
Integrity through Non-Fungible Assessments in Cloud-Based Technology Courses

Aspen Olmsted

Fisher College

Department of Computer Science, Boston, MA 02116

email: aolmsted@fisher.edu

Abstract— The US and world economies need more trained

technical workers. These workers' demand has driven

prominent private universities to create large, reduced-cost

programs for graduate students. Unfortunately, less than

twenty-five percent of the population has an undergraduate

degree, and most do not have the pre-requisite knowledge to

enter these graduate-level programs. In this paper, we look at

developing an undergraduate technology program through

cloud-based automatically graded labs and assessments that can

guarantee the integrity and availability required to scale these

programs to meet the demand for workers with these skills. We

develop techniques to increase lab participation and integrity

through a concept we call non-fungible labs. We also formulate

testing assessments that allow each student to have a different

version of the test. We provide preliminary evidence that these

assessments have, in fact, increased engagement and integrity in

our online sections of courses in our undergraduate Massive

Open Online Courses computer science programs.

Keywords-E-Learning; Cloud Computing; Cybersecurity;

Auto-Graders

I. INTRODUCTION

Demand for Cybersecurity workers alone is estimated to
increase three hundred and fifty percent between 2013 and
2021 [1]. In response, large universities have created online
cybersecurity graduate programs with reduced tuition to
attract adult learners. New York University (NYU)
established a Cyber Fellows scholarship program that
provides a 75% scholarship to all US eligible workers [2].
Georgia Institute of Technology (Georgia Tech) has created
an online MS degree earned at the cost of fewer than ten
thousand dollars [3]. Both of these programs are designed to
scale to thousands of students. Fisher College [4] is a small
minority-serving private liberal arts college located in
downtown Boston, MA. At Fisher College, we have designed
an undergraduate program designed to serve our students
online with scalability and integrity.

Like many sciences, computer science devotes a great
deal of the students' time to learning to hands-on lab
activities. These labs include core application, programming,
database courses, and upper-level information technology,
computer science, and cybersecurity courses. In
programming courses, these labs have the students write
application code in the language of the course. In database
courses, the students are often submitting SQL queries in
response to question prompts. In information technology and
cybersecurity courses, the labs are often steps taken on real
systems to configure systems or eliminate vulnerabilities.

In face-to-face classes, instructors often use reverse
classrooms to have hands-on time with the instructor or a

Teaching Assistant (TA). When they get stuck, they can get
started again quickly without a long duration between
submissions. The students watch lectures, read and take
quizzes at home and work on the labs to facilitate the just-in-
time assistance. We show that students who learn with
uninterrupted time do better in the completion of the labs.

There is often a long time between a question and
submission for students in online classes and the response or
feedback that allows them to continue learning in the lab.
Online auto-graded systems help ensure that the student will
immediately get feedback, but the student may have to wait
for online office hours or a response to a forum post to
continue with work. There is also a problem of ensuring
integrity that the student submitting the result is the student
who did the lab activities.

In this paper, we describe a technique we use in
developing auto-graders that allow the student to receive
feedback quicker while improving the integrity that the
submitter is the author of the lab. The feedback comes in the
form of auto-grader unit test results and allows for peer
discussions around the assignments. The number and quality
of peer discussions increased because, in some cases, each
student has a unique derivate of the lab they the students are
completing. We call these derivate labs non-fungible because
the solutions to each lab are not mutually interchangeable. So,
instead of stopping student peer communication about lab
solutions, we can encourage student sharing. Students
naturally want to discuss the problems when they run into
issues. With fungible assessments, we discourage this. With
non-fungible assessments, peer-to-peer student sharing has
increased the students' understanding of the lab that cannot
exist with fungible assessments.

The organization of the paper is as follows. Section II
describes the related work and the limitations of current
methods. In Section III, we describe the elements in the
secBIML programming language. Section IV explains the
auto-graders we developed for our database courses. Section
V describes how we developed our auto-graders for
programming courses. Section VI investigates the way we
build auto-graders for upper-level computer science courses.
In Section VII, we drill into the auto-graders in our cyber-
security upper-level courses. Section VIII looks at our
research questions and preliminary empirical data. In Section
IX, we discuss early data in our work with non-fungible
assessments and granularity. We conclude in Section X and
discuss future work.

II. RELATED WORK

Jeffrey Ulman [2] developed an E-learning system with
derivate questions. The system was called Gradiance Online

30Copyright (c) IARIA, 2021. ISBN: 978-1-61208-845-7

CLOUD COMPUTING 2021 : The Twelfth International Conference on Cloud Computing, GRIDs, and Virtualization

Accelerated Learning (GOAL). GOAL provided quizzes and
labs for several core computer science topics, including
operating systems, database design, compiler design, and
computer science theory. Each course was linked to a
textbook with several quizzes per chapter and sometimes a
few labs. The examinations were composed of questions with
separate pools of correct and incorrect answers. When
students take an exam, they are presented with a multiple-
choice quiz where one correct answer and several wrong
answers are displayed for the student to choose the right
answer. The system's standard configuration was four correct
answers and eight incorrect answers—this configuration
yield two hundred and twenty-four non-fungible questions
per each original item in the quiz. We have used GOAL over
the years in database courses and found the non-fungible quiz
questions allowed them to discuss the exam without giving
away the answer. The non-fungible versions of the
assessment will also enable an instructor to answer a single
version of an assessment as an example in an online lecture.
Unfortunately, GOAL only proved derivatives in the quizzes
and not in the labs. GOAL's labs were auto graded, giving
students immediate feedback, but since all students worked
on the same labs at home, it was hard to stop answer sharing.
Our work here supplements the job done in GOAL by
providing both automated grading of labs and non-fungible
questions per student. It was easier for GOAL to have
derivative quizzes than it was for developing the derivative
labs. The GOAL system was designed to run learner self-
paced entirely. Labs often lead to many students' questions,
so our belief is the GOAL system did not want to tackle this
challenge. Our implementation assumes some form of
interaction with the instructors, TAs, or peers.

McGraw Hill [3] produces a commercial E-Learning
product called SIMnet. SIMnet ambition is to teach students
the skills required in the utilization of the Microsoft Office
suite. SIMnet provides auto-graded labs that grade the
students' submissions of database, spreadsheet, presentation,
and word processing software. Students can learn the skills
through online lessons that present the tasks in both reading
and video format. SIMnet does protect the integrity of each
student's work by inserting a unique signature into the starter
file that the students download. If a student tries to upload a
file with a different student's signature, the system catches the
integrity violation. Either the upload is rejected, or the
instructor is notified, depending on the lab configuration.
Unfortunately, the labs that the students perform are not
differentiated between students, so nothing stops one student
from copy the work in the other students' files. Our work here
improves the integrity of the students' submission by deriving
a different problem per student so they cannot just copy the
other student's work.

Gradescope [4] sells a commercial E-Learning product
that allows instructors to scan student paper-based
assignments. The grading of the paper-based assignments
can then be automated through the E-Learning system. The
scanning feature has driven many mathematics and science
departments in universities to adopt the system. A relatively
unknown function of the system is the auto-graded
programming framework. Gradescope designed a system

that allows a student to upload a file for an assignment. The
system then spins up a Docker [5] Linux session that is
configured for the task. Test cases are developed in the auto-
grader configuration with specific grading weights assigned
for each test. We utilize this auto-grading environment for
our non-fungible SQL, Python, and C# based labs.

III. DATABASE AUTO-GRADER

The auto-grader we developed for the database courses
creates a docker environment with a MySQL database
running on a Linux environment. The students upload their
query with a specific name: query.sql. The auto-grader then
reads the metadata about the assignment to determine the

Figure 1. Student Lab ER Diagram

TABLE I. SAMPLE VALUE TEST.

Field Value

Name Assignment 1

Value 1 Product_code

Value 2 Prodcut_name

Value 3 List_price

Order List_price

Derivative Random Row

31Copyright (c) IARIA, 2021. ISBN: 978-1-61208-845-7

CLOUD COMPUTING 2021 : The Twelfth International Conference on Cloud Computing, GRIDs, and Virtualization

assignment name and performs between three and five tests.
Each test is weighted at two points each.

The test is actually stored in the MySQL database that is
installed in the Docker session. The database connected has
both the test information for the auto-graders and the same
data provided to the students for their lab. There are two types
of unit tests

• Value tests

• Existence tests
For the value tests, each assignment has a row in the

value_unit_tests table. TABLE I shows a sample assignment
row for a query that returns a specific product record. The
primary key for the value_unit_test table is the name of the
assignment. The value_unit_test also contains three value
tests, along with an order test. The last value in the
value_unit_test is the non-fungible method. Currently,
supported non-fungible methods are:

• Random Row – In this non-fungible method, the
student's login is converted to a unique number
between 1 and the maximum assignment
number. The unique number comes from an
order the student id comes in the roster. The
system will read the specific record in the order
by value from the database to prompt the student
to return that record

• Random Range – This is similar to Random Row
but asks the students to return a tuple between a
start and end value. The start value is the same
as the random row value, and the end value is the
fifth value after that record

Figure 1 shows the Entity-Relationship (ER) diagram for

the student lab database. An assignment description website
was built to display the question values that match the
student's auto-grader tests logged in. The auto-grader will
score the student on ten possible points distribute across five
tests:

1. Did the query execute
2. Did the values match for the 1st value?
3. Did the values match for the 2nd value?
4. Did the values match for the 3rd value?
5. Did the order match

Existence tests are similar to value tests, except they are

used to grade queries that mutate the database, such as insert,

update and delete statements, and queries that create views,
functions, stored procedures, and triggers. In the case of
existence tests, the auto-grader will score the student on six
possible points distribute across five tests:

1. Did the query execute
2. Did test 1 pass
3. Did test 2 pass

TABLE II shows an example of an entry for the existence

unit test table. The case is from an assignment where the
student needs to write a query to create a new index. The test
types are either exists or not exists. The test will either pass
or fail if there is a value returned from the query. For an exist
unit test type, data should be returned for success. For not
exists unit test type, no data should be returned for a
successful test. Instead of a derivative based on a specific
record as we used in the value unit tests, replacement
variables are used to change the queries. TABLE III shows the
available replacement variables. The variables allow names
based on the user logged in, tables and columns to be different
for each student, and literal string and numbers to
randomized.

IV. PROGRAMMING AUTO-GRADER

We had previously developed a set of auto-graded
foundational programming assignments in Python, Java,
Visual Basic, and CSharp for students in a first programming
class. Unfortunately, many of these assignments did not lend
themselves to derivates that required different solutions per
student. In our first attempt, we randomized the test cases to
ensure students were not hard coding the output to match the
input tests. To illustrate the challenge, we will itemize the labs
below:

• Labs to Practice Programming Expressions:

• Hello World – In this assignment, the student
just outputs the words – Hello World.

• Coin Counter – In this assignment, the student
would be sent input variables for the number of
quarters, dimes, nickels, and pennies and would

TABLE II. SAMPLE EXISTENCE TEST.

Field Value

Name Assignment 2

Test 1 Show index from @RandomTable
where
key_name=@login_orders_ix

Test 1 Type Exists

Test 2 Show index from
@RandomTable where
key_name=@login_orders_ix and
column_name =
‘@RandomColumn

Test 2 Type Exists

TABLE III. REPLACEMENT VARIABLES.

Variable Meaning

@login The user code for the logged in
user

@RandomTable A random table from the
students sample database.
This variable can be suffixed
with a number between 1 and
9

@RandomColumn A random column from the
random table selected in the
variable above. This variable
can be suffixed with a number
between 1 and 9

@RandomWord A random word from the
dictionary

@RandomInt A random possitive integer

32Copyright (c) IARIA, 2021. ISBN: 978-1-61208-845-7

CLOUD COMPUTING 2021 : The Twelfth International Conference on Cloud Computing, GRIDs, and Virtualization

output the total in dollars and cents.

• Coin Converter – In this assignment, the
students would be given dollars and cents, and
they would output the minimum number of coins
by denomination.

• BMI Metric – In this assignment, the student
would send weight in kilograms and height in
meters, and they would output the BMI.

• BMI Imperial - In this assignment, the student
would be sent input of weight in pounds and
height in inches, and they would output the BMI.
The students would need to convert the imperial
measurements to metric before calculating the
BMI.

• BMI Metric with Status – This assignment is a
modification of the earlier work and adds a
decision branch to display Underweight,
Normal, Overweight, or Obese. The students
have not learned decision branching yet, so the
expectation is they will use modular division for
this problem.

• Labs to Practice Programming Iteration & Decision
Branching:

• Cash Register – This assignment allows multiple
inputs of item prices along with a club discount
card and tax rate. The student outputs the base
price, price after discount, and total price.

• Call Cost – This assignment provides the
students with a rate table based on the day of
week and time of day. Input is sent with the day,
time, and duration of the call, and the students
outputs the total cost for the request.

• Even Numbers – This assignment has the student
output a certain number of event numbers based
on the number input.

• Fibonacci - This assignment has the student
produce the first n Fibonacci numbers. The
number n is sent as input to the program.

• Labs to Practice Programming String Operations:

• String Splitter – This assignment tests the
student's ability to divide up an odd length input
string into middle character, string up to the
middle character, starting after the middle
character

• Character Type – This assignment has the
student read a character of input and classify it
into a lower-case letter, upper case letter, digit,
or non-alphanumeric character.

• Labs to Practice Programming Functions:

• Leap Year Function – This assignment has the
student write a function that takes a parameter
and return true if the year is a leap year

• First Word Function – This assignment sends a
sentence as a parameter to a function the student
writes, and the student returns the first word of
the sentence.

• Remaining Word Function – This assignment
sends a sentence as a parameter to a function the

student writes, and the student returns the
remaining words after the first word of the
sentence.

• Labs to Practice Programming Lists:

• Max in List Function – This assignment sends a
list of integers as a parameter to a function the
student writes, and the process should return the
largest integer in the list.

• Max Absolute in List Function – This
assignment sends a list of integers as a parameter
to a function the student writes. The function
should return the maximum absolute value of
each integer in the list.

• Average in List Function – This assignment
sends a list of integers as a parameter to a
function the student writes, and the function
should return the average of all the integers in
the list.

A. Non-Fungible Programming Labs

We modified the above labs that allow students to practice
programming expressions to receive a derivative version.
Each of these labs initially provided the student with a
formula or included an inherent method. For example, the
Metric BMI lab provided students with the procedure to
calculate BMI by taking the weight in kilograms and dividing
by the height in meters squared. The currency-based labs
used an inherent method for converting the value of each
coin. For example, a nickel is worth five pennies in the US
currency. We modified the labs to use different currencies or
measurement systems for each student, so the calculations
and currencies utilized different constants and exponents in
the calculations. For example, one student would calculate
the BMI using the formula of three times weight divided by
two times height raised to the fourth power.

V. IT COURSE AUTO-GRADERS

This section will drill into different categories of lab auto-
graders we have developed for Information Technology
courses. Information Technology courses often use many
tools in the labs to allow the students to understand the
concepts from the lectures.

A. Helpdesk Course Auto-graders

In a helpdesk course, students learn technical problem-
solving skills so they can solve end-user IT problems. We
developed labs deployed through Docker sessions with
questions and recipe-type instructions for the students to
solve technical issues. We utilize the Linux Bash history file
to auto-grade the student's work to ensure they execute all the
recipe commands. Each student has a different user id shown
in the bash prompt stored in the history file that ensured we
had derivatives for each student. If a student tries to submit
a file with a different prompt from the submitting student, the
grader detects and rejects it.

33Copyright (c) IARIA, 2021. ISBN: 978-1-61208-845-7

CLOUD COMPUTING 2021 : The Twelfth International Conference on Cloud Computing, GRIDs, and Virtualization

B. Networking Admin Course Auto-graders

Like the helpdesk course, the networking admin course
teaches the student the core competency around network
tools. We developed labs utilizing Wireshark Packet Capture
(PCAP) files. The students perform a network scan and then
answer questions about their scan in a Google Form. They
upload their PCAP file to the grader, and the grader compares
the data to the form values utilizing Scapy [9]. Scapy allows
the grader to parse the PCAP file and ensure that the student's
form submission matches the data in their scanned file. We
provide no two students submit duplicate PCAP files in two
ways; the first is to ensure the timestamp is recent (within one
hour of submission). We stored a CRC code for previous
submissions and rejected secondary submissions that match.

VI. COMPUTER SCIENCE COURSE AUTO-GRADERS

This section will drill into different categories of lab auto-
graders we have developed for upper-level Computer Science
courses. The upper-level computer science courses often
include theory and high-level algorithms and protocols. The
students need to apply these algorithms and protocols in
programming labs to reinforce the ideas from the lectures.

A. Operating Systems Auto-graders

In an operating system course, students learn how
operating systems manage limited hardware resources so that
many application programs can run simultaneously. We
developed auto-graders that allowed the students to explore
the data structures and algorithms used to manage physical
memory, virtual memory, hard disks, and the central
processing unit (CPU).

B. Networking Programming Course Auto-graders

Students learn about the Open Systems Interconnection
model (OSI) model and Transmission Control
Protocol/Internet Protocol (TCP/IP) layers in a networking
course. The students write programs in Python that utilize

TCP/IP services that talk to a cloud application.

VII. CYBERSECURITY SCIENCE COURSE AUTO-GRADERS

This section will drill into different categories of lab auto-
graders we have developed for Cybersecurity courses.

A. Information Security Auto-graders

Students learn about threat modeling, security policy
models, access control policies, and reference monitors in an
information security course. We developed a set of auto-
graded reference monitor labs. The student implements a
reference monitor in each lab that implements different
access control policies and security policies.

B. Secure Programming Auto-graders

In a secure programming course, students learn how to
develop code free of vulnerabilities. The perspective in a
secure programming course comes from the concept that the
code is a white box. The students have full visibility of the
source code as they perform labs to secure the code. We
developed labs where students are provided code with
vulnerabilities. Docker auto-graders are provided that exploit
the vulnerabilities. Students need to improve the code and
submit a version without the original vulnerability to receive
credit.

C. Penetration Testing Auto-graders

In a penetration course, students think about security from
a different perspective. The perspective in a penetration
testing course comes from the concept that the code is a black
box. The students do not have visibility into the source code
they are trying to penetrate in the labs. We developed labs
where students are provided a signature for a code library
with vulnerabilities. Docker auto-graders are equipped to
execute the students' code and determine if they found a
weakness.

Figure 3. Empirical Data

Figure 2. Empirical Data

34Copyright (c) IARIA, 2021. ISBN: 978-1-61208-845-7

CLOUD COMPUTING 2021 : The Twelfth International Conference on Cloud Computing, GRIDs, and Virtualization

VIII. EMPIRICAL DATA

In this section, we examine the data we gathered from
three sections of a database course. There were three
questions we wanted to answer about our use of auto-graders
in the cybersecurity curriculum:

• Do the auto-graders help online student progress
quicker through a lab

• Do the auto-graders help increase participation at the
undergraduate level in labs

• Do the non-fungible assessments help students by
facilitating peer discussion?

We choose the database course because every lab had a
non-fungible version so that each student was working on a
unique problem in the lab. The original face-to-face section
used manual graded lab submissions without non-fungible
derivatives, one online section used auto-graded fungible
labs, and one section used non-fungible labs. The students in
the face-to-face section had a reverse classroom where they
worked individually on labs during class time, and the
instructor would answer questions as they ran into problems.
In the non-fungible labs section, a discussion forum was
provided for students to complete the lab.

Figure 2 shows a summary of the data we used to answer
the questions. The average time between submissions was
reduced significantly for the two sections that utilized auto-
graders. The number of submissions was increased for the
two sections that used auto-graders. Lastly, the participation
rate was raised for the two sections that used auto-graders.

The three research statements' answer was a strong yes to
the first two and a weaker yes to the third question. The auto-
graders helped online student progress quicker through the
lab by shortening the time between submissions. The
increase in submissions with the auto-graded assessments
shows an increase in participation. In our small study, the
auto-graders helped increase involvement at the
undergraduate level in both versions of the labs. Lastly, we
believe the non-fungible assessment helped students by
facilitating peer discussion. The participation rate was a little
lower for the derivative version of the labs. Still, we felt it
was close enough to the non-derivate lab to show progress in
learning since students were performing unique work, and the
increased student communication help to facilitate that
progress.

IX. GRANULARITY OF ASSIGNMENT AND PARTICIPATION

 In this section, we examine the participation rates in the
self-paced online courses. Our goal is to increase student
participation in technology courses while increasing the
integrity of the assessments. We offered three core
technology courses through the edX [10] platform on
programming, networking, and operating systems. TABLE IV
shows the enrollment and completion data from the first year.
The number of auditors is the number of learners who signed
up for the free version of the course in the table. The free
version offered the recorded lectures, readings, and

discussion forums. The verified users pay a small fee for
access to the assessments, course certificate, and
undergraduate credits. Based on our first year of data in three
foundations courses, less than half the students who took the
initiative to sign up as a verified learned completed enough
of the assessments to earn the course certificate and the
undergraduate credits. The courses are still available for the
students to complete the work, but we do not expect students
who lost motivation to return.

In a recent experiment, we offered programming courses
on the Coursera [11]. These offerings were targeted at an
audience with less technical experience. In our development,
we wanted to create non-fungible programming assignments
and opted for smaller grained tasks than we offered in our
early work. For example, if we assess a lesson on iteration,
the student is given a job that has them write a loop until a
condition is seen in each student's different code. These
offerings are just a few months old, but preliminary data
shows a much higher completion rate by the learners in these
assigned.

X. CONCLUSIONS AND FUTURE WORK

Our research demonstrates that the use of our E-learning
auto-graded assignments improves participation in the
technology course assessments. We also show that using our
technique of creating non-fungible versions of the lab for
each student can increase communication between students
and improve learning. Our future work will continue to
develop finer-grained versions of assessments that allow for
labs in the advanced courses that randomize the unit test data
and provide for non-fungible assessments per student. We
will also gather more empirical evidence in the future to show
how the auto-graders improve the learning experience for
online E-Learners.

REFERENCES

[1] S. Morgan, "Cybersecurity Talent Crunch To Create 3.5
Million Unfilled Jobs Globally By 2021," Cybercrime
Magazine, 24 October 2019. [Online]. Available:
https://cybersecurityventures.com/jobs/. [Accessed 8 April
2020].

[2] NYU Tandon, "NYU Cyber Fellows," 2020. [Online].
Available:
https://engineering.nyu.edu/academics/programs/cybersecur
ity-ms-online/nyu-cyber-fellows. [Accessed 8 April 2020].

[3] Georgia Institute of Technology, "Online Master of Science
in Cybersecurity," 2019. [Online]. Available:
https://info.pe.gatech.edu/oms-
cybersecurity/?utm_source=cpc-

TABLE IV. ONE YEAR STUDENT PARTICIPATION RATES

Course Auditors Verified Completed

Programming 39,657 698 241

Networking 17,671 743 273

OS 16,945 721 264

35Copyright (c) IARIA, 2021. ISBN: 978-1-61208-845-7

CLOUD COMPUTING 2021 : The Twelfth International Conference on Cloud Computing, GRIDs, and Virtualization

google&utm_medium=paid&utm_campaign=omsc-search-
converge-
top5&gclid=CjwKCAjw7LX0BRBiEiwA__gNw2xT3-
grxlfiyfYGdGDGIpZZSkf6_bIttgoipp830ue3le5MByUu0h
oCGtoQAvD_BwE. [Accessed 8 April 2020].

[4] Fisher College, "Find the world at Fisher," 2020. [Online].
Available: www.fisher.edu. [Accessed 8 April 2020].

[5] J. D. Ullman, "Gradiance online accelerated learning," in
Proceedings of the 28th Australasian Conference on
Computer Science, Newcastle, Australia, 2005.

[6] McGraw Hill, "SIMnet," 2020. [Online]. Available:
https://www.mheducation.com/highered/simnet.html.
[Accessed 6 April 2020].

[7] Gradescope, "Grade All Coursework in Half the Time,"
2019. [Online]. Available: https://www.gradescope.com/.
[Accessed 6 April 2020].

[8] Docker Inc, "Debug your app, not your environment," 2020.
[Online]. Available: https://www.docker.com/. [Accessed 6
April 2020].

[9] Philippe Biondi and the Scapy community, 2021. [Online].
Available: https://scapy.net/. [Accessed 3 February 2021].

[10] edX Inc., 2021. [Online]. Available: www.edx.org.

[11] Corsera Inc., 2021. [Online]. Available:
https://www.coursera.org/. [Accessed 15 Febraury 2021].

36Copyright (c) IARIA, 2021. ISBN: 978-1-61208-845-7

CLOUD COMPUTING 2021 : The Twelfth International Conference on Cloud Computing, GRIDs, and Virtualization

