CLOUD COMPUTING 2022 : The Thirteenth International Conference on Cloud Computing, GRIDs, and Virtualization

Towards Efficient Microservices Management
Through Opportunistic Resource Reduction

Md Rajib Hossen
Dept of Computer Science and Engineering
The University of Texas at Arlington
Arlington, TX, USA
Email: mdrajib.hossen@mavs.uta.edu

Abstract—Cloud applications are moving towards
microservice-based implementations where larger applications
are broken into lighter-weight and loosely-coupled small
services. Microservices offer significant benefits over monolithic
applications as they are more easily deployable, highly scalable,
and easy to update. However, resource management for
microservices is challenging due to their number and complex
interactions. Existing approaches either cannot capture the
microservice inter-dependence or require extensive training data
for their models and intentionally cause service level objective
violations. In our work, we are developing a lightweight
learning-based resource manager for microservices that does not
require extensive data and avoid causing service level objective
violation during learning. We start with ample resource
allocation for microservices and identify resource reduction
opportunities to gradually decrease the resource to efficient
allocation. We demonstrate the main challenges in microservice
resource allocation using three prototype applications and show
preliminary results to support our design intuition.

Index Terms— Microservices; Resource-Management; Cloud-
Computing; Service-Level-Objective; Kubernetes.

I. INTRODUCTION

Cloud applications have been evolving from monolithic
architecture to microservice architecture. For instance, leading
IT companies, such as Netflix, Amazon, eBay, Spotify, and
Uber are adopting microservices [1]-[3]. In contrast to mono-
lithic applications with a few large layers [4], microservice
architectural style consists of a set of loosely coupled small-
scale services deployed independently, each with its process
and database. The services communicate via lightweight com-
munication mechanisms, such as HTTP API, gRpc [2], [5]-
[8]. Figure 1 shows the difference between monolithic and mi-
croservice architectures. Compared to monolithic applications,
microservices are more easily deployable, highly scalable,
easy to update components, and have better fault tolerance.

Microservices, however, come with their own sets of chal-
lenges. As shown in Figure 1, microservices have complex
communication between them. To complete a request, a mi-
croservice may call one or several other microservices in
parallel or sequential order. Due to these complicated rela-
tionships, microservice resource management becomes chal-
lenging. Naive approaches may waste resources by over-
provisioning or violate the Quality of Service (QoS) by
underprovisioning. Moreover, current solutions for resource

Copyright (c) IARIA, 2022. ISBN: 978-1-61208-948-5

Mohammad A. Islam
Dept of Computer Science and Engineering
The University of Texas at Arlington
Arlington, TX, USA
Email: mislam@uta.edu

BUSINESS
LOGIC

DB ACCESS
AYER

Microserivces

lllc

Monolithic Microserivce

Fig. 1. Architecture of Monolithic and Microservices. Monothilic application
blocks are defined and deployed as single units. Microservices offer more
flexibility by decoupling an application into several small units and deploying
independently.

management of clouds are for monolithic applications [9]-
[14]. Although they provide excellent solutions for existing
monolithic applications and data centers, they fail to capture
the complicated relationship among microservices. As a result,
these approaches can not be applied directly to microservices.

With the need for efficient resource management systems,
research in resource management for microservices is gain-
ing momentum in academia [15]-[21]. Prior works focus-
ing on adopting popular approaches from monolithic appli-
cations such as allocation rules and model-based resource
management fail to capture microservice inter-dependences
and interactions in scalable fashion [15], [16]. Meanwhile,
Machine Learning (ML) based approaches require extensive
training data for building reliable models [17]-[19]. Their
heavy dependency on data makes them slow to adapt to
changes in microservice deployment such as software updates
and hardware changes, even to changes in resource demand
due to change workload intensity. More importantly, ML based
approaches need to create Service Level Objective (SLO)
violations to train the models intentionally [18], [20].

In this paper, we present our preliminary results towards
developing a lighter-weight resource manager for microser-
vice that learn efficient resource allocation through iterative
interaction with the microservice application, yet do not
rely on extensive data and avoid intentional SLO violation

18

CLOUD COMPUTING 2022 : The Thirteenth International Conference on Cloud Computing, GRIDs, and Virtualization

during the learning process. As a work-in-progress work,
we show the key challenges of efficient resource allocation
using three prototype microservice implementations. We then
present our solution approach where we start with sufficient
resource allocation for every microservice and then identify
resource reduction opportunities to allocate efficiently. We
avoid causing SLO violations during the learning since we
always maintain at least more resources than required for
each microservice. We also present experimental results from
the prototype applications supporting our solution intuition.
Finally, in future work, we discuss the technical challenges in
our approach and our plans to address them.

The rest of the paper is organized as follows. We discuss
related works in Section II. In Section III, we introduce
the problem of microservice resource management and its
challenges. We present our proposed solution in Section IV
followed by concluding remarks and directions for future work
in Section V.

II. RELATED WORK

Existing efforts on microservice resource management can
be categorized as heuristics-based, model-based, and machine
learning-based approaches. Kubernetes [22] is a popular con-
tainer orchestration system that scales container resources
horizontally and vertically. It decides resource allocation by
defining thresholds for performance metrics such as CPU
Utilization and Memory Utilization [23]. Kwan et al. [15]
propose a rule-based solution to autoscale resources based on
CPU and memory utilization. These rule-based systems require
application profiling for identifying the threshold values that
vary from application to application and require frequent
updates with system changes. To ease these efforts, several
other studies model-based resource management systems such
as queue network, and application profiling based approach to
find optimal resources [16].

ML is another heavily used approach in resource manage-
ment for microservices. ML approaches can be divided into 1)
data-driven and 2) Reinforcement Learning approaches. Data-
Driven approaches usually work by finding the relationship
between performance metrics and response time [17]-[19].
Jindal et al. [17] collected data to calculate the serving
capacity of microservices without violating SLO. Yu et al. [19]
proposed an approach to identify scaling needed services by
using the ratio of 50 percentile and 90 percentile response time
and used Bayesian optimization to scale them horizontally.
Zhang et al. [18] proposed a space exploration algorithm to
gather data to train two machine learning models - Convo-
lutional Neural Network and Boosted Trees. These models
are then used to generate resources for various workloads.
Although these papers consider microservice complexity when
deciding resources, they need extensive experimental data and
intentional SLO violations to train the models. For example,
Zhang et al. [18] collected performance data after intentionally
causing response time going 20% above the SLO. Such
intentional SLO violations may not be feasible for production
systems. Reinforcement Learning or Online Learning is used

Copyright (c) IARIA, 2022. ISBN: 978-1-61208-948-5

.
o

B Latency - 856 ms M Latency - 1050 ms

CPU Allocation
»w = IS
> w o
y 2220202020202 @ @ 0 00O 1

0o LI _II_II_"_II_II_I rnEImiili " Ml
L LB L e YRS EESEETRE
EEScEE3ESESE TS ERe®ESEERRS S
& %02 cg g ¥ 900w AE BT THE
2 “8gcS8 5 o8 £ ow e woE
@ .gouc L] EQ* 2 *] %

8 I
“ S

Microservices

=
[}

(a) Train ticket (total CPU - 38.7)

N
=)
'

M Latency - 236 ms H Latency - 44.4 ms

=
@
@

M Latency - 411 ms B Latency - 181 ms

e
13

CPU Allocation
[
=]
[usy

CPU Allocation
N

e
=)
=)

-] v @ [b

£ 22 585 8 8 TeEEE S8

C&fTEES” $ P TR gEs
< . “

5 E g = g B =7
S e = . .
Microservices Microservices

(b) Sock Shop (total CPU - 7.5) (c) Hotel reservation (total CPU - 9.4)

Fig. 2. Impact of resource distribution among microservice in response time.
The X-axis shows the microservices in each applications, and the Y-axis shows
the CPU allocation of each microservices.

to manage resources dynamically for microservices [20], [21].
Qiu et al. [20] first identifies bottleneck microservices using a
support vector machine and then uses reinforcement learning
to provide resources for bottleneck microservices. However,
they injected anomalies into the system to generate training
data which may not be possible in real life. The AlphaR [21]
uses a bipartite graph neural network to determine the appli-
cation characteristics and then uses reinforcement learning to
generate resource management policy. Although reinforcement
learning provides online learning, they can suffers from a long
training time.

III. OVERVIEW

In this Section, we formalize the problem statement, discuss
the challenges in finding efficient resources, and describe the
experimental settings for implementations.

A. Problem Statement

Using a discrete time-slotted model indexed by k where
the resource management decisions are refreshed once every
time slot, we formalize the microservice management as
the following optimization problem, Efficient Microservice
Management (EMM) where the objective is to minimize the

19

CLOUD COMPUTING 2022 : The Thirteenth International Conference on Cloud Computing, GRIDs, and Virtualization

total resource allocation with the performance satisfying the
SLO.

EMM: minimize
r(k)

N
> ralk) ()
n=1

subject to L(r(k)) < SLO, (2)

Here, N is the number of microservices, r(k) =
(ri(k),r2(k), -+ ,rn(k)) is the resource allocation, and
L(r(k)) is the performance of the microservice application
which is a function of the resource allocation vector r(k).
We define the microservice performance (i.e., £(r(k))) as the
end-to-end 95" percentile response time.

B. Prototype Applications

To study EMM, we deploy three benchmark microservice
applications - a ticket booking platform Train Ticket [24],
a reservation application Hotel Reservation [8], and a e-
commerce website Sock Shop [25]. The Train Ticket, Sock
Shop, and Hotel Reservation applications consist of 41, 13, and
18 microservices, respectively. We deploy these applications
on a Kubernetes [22] cluster with three nodes, each with two
20-cores Intel Xeon 4210R processors. In our resource allo-
cation problem, we mainly consider CPU resource allocation
for each microservice. As memory allocation cannot be easily
changed without restarting the containers, we allocate enough
memory to each container to ensure that the memory does not
become the bottleneck resource. We can set the memory and
the initial CPU allocation following offline profiling used in
typical cloud applications [26]. Notably, in cloud deployments,
it is a common practice to overprovision (e.g., allocate 20%
more resource than required), which fits perfectly with our
solution approach.. We also use Prometheus [27] and Linkerd
[28] to collect performance metrics from containers and the
applications. For all of our prototype implementations, we
consider 95" percentile end-to-end response time as the
performance metrics.

C. Challenges in EMM

Solving EMM is particularly difficult for microservices be-
cause it is very hard to accurately estimate £(r(k)) in practice.
The main reasons are that microservices are interdependent,
and the behavior of microservices changes based on the
workloads and CPU allocations. Moreover, each request to the
applications needs to be processed by several microservices.
Hence, all the microservices in the execution path dictate a re-
quest’s end-to-end response time. If one microservice becomes
a bottleneck, the end-to-end response time will increase. As a
result, even with a fixed total CPU allocation, different CPU
distributions (i.e., different r(k)) among microservices may
produce widely different response times. Figure 2 shows a
motivating example, where we see that for the same amount
of CPU allocation, the response time varies significantly when
the resource distribution among microservices change.

In Figure 2(a), we see that the response time for train ticket
increases more than 20% with an unfavorable allocation. In

Copyright (c) IARIA, 2022. ISBN: 978-1-61208-948-5

(=)}

Resource Reduction Amount B Optimum & Redundant

CPU Allocation
NoWw R u

[uy

carts catalogue frontend orders payment shipping
Sock Shop Microservices

(=]

user

Fig. 3. Illustration of opportunistic resource reduction-based approach.

“4-Train Ticket -*-Hotel Reservation
Sock Shop

Normalized Response
SLSOoLLooRER
NWERIITITAJI®OOO =N

10 11 12 13 14 15 16 17
Normalized Resource

Fig. 4. Changes in response time with resource allocation demonstrating our
intuition for opportunistic resource reduction-based approach.

Figure 2(b), sock shop shows 74% increase and in Figure 2(c),
hotel reservation shows more than 300% increase in response
time due to change in resource distribution.

IV. OPPORTUNISTIC RESOURCE REDUCTION

To circumvent the challenge of estimating the response
time L£(r(k)), we adopt a feedback-based approach where we
do not need to know L(r(k)), instead we use the feedback
from the application to find the response time for a given
resource allocation. We collect this performance feedback at
the end of a resource allocation time slot. We then can find
the minimum resource allocation that satisfies the SLO by
iteratively interacting (i.e., allocating resource and tracking its
impact) with the application. This iterative interaction can be
interpreted as a learning-based solution where we learn the
efficient resource allocations.

However, since we are using a live system for the learning,
we need to carefully decide our resource allocation in each
iteration to avoid SLO violations. Hence, instead of finding
efficient resource allocation, we reframe our solution approach
to finding resource reduction opportunities. More specifically,
we deploy our applications with sufficient resources to satisfy
the SLO and then identify opportunities for resource reduc-
tion from different microservices based on the application’s
performance. Figure 3 illustrates our approach on sock shop
application where we start with CPU allocation of “5” for each
microservice and gradually reduce the resources in iterations

20

CLOUD COMPUTING 2022 : The Thirteenth International Conference on Cloud Computing, GRIDs, and Virtualization

to reach the optimum allocation. Since we start from a high
resource, no microservice becomes the bottleneck to cause
SLO violation during this iterative resource reduction.

To corroborate the intuition of our approach, we run prelim-
inary experiments on our microservice implementations. Our
goal in these experiments is to show that a gradual decrease
in the resource can lead to the optimum allocation. We first
find the optimum resource allocation for each application by
exhaustive trials and errors. We run each application several
times, and during each new run, we increase the resource of
a few randomly selected microservices. The response time of
these experiments is shown in Figure 4 where we normalize
each application’s response time to their respective SLO and
resource allocation to their respective optimum. We see that
a gradual decrease in the resources leads the response time
closer to the SLO. This results support our resource reduction-
based design intuition. Moreover, it proves that, we can reach
the optimum resource allocation eventually.

Note that, the trail and error approach is not applicable in a
live system due to its impact on the QoS. Finally, in the above
experiment that we randomly increase the resource instead of
resource reduction as we have yet to develop our resource
reduction algorithm. Nonetheless, the observation of the evo-
lution of the response time with resource allocation changes
in these experiments holds for the reduction algorithm.

V. CONCLUSION

This paper is part of our ongoing project of developing a
complete resource manager that finds the optimum resources
for every application without human intervention and without
degrading the Quality of Services (QoS).

The preliminary results demonstrate the potential of op-
portunistic resource reduction. To identify the resource re-
duction opportunity, we plan to use the difference between
the response time and the SLO. This is because, in general,
resource reduction increases in response time. Hence, any
room for response time increase (i.e., the difference between
response time and SLO) can be interpreted as a resource
reduction opportunity. The response time is an application-
level metric and does not reveal which microservices are
the best candidates for resource reduction. Hence, we plan
to incorporate microservice-level performance metrics in our
resource reduction algorithm. We will follow two principles
to avoid SLO violations for future iterations. First, we will
maintain microservice-level performance (e.g., utilization) up-
per limits for SLO compliance. We will refrain from further
resource reduction if current metrics exceed the upper limit.
The limits will be dynamically updated based on SLO satis-
faction. Second, we will be conservative in resource reduction.
Instead of reducing a considerable amount of resources in
one iteration, we will use a gradient descent approach to
reduce a small number of resources and then examine the
system performances. This way, it will be guaranteed that
even if the system can not find exact optimum resources, it
will not violate SLO. In addition to avoiding SLO violations,
we will also incorporate workload changes to the optimum

Copyright (c) IARIA, 2022. ISBN: 978-1-61208-948-5

resource allocation as the workload intensity directly affects
the resource requirement for satisfying SLO.

[1]

[2]

[3]

[4]

[5]
[6]
[7]

[8]

[9]

[10]

(11]
[12]
[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

REFERENCES

“Mastering chaos: A netflix guide to microservices,”
https://www.infoq.com/presentations/netflix-chaos-microservices/,
accessed: 01/07/2022.

“Introduction to microservices,” https://www.nginx.com/blog/introduction-
to-microservices, accessed: 01/05/2022.

“Leading companies embracing microservices,”
https://www.divante.com/blog/10-companies-that-implemented-the-
microservice-architecture-and-paved-the-way-for-others, accessed:
01/08/2022.

“The definition of monolithic,” https://www.n-ix.com/microservices-
vs-monolith-which-architecture-best-choice-your-business/, accessed:
01/05/2022.

“The definition of microservice,” https://martinfowler.com/microservices/,
accessed: 01/05/2022.

“What are microservices?”’
01/05/2022.

“Microservice Vs monolithic architectures,” https://www.n-
ix.com/microservices-vs-monolith-which-architecture-best-choice-
your-business/, accessed: 01/05/2022.

Y. G. et al., “An open-source benchmark suite for microservices and
their hardware-software implications for cloud and edge systems,” in
International Conference on ASPLOS, 2019, p. 3—18.

C. Qu, R. N. Calheiros, and R. Buyya, “Auto-scaling web applications

in clouds: A taxonomy and survey,” in ACM Comput. Surv., vol. 51,

no. 4, Jul. 2018, pp. 1-33.

M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Gold-
berg, “Quincy: Fair scheduling for distributed computing clusters,” in
ACM SIGOPS 22nd SOSP, 2009, p. 261-276.

“Hadoop fair scheduler,” https://hadoop.apache.org/docs/current/hadoop-
yarn/hadoop-yarn-site/FairScheduler.html, last Accessed: 01/05/2022.
“Amazon aws autoscale,” https://docs.aws.amazon.com/autoscaling/index.html,
last Accessed: 10/05/2021.

“Azure autoscale,” https://azure.microsoft.com/en-us/features/autoscale/,
last Accessed: 10/05/2021.

M. Wajahat, A. A. Karve, A. Kochut, and A. Gandhi, “Mlscale: A ma-
chine learning based application-agnostic autoscaler,” Sustain. Comput.
Informatics Syst., vol. 22, pp. 287-299, 2019.

A. Kwan, J. Wong, H.-A. Jacobsen, and V. Muthusamy, “Hyscale:
Hybrid and network scaling of dockerized microservices in cloud data
centres,” in 2019 IEEE 39th ICDCS, 2019, pp. 80-90.

A. U. Gias, G. Casale, and M. Woodside, “Atom: Model-driven au-
toscaling for microservices,” Proceedings - International Conference on
Distributed Computing Systems, vol. 2019-July, pp. 1994-2004, 2019.

A. Jindal, V. Podolskiy, and M. Gerndt, “Performance modeling for
cloud microservice applications,” in ACM/SPEC ICPE, 2019, p. 25-32.

Y. Zhang, W. Hua, Z. Zhou, G. E. Suh, and C. Delimitrou, “Sinan: MI-
based and qos-aware resource management for cloud microservices,” in
International Conference on ASPLOS, 2021, pp. 167-181.

G. Yu, P. Chen, and Z. Zheng, “Microscaler: Automatic scaling for
microservices with an online learning approach,” ICWS 2019 - Part of
the 2019 IEEE World Congress on Services, pp. 68=75, 2019.

H. Qiu, S. S. Banerjee, S. Jha, Z. T. Kalbarczyk, and R. K. Iyer, “FIRM:

An intelligent fine-grained resource management framework for slo-
oriented microservices,” in 14th USENIX Symposium on OSDI, Nov.
2020, pp. 805-825.

»

https://microservices.io/, accessed:

X. H. et al.,, “Alphar: Learning-powered resource management for
irregular, dynamic microservice graph,” in 2021 IEEE IPDPS, 2021,
pp. 797-806.

“Kubernetes: Production grade container orchestration,”
https://kubernetes.io/, accessed: 01/20/2022.

“Kubernetes horizontal pod autoscaler,”

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-
autoscale/, last Accessed: 10/05/2021.

Z. et al., “Fault analysis and debugging of microservice systems: Indus-
trial survey, benchmark system, and empirical study,” IEEE Transactions
on Software Engineering, vol. 47, no. 2, pp. 243-260, 2021.

“Sock shop microservice demo,” https://microservices-demo.github.io/,
accessed: 08/31/2021.

21

CLOUD COMPUTING 2022 : The Thirteenth International Conference on Cloud Computing, GRIDs, and Virtualization

[26] Y. Gan, M. Liang, S. Dev, D. Lo, and C. Delimitrou, “Sage: Practical
and scalable ml-driven performance debugging in microservices,” in 26th
ACM International Conference on ASPLOS, 2021, p. 135-151.

[27] “Prometheus - from metrics to insights,” https://prometheus.io/, last
Accessed: 10/08/2021.

[28] “Linkerd: A different kind of service mesh,” https://linkerd.io/, accessed:
08/31/2021.

Copyright (c) IARIA, 2022. ISBN: 978-1-61208-948-5

22

