
How to Prevent Misuse of IoTAG?

Bernhard Weber

Dept. Electrical Engineering and
Information Technology

Ostbayerische Technische Hochschule
Regensburg, Germany

email:
bernhard1.weber@st.oth-regensburg.de

Lukas Hinterberger

Dept. Mathematics and Computer Science

Freie Universität
Berlin, Germany

email:
lukas.hinterberger@fu-berlin.de

Sebastian Fischer∗

and Rudolf Hackenberg†
Dept. Computer Science and Mathematics

Ostbayerische Technische Hochschule
Regensburg, Germany

email:
sebastian.fischer@oth-regensburg.de∗

rudolf.hackenberg@oth-regensburg.de†

Abstract—Since IoT devices are potentially insecure and offer
great attack potential, in our past research we presented IoTAG, a
solution where devices communicate security-related information
about themselves. However, since this information can also be
exploited by attackers, we present in this paper a solution against
the misuse of IoTAG. In doing so, we address the two biggest
problems: authentication and pairing with a trusted device. This
is solved by introducing a pairing process, which uses the simul-
taneous authentication of equals algorithm to securely exchange
and verify each others signature, and by using the server and
client authentication provided by HTTP over TLS. We provide
the minimum requirements and evaluate the methods used. The
emphasis is on known and already proven methods. Additionally,
we analyze the potential consequences of an attacker tapping
the IoTAG information. Finally, we conclude that the solution
successfully prevents access to IoTAG by unauthorized clients on
the same network.

Keywords—Internet of Things; IoTAG; device pairing; device
authentication; trusted connection.

I. INTRODUCTION

As more and more devices are connected to the Internet,
the so-called Internet of Things (IoT), the risk that the devices
will be misused by attackers is also increasing [1]. In order to
obtain an overview of one’s own devices in the home network,
especially in the consumer sector, we have developed the
IoT Device IdentificAtion and RecoGnition (IoTAG) solution
[2]. The devices provide security-relevant information about
themselves to a central location (e.g., the router), which can
use this information to make an analysis about security. The
security analysis can be done once for each individual device
and once for the complete network. IoTAG is made available
to the device’s network as a service which is accessible using
Hypertext Transfer Protocol Secure (HTTPS) and uses the
JavaScript Object Notation (JSON). IoTAG in its currently
proposed version allows the access of this information by any
device on the same network.

Since this information can also be useful to a potential
attacker, we want to extend IoTAG so that the data is only
shared between the device and a trusted central point (hub).
This is to prevent an attacker from, for example, reading the

firmware version of a device via IoTAG and thus finding a
potential vulnerability if the firmware is no longer up to date.

In this paper we evaluate the various options for establishing
a trustworthy connection that cannot be misused by a foreign
device afterwards. Several aspects have to be taken into
account. First, it may be possible that there is no hub in the
network. In this case, the IoTAG should not be retrievable.
However, if an IoTAG-capable hub is subsequently installed,
it must be possible to activate it. In the second case, the
IoTAG should only be read by a trusted hub. Each device must
remember this hub. A subsequent change must be possible, but
only with the explicit consent of the user. Otherwise, the entire
mechanism is obsolete if an attacker can still find a way to
get at the data.

At the end of the paper, we evaluate the risk if an attacker
gets hold of the IoTAG information and what dangers result
from this. If the IoTAG is used sensibly and, ideally, all
devices are constantly provided with updates, then this security
mechanism is not necessary, because the attacker cannot find
any new attack surfaces even with the information.

The paper is structured as follows: Section II starts with
the related work and similar approaches. Section III describes
the security threat to our IoTAG solution. Section IV covers
the solution to prevent attackers to misuse IoTAG. Section V
contains the specified minimum requirements and in Section
VI, we evaluate the security, if an attacker gets the IoTAG
data. At the end, in Section VII, a brief conclusion is given.

II. RELATED WORK

There are already a number of approaches for implementing
a pairing process between IoT devices and a central hub.

J. Han et al. propose a method that enables pairing without
human intervention [3]. Instead, the recordings of multiple
devices within an infrastructure are matched to ensure that
the devices are in physical proximity. This approach is based
on the assumption that events within the infrastructure, such
as the movements of a person, can be detected by multiple

18Copyright (c) IARIA, 2021. ISBN: 978-1-61208-845-7

CLOUD COMPUTING 2021 : The Twelfth International Conference on Cloud Computing, GRIDs, and Virtualization

devices with their respective sensors and thus the position of
the device can also be determined This method assumes that
the devices are physically shielded from the outside world and
explicitly refers to smart home environments. It also assumes
that a potential attacker has no access to this infrastructure.
Since our approach is intended to enable the use of IoTAG in
both industrial and private environments and both indoors and
outdoors, Han et al.’s approach is not applicable.

The approach developed by X. Li et al. also relies on the
combination of several sensor values to validate the pairing
process [4]. The authors propose the use of wearables for this
purpose. For example, when a button is pressed, it is possible
to record the hand movement required for this via a smartwatch
and to compare whether the button was actually pressed by the
user. However, since it cannot be assumed that the end user of
the IoTAG device has the necessary hardware, this approach
is not suitable for use with IoTAG.

A similar approach is followed by S. Pan et al. [5]. This is
based on the motion data collected by the device sensors and
a camera that also evaluates these movements. This method
is suitable for the use of devices that are both, portable and
wireless, but not for wired or industrial devices.

III. SECURITY THREAT

IoTAG provides a network scanner with valuable informa-
tion about the devices and their specifications in a IoT network.
It supports the evaluation of the security of those networks,
but the proposed IoTAG standard has no limitation to who
could access the provided data. This allows it to be used by a
variety of software programs and keeps the standard open to
use for everyone. On the other hand, this could also be used
by an attacker as an easy way of gaining knowledge about the
targeted network and the exact devices and firmware versions
used. Although, there are other relatively easy and reliable
ways to accomplish that, as shown by V. Sivaraman et al.
[6], this paper provides a solution to secure the IoTAG further
against malicious use.

iot device 1

''
iotag hub

55

IoTAG Req
//

))

iot device 2 // Router

gg

oo

ww
iot device 3

77

Figure 1: Example of a simple network using IoTAG.

The current published version of IoTAG has no limitation
of which devices on the same network are allowed to access
the device’s metadata. This enables the use of IoTAG by
simply scanning a network for devices which are offering the
IoTAG on the specified port. Figure 1 shows a simple network
topology containing IoT devices and a router, which acts as
a gateway to the internet, and a device which accesses all

available IoTAGs. Such a device or software is hereinafter
called ”IoTAG hub“.

The target of the attack, which the solution proposed in
this paper aims to solve, is to gain access to the IoTAG for
malicious use. The attack is deemed successful if a device in
the same network is able to access the meta data provided
by IoTAG without the explicit permission by the network’s
owner. For example, a smart speaker, which is connected to the
network and was programmed to collect all available IoTAGs
and send them to the manufacturer for market studies, is
considered malicious. In this paper we assume that the attacker
already gained unrestricted access to the user’s network.
This, for example, could have happened by compromising
an existing device, which is reachable from the internet, or
by guessing or brute-forcing the pre-shared key of a wireless
network. Additionally the attacker has the ability to capture
all packets send over the network.

IV. SOLUTION

To lock down the IoTAG against malicious use, its access
must be limited to applications trusted by the user. This is
achieved by only sending the tag to a requesting and authorized
client. It splits the solution into two parts: Specifying the
protocol used for authenticating a request and defining how the
client gains the trust of the user and therefore gets credentials
for the authentication process.

A. Authentication

For the communication with the clients, the current draft
specifies the Hypertext Transfer Protocol (HTTP) over Trans-
port Layer Security, short TLS, which combines to HTTPS
(Hypertext Transfer Protocol Secure), as defined in RFC 2818
[7]. This limits the authentication to protocols which are based
on HTTPS or alternatively to a self-developed protocol. As
security is the main focus of this project, an own protocol is
the least favorite of those option, because it would open an
area for potential vulnerabilities in comparison to the use of
well established and audited protocols. HTTP over TLS, as
implied by the name, tunnels HTTP through a TLS encrypted
connection. Both Protocols offer their own ways of authen-
ticating a user. HTTP has two standardized ways, namely
Basic Authentication and Digest Access Authentication, which
are specified in the RFC 2617 [8]. The main difference is
that Basic Authentication does only encode, but not encrypt,
the transmitted password, while Digest Access Authentication
hashes the password and, if implemented securely, also pre-
vents replay attacks.

TLS on the other hand allows the client to provide the server
with a client certificate during the handshake, as specified
in RFC5246 7.4.6 [9], which allows for the authentication
of the client. The client certificate has to follow the X.509
format, which is specified in RFC 5280 [10]. This format
includes a signature which is unique and either signed by a
trusted authority or using the certificate’s private key. During
the TLS handshake, the client has to proof that it holds the

19Copyright (c) IARIA, 2021. ISBN: 978-1-61208-845-7

CLOUD COMPUTING 2021 : The Twelfth International Conference on Cloud Computing, GRIDs, and Virtualization

private key, belonging to the certificate and the server. In this
case, the IoTAG service has to check if provided certificate
belongs to an authorized client. This can either be achieved by
maintaining a certificate authority, which signs the signature of
the certificates for the allowed clients, or, if it is signed by its
own private key, by validating and comparing the certificate’s
signature to a list of allowed signatures.

The proposed solution for IoTAG is the use of the client
certificate based authentication in the TLS protocol version
1.2 or above. The devices need to offer at least the cipher
suite “TLS RSA WITH AES 256 CBC SHA256” for TLS
1.2 [9] or “TLS AES 256 GCM SHA384” when using TLS
1.3 [11] to be future proof and to ensure that the device
supports both AES-256 and SHA-256, which is used during
the pairing process. The hub needs to support both TLS
versions and both ciphers and ideally should also support the
use of the other cipher suites specified. This option is chosen
over HTTP authentication because it is implemented in the
security layer itself. Basic authentication’s security is purely
based on the secure channel which is used for communication.
A potential attacker could silently break the SSL encryption
during the initial pairing, as the server certificate used by the
device is unknown to the hub at this point. The credentials are
transmitted without any encryption and could easily be reused,
once the attacker knows them. The Digest Access Authentica-
tion on the other hand is encrypted, but the credentials need
to be sent to the hub at some point during the pairing. This
initial transmission could be encrypted by using an additional
pairing algorithm, but this would unnecessarily complicate the
process. The TLS authentication is the best fit, because the
private key of both sides are never shared with anyone else and
the signature can easily be saved during the pairing process
and then be verified on each connection.

B. Pairing

To ensure that the client connecting to an IoT device is
trusted, an initial pairing is needed. This prevents potential
malicious clients to gain access to the IoTAG of a device,
which otherwise could help them to get useful information for
an attack (see Section VI). The pairing has two main aspects it
needs to achieve: The IoTAG service on the IoT device needs
to be sure that the connecting hub is trusted by the user and
that the secure connection is directly between the two devices
without anyone listening (man-in-the-middle). Optionally, the
hub should also be able to verify, if the server is paired with
the actual device.

The proposed solution for the verification of the hub is the
use of a key phrase, hereinafter called PIN, which is randomly
generated for authentication purposes and limiting the ability
to pair with a device to specific time slots. The complexity of
the PIN is chosen by the device manufacturer with minimal
requirements, as stated later in this section. The generated PIN
needs to be provided to the end user together with the device.
For example, it could be written onto a sticker on the device

itself, or it could be printed onto a piece of paper which comes
in the box.

The time slot limitation can be implemented by the man-
ufacturer in the following two ways, depending on the type
of device. The first option is to give the device a physical
button which needs to be pressed during the pairing process
and opens the IoTAG service for new connections for a limited
time. This solution works for devices that already have a button
or can easily integrate one in their hardware design. This is
the preferred option as it needs an explicit action done by the
user, which ensures that it is the user’s intention to enable
IoTAG. The second option provides a way to accommodate
devices where the manufacturer does not want to or can not
integrate a button into the design. It allows new connections
to come in for a specific amount of time after each fresh
boot of the device. In both cases, the option to pair with a
new hub is disabled once a client is paired to the device and
can only be enabled again by a factory reset of the device.
This further secures the protocol against malicious use, as it
prevents any third party access to the IoTAG in an already
configured environment. The exact minimum requirements are
specified in Section V.

To provide the hub with a way of verifying the identity of
the device, the manufacturer can provide the user with a URL
pointing to the public key of a certificate authority as specified
in RFC 5246 [9] and RFC 8446 [11] in the X.509 format. The
given certificate authority must be the one used to sign the
server certificate of the IoT device. The user can provide the
hub with this URL during the pairing process, which enables
the hub to verify on each connection that the certificate used
by the IoT device is a genuine one and approved by the
manufacturer. Alternatively, the hub could already come with
a list of those certificate authorities to further ease the pairing
process for the user. This step is only an additional layer of
security and is not required for a secure communication, as the
hub can already verify that the other device knows the PIN.

In conclusion, the proposed pairing process has the follow-
ing steps: the IoT device enables the access to the IoTAG
service running on it. This is either done during the boot of the
device, or by a button press. In each case, the IoTAG service
becomes unavailable, if no pairing is done after a specific
time period. During this time slot, the device broadcasts every
second a “hello”-packet to the whole network, it is connected
to. The hub receives those packets and lets the user know that a
new device is available for pairing. The user is then prompted
to input the PIN and the hub generates and saves a new client
certificate. The signature of this certificate is later encrypted
and sent to the IoT device. Once the process is initiated by
the user, the hub sends a “hello”-packet back to the device.
This communication is done using TCP on the port 27071.

The encryption is done using the Advanced Encryption
Standard (AES), as described by V. Rijmen et al. [12], using
Cipher Block Chaining (CBC), as described by M. J. Dworkin
et al. [13], with a random initialization vector and a key length
of 256 bit. Additionally, a random sequence with the length of

20Copyright (c) IARIA, 2021. ISBN: 978-1-61208-845-7

CLOUD COMPUTING 2021 : The Twelfth International Conference on Cloud Computing, GRIDs, and Virtualization

the key is added to the beginning of the certificate signature.
This allows the IoT device to decrypt the whole signature
without knowledge about the randomly generated initialization
vector.

The key used for the encryption, is generated using the
simultaneous authentication of equals algorithm (SAE), a
password-authenticated key agreement protocol, which was
developed by D. Harkins in 2008 [14] and was later updated
and published as the Dragonfly Key Exchange in RFC 7664
[15]. Both, the 802.11 Wi-Fi specification by IEEE [16] and
the newest Wi-Fi protected access version 3 [17], use SAE
as part of their security. Due to this wide use, IoT devices
should be capable of it already, or, at least have the processing
resources needed for an implementation. SAE enables two
devices to calculate the same, high-entropy secret, called
PMK, while using a potentially low-entropy key as the shared
secret. It prevents offline attacks, as the PIN cannot be guessed
without contacting the device for verification, online attacks,
as an attacker will not be able to guess the PIN or PMK
by just observing, and replay attacks, as the knowledge of a
PMK is of no use for each new pairing process. Additionally,
once a hub is paired, even the knowledge of the PIN does
not enable an attacker access to the IoTAG, as only one hub
is allowed. Overall, the high-entropy key generated by SAE,
allows the IoTAG service to use user-friendly and relatively
easy keys (PIN) as a secure way to authenticate a hub. For
compatibility with AES 256 and to ensure compatibility with
the IoT devices, the used hash algorithm for IoTAG for SAE
is set to SHA-256 [15] [16].

The key generation process for IoTAG access works as
follows: if the device receives a “hello”-packet during the
pairing time slot from a potential hub, it sends a SAE commit
message, as specified in IEEE 802.11 [16], to the hub, which
responds with his commit message. Once the device is done
with the key generation, it sends the SAE confirm message
to the hub, which answers with its confirm message. After
receiving the message both, the hub and the device verify the
validity of the calculated values and, if they are correct, the
PMK is successfully determined and the hub uses this PMK
as the key for the AES encryption of the signature. The whole
pairing process, including the exchange of the signatures, is
visualized in Figure 2.

The encrypted message containing the client certificate’s
signature is afterwards send to the IoT device, using the same
communication channel. Once the device receives the message
from the hub, it uses the previously calculated PMK to decrypt
the provided signature, while also using a random initialization
vector and discarding the first block after the decryption. If the
message is of a valid format, the signature is saved, the pairing
gets disabled and connections to the device are limited to the
provided client certificate. Additionally, the device responds to
the server with an encrypted message containing its certificate
signature using the same PMK and procedure as described
before. The hub can then verify the format and save the
signature, so it can verify the device’s identity later.

IoTAG Service IoTAG Hub User

BroadcastHello()

PIN()

return

Hello()

SAECommit()

SAECommit()

GenerateKey()

GenerateKey()

SAEConfirm()

SAEConfirm()

VerifyMsg()

VerifyMsg()

SendSignature()

SendSignature()

Success()

return

Figure 2: Pairing process between the device and the hub.

V. SPECIFIED MINIMUM REQUIREMENTS

As a guideline for the manufactures, we define the following
minimum requirements. The time slot chosen, should provide
the user with enough time to comfortably configure the
connection, while also providing additional security against
external attacks. It should be at least 1 minute and shall
not exceed 10 minutes. The manufacturer is free to choose
a duration in between those limits, depending on the device
type.

Concerning the security of the PIN, the following limits are
specified: The PIN has to be at least decimal and 4 digits
long. Alternatively it can be every other valid UTF-8 encoded
string. This allows the manufacturer to use already existing
unique and secret information, for example a pairing password
which is used for the manufacturer’s app. Also, the device
needs to limit the amount of failed pairing requests to three
per pairing time slot. This ensures that the average time needed
for guessing the PIN using a brute-force attack is long enough

21Copyright (c) IARIA, 2021. ISBN: 978-1-61208-845-7

CLOUD COMPUTING 2021 : The Twelfth International Conference on Cloud Computing, GRIDs, and Virtualization

TABLE I: IOTAG DATA [18]

1 Manufacturer
2 Name
3 Serial number
4 Type
5 ID
6 Category
7 Secure boot
8 Firmware
9 Client software
10 Updates
11 Cryptography
12 Connectivity
13 Services

that its success is unrealistic, as each pairing or restart can only
be initiated by the user and not by the attacker.

VI. SECURITY EVALUATION

In this section, we consider the threats in the event that
an attacker can query the IoTAG information from one or all
devices on the network. This means that the attacker has access
to the network and is able to retrieve the IoTAG. At first, we
have to look at the provided data from IoTAG (Table I). If
an attacker manages to get the data from all devices, he gets
a complete overview of the IoT network (provided that all
devices support the IoTAG). In more detail, some information
can be used to attack single devices.

A. Device Information

The device information, like manufacturer, name and serial
number can be used to find existing security vulnerabilities.
In addition, security vulnerabilities can also be found for
other products of the manufacturer, which are often found
in similar form in several products. With this information,
there is no need for black box analysis. The attacker does not
have to laboriously search for information about the individual
devices and thus try out a device detection. With this simple
information, the time required for a successful attack on
individual IoT devices is reduced.

B. Software and Updates

The current software version and the update link can be
used to check for outdated software. This information can
also be retrieved with only the device information, but as it
is presented in the IoTAG, the information can be processed
automatically. This can save some time for an attacker, but the
benefits for a network administrator are greater, as it provides
no secret information.

C. Cryptography

The Cryptographic Information contain the concrete encryp-
tion algorithms and key lengths. This can help an attacker
identify easy-to-crack methods and short key lengths. This
allows the weakest device to be found specifically. This can
be a huge security risk, but hiding the algorithms (security

by obscurity [19]) is not the goal of encryption. The security
should only be dependent on the key strength.

D. Secure boot, Connectivity and Services

Other security relevant information, like secure boot, the
different connectivity and services can be used to gain more
information about potential attack vectors. Most of these
information are not exclusively to IoTAG and can also be
found out in other ways by an attacker.

E. Evaluation

In summary, an attacker can use the IoTAG information to
accelerate his attack or to find weak devices. However, the
point of IoTAG is that an administrator can find the same
vulnerabilities in the network and thus close the potential gaps.
Thus, the advantage of IoTAG is higher than the danger that
an attacker can tap the information. Furthermore, the methods
presented in this paper make sure that no unauthorized entity
can get access to the IoTAG.

VII. CONCLUSION

In its previous form, IoTAG was vulnerable to misuse
by an attacker who could use it to retrieve security-critical
information about the IoT devices installed in a network and
thus identify the weakest point. The reason for this was the
fact that the devices could not distinguish to whom they were
providing this information.

This vulnerability was eliminated by the method presented
in this paper. Pairing the devices with a central hub, responsi-
ble for monitoring the devices and authorized by the network
operator to use the IoTAG data ensures that the devices do not
respond to arbitrary requests.

The pairing is realized by the central hub transmitting the
signature of a TLS certificate it has created to a device. When
the HTTPS connection is established later, the client can use
this signature to validate that its communication partner is the
hub.

In order to create a secure communication channel between
the device and the hub for the pairing process, the user
stores a device-specific PIN on the hub. This PIN is used
as authentication during the key exchange process, which
in our case is SAE. By means of the generated key, the
communication is encrypted using AES. The time factor also
plays a role. The pairing process cannot be carried out at will,
but is limited to a period of time predefined by the device
manufacturer. This prevents an attacker from guessing the PIN
and restart the pairing process.

With the completion of this work, the focus for the further
development of IoTAG can now be placed on practical testing
and further improvements based on the findings.

22Copyright (c) IARIA, 2021. ISBN: 978-1-61208-845-7

CLOUD COMPUTING 2021 : The Twelfth International Conference on Cloud Computing, GRIDs, and Virtualization

REFERENCES

[1] M. Hogan and B. Piccarreta, “Interagency Report on the Status of
International Cybersecurity Standardization for the Internet of Things
(IoT),” Tech. rep., National Institute of Standards and Technology, 2018.

[2] L. Hinterberger, B. Weber, S. Fischer, K. Neubauer, and R. Hacken-
berg, “IoT Device IdentificAtion and RecoGnition (IoTAG),” CLOUD
COMPUTING, 2020, p. 17, 2020.

[3] J. Han et al., “Do You Feel What I Hear? Enabling Autonomous
IoT Device Pairing Using Different Sensor Types,” in 2018 IEEE
Symposium on Security and Privacy (SP), pp. 836–852, 2018, doi:
10.1109/SP.2018.00041.

[4] X. Li, Q. Zeng, L. Luo, and T. Luo, “T2Pair: Secure and Usable
Pairing for Heterogeneous IoT Devices,” in CCS ’20, p. 309–323,
Association for Computing Machinery, New York, NY, USA, 2020,
ISBN 9781450370899, doi:10.1145/3372297.3417286.

[5] S. Pan et al., “UniverSense: IoT Device Pairing through Heterogeneous
Sensing Signals,” in HotMobile ’18, p. 55–60, Association for Com-
puting Machinery, New York, NY, USA, 2018, ISBN 9781450356305,
doi:10.1145/3177102.3177108.

[6] V. Sivaraman, D. Chan, D. Earl, and R. Boreli, “Smart-Phones Attacking
Smart-Homes,” in Proceedings of the 9th ACM Conference on Security
& Privacy in Wireless and Mobile Networks, WiSec ’16, p. 195–200,
Association for Computing Machinery, New York, NY, USA, 2016,
ISBN 9781450342704, doi:10.1145/2939918.2939925.

[7] E. Rescorla, “HTTP Over TLS,” RFC 2818, RFC Editor, May 2000,
doi:10.17487/RFC2818.

[8] J. Franks et al., “HTTP Authentication: Basic and Digest Access Authen-
tication,” RFC 2617, RFC Editor, June 1999, doi:10.17487/RFC2617.

[9] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS)
Protocol Version 1.2,” RFC 5246, RFC Editor, August 2008, doi:
10.17487/RFC5246.

[10] D. Cooper et al., “Internet X.509 Public Key Infrastructure Certificate
and Certificate Revocation List (CRL) Profile,” RFC 5280, RFC Editor,
May 2008, doi:10.17487/RFC5280.

[11] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.3,”
RFC 8446, RFC Editor, August 2018, doi:10.17487/RFC8446.

[12] V. Rijmen and J. Daemen, “Advanced encryption standard,” Proceedings
of Federal Information Processing Standards Publications, National
Institute of Standards and Technology, pp. 19–22, 2001.

[13] M. J. Dworkin, “Recommendation for Block Cipher Modes of Oper-
ation: Methods and Techniques,” National Institute of Standards and
Technology, 2001.

[14] D. Harkins, “Simultaneous Authentication of Equals: A Secure,
Password-Based Key Exchange for Mesh Networks,” in 2008 Second
International Conference on Sensor Technologies and Applications
(sensorcomm 2008), pp. 839–844, 2008, doi:10.1109/SENSORCOMM.
2008.131.

[15] D. Harkins, “Dragonfly Key Exchange,” RFC 7664, RFC Editor, Novem-
ber 2015, doi:10.17487/RFC7664.

[16] I. . W. Group, “IEEE Standard for Information Technology–
Telecommunications and Information Exchange between Systems -
Local and Metropolitan Area Networks–Specific Requirements - Part
11: Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications,” IEEE Std 802.11-2020 (Revision of IEEE Std
802.11-2016), pp. 1–4379, 2021, doi:10.1109/IEEESTD.2021.9363693.

[17] Wi-Fi-Alliance, “WPA3 specification version 2.0,” 2020.
[18] L. Hinterberger, S. Fischer, B. Weber, K. Neubauer, and R. Hackenberg,

“Extended Definition of the Proposed Open Standard for IoT Device
IdentificAtion and RecoGnition (IoTAG),” The International Journal on
Advances in Internet Technology, vol. 13, pp. 110–121, 2020.

[19] R. T. Mercuri and P. Neumann, “Security by obscurity,” Commun. ACM,
46, p. 160, 2003.

23Copyright (c) IARIA, 2021. ISBN: 978-1-61208-845-7

CLOUD COMPUTING 2021 : The Twelfth International Conference on Cloud Computing, GRIDs, and Virtualization

	Introduction
	Related Work
	Security Threat
	Solution
	Authentication
	Pairing

	Specified Minimum Requirements
	Security Evaluation
	Device Information
	Software and Updates
	Cryptography
	Secure boot, Connectivity and Services
	Evaluation

	Conclusion
	References

