
[30] S. Plimpton, P. Crozier, and A. Thompson, “Lammps-large-scale

atomic/molecular massively parallel simulator,” Sandia National Lab-
oratories, vol. 18, p. 43, 2007.

[31] I. Foster and C. Kesselman, “Globus: A metacomputing infrastructure
toolkit,” The International Journal of Supercomputer Applications and
High Performance Computing, vol. 11, no. 2, pp. 115–128, 1997.

[32] D. M. Batista, N. L. S. da Fonseca, and F. K. Miyazawa, “A set
of schedulers for grid networks,” in Proceedings of the 2007 ACM
Symposium on Applied Computing, SAC ’07, (New York, NY, USA),
p. 209–213, Association for Computing Machinery, 2007.

[33] A. B. Yoo, M. A. Jette, and M. Grondona, “Slurm: Simple linux utility
for resource management,” in Workshop on job scheduling strategies for
parallel processing, pp. 44–60, Springer, 2003.

[34] Y. Fan, Z. Lan, P. Rich, W. E. Allcock, M. E. Papka, B. Austin, and
D. Paul, “Scheduling beyond cpus for hpc,” in Proceedings of the 28th
International Symposium on High-Performance Parallel and Distributed
Computing, pp. 97–108, 2019.

[35] D. H. Ahn, J. Garlick, M. Grondona, D. Lipari, B. Springmeyer, and
M. Schulz, “Flux: A next-generation resource management framework
for large hpc centers,” in 2014 43rd International Conference on Parallel
Processing Workshops, pp. 9–17, IEEE, 2014.

[36] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow: dis-
tributed, low latency scheduling,” in Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles, pp. 69–84, 2013.

[37] D. Cheng, Y. Chen, X. Zhou, D. Gmach, and D. Milojicic, “Adaptive
scheduling of parallel jobs in spark streaming,” in IEEE INFOCOM
2017-IEEE Conference on Computer Communications, pp. 1–9, IEEE,
2017.

[38] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H.
Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained
resource sharing in the data center.,” in NSDI, vol. 11, pp. 22–22, 2011.

[39] F. Pfeiffer, “A scalable and resilient microservice environment with
apache mesos and apache aurora,” SREcon15 Europe, May 2015.

[40] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, et al., “Apache hadoop
yarn: Yet another resource negotiator,” in Proceedings of the 4th annual
Symposium on Cloud Computing, pp. 1–16, 2013.

[41] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes,
“Omega: flexible, scalable schedulers for large compute clusters,” in
Proceedings of the 8th ACM European Conference on Computer Sys-
tems, pp. 351–364, 2013.

[42] T. Lynn, P. Rosati, A. Lejeune, and V. Emeakaroha, “A preliminary
review of enterprise serverless cloud computing (function-as-a-service)
platforms,” in 2017 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), pp. 162–169, 2017.

[43] T. Patel, Z. Liu, R. Kettimuthu, P. Rich, W. Allcock, and D. Tiwari,
“Job characteristics on large-scale systems: Long-term analysis, quan-
tification and implications,” in 2020 SC20: International Conference for
High Performance Computing, Networking, Storage and Analysis (SC),
pp. 1186–1202, IEEE Computer Society, 2020.

[44] G. P. Rodrigo, P.-O. Östberg, E. Elmroth, K. Antypas, R. Gerber,
and L. Ramakrishnan, “Towards understanding hpc users and systems:
a nersc case study,” Journal of Parallel and Distributed Computing,
vol. 111, pp. 206–221, 2018.

[45] G. Amvrosiadis, J. W. Park, G. R. Ganger, G. A. Gibson, E. Baseman,
and N. DeBardeleben, “On the diversity of cluster workloads and
its impact on research results,” in 2018 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 18), pp. 533–546, 2018.

29Copyright (c) The Government of Sandia National Laboratories, 2022. Used by permission to IARIA. ISBN: 978-1-61208-948-5

CLOUD COMPUTING 2022 : The Thirteenth International Conference on Cloud Computing, GRIDs, and Virtualization

[46] N. A. Simakov, J. P. White, R. L. DeLeon, S. M. Gallo, M. D.
Jones, J. T. Palmer, B. Plessinger, and T. R. Furlani, “A workload
analysis of nsf’s innovative hpc resources using xdmod,” arXiv preprint
arXiv:1801.04306, 2018.

[47] C. A. Stewart, T. M. Cockerill, I. Foster, D. Hancock, N. Merchant,
E. Skidmore, D. Stanzione, J. Taylor, S. Tuecke, G. Turner, et al.,
“Jetstream: a self-provisioned, scalable science and engineering cloud
environment,” in Proceedings of the 2015 XSEDE Conference: Scientific
Advancements Enabled by Enhanced Cyberinfrastructure, pp. 1–8, 2015.

[48] K. Keahey, J. Anderson, Z. Zhen, P. Riteau, P. Ruth, D. Stanzione,
M. Cevik, J. Colleran, H. S. Gunawi, C. Hammock, et al., “Lessons
learned from the chameleon testbed,” in 2020 {USENIX} Annual Tech-
nical Conference ({USENIX}{ATC} 20), pp. 219–233, 2020.

[49] R. Farber, “BOOSTING MEMORY CAPACITY AND
PERFORMANCE WHILE SAVING MEGAWATTS.”
https://www.nextplatform.com/2020/12/08/boosting-memory-capacity-
and-performance-while-saving-megawatts/, 2020.

[50] N. Hemsoth, “STORAGE PIONEER ON WHAT
THE FUTURE HOLDS FOR IN-MEMORY AI.”
https://www.nextplatform.com/2021/01/18/storage-pioneer-on-what-
the-future-holds-for-in-memory-ai/, 1 2021.

[51] T. Bicer, D. Chiu, and G. Agrawal, “A framework for data-intensive
computing with cloud bursting,” in 2011 IEEE international conference
on cluster computing, pp. 169–177, IEEE, 2011.

[52] A. Gupta, P. Faraboschi, F. Gioachin, L. V. Kale, R. Kaufmann, B.-S.
Lee, V. March, D. Milojicic, and C. H. Suen, “Evaluating and improving
the performance and scheduling of hpc applications in cloud,” IEEE
Transactions on Cloud Computing, vol. 4, no. 3, pp. 307–321, 2014.

[53] W. C. Proctor, M. Packard, A. Jamthe, R. Cardone, and J. Stubbs,
“Virtualizing the stampede2 supercomputer with applications to hpc in
the cloud,” in Proceedings of the Practice and Experience on Advanced
Research Computing, pp. 1–6, ACM, 2018.

[54] P. A. O’Gorman and J. G. Dwyer, “Using machine learning to parameter-
ize moist convection: Potential for modeling of climate, climate change,
and extreme events,” Journal of Advances in Modeling Earth Systems,
vol. 10, no. 10, pp. 2548–2563, 2018.

[55] V. M. Krasnopolsky and M. S. Fox-Rabinovitz, “Complex hybrid
models combining deterministic and machine learning components for
numerical climate modeling and weather prediction,” Neural Networks,
vol. 19, no. 2, pp. 122–134, 2006.

30Copyright (c) The Government of Sandia National Laboratories, 2022. Used by permission to IARIA. ISBN: 978-1-61208-948-5

CLOUD COMPUTING 2022 : The Thirteenth International Conference on Cloud Computing, GRIDs, and Virtualization

