
System Operator: A Tool for System Management in Kubernetes Clusters

Jiye Yu

Services Computing Research Dept.
Center for Technology Innovation -

Digital Technology
Hitachi, Ltd. R&D Group

Email: jiye.yu.kb@hitachi.com

Yuki Naganuma

Services Computing Research Dept.
Center for Technology Innovation -

Digital Technology
Hitachi, Ltd. R&D Group

Email: yuki.naganuma.mk@hitachi.com

Takaya Ide

Services Computing Research Dept.
Center for Technology Innovation -

Digital Technology
Hitachi, Ltd. R&D Group

Email: takaya.ide.ap@hitachi.com

Abstract—Kubernetes is the most popular container orchestration
system for automating application deployment. To adapt thou-
sands of applications’ working pattern, Kubernetes Operators
are proposed as the default approach for packaging, deploying
and managing an application in Kubernetes. Now, different kinds
of Operators are developed to support applications in various
categories. However, a single Operator only applies to a single
application. Users still need to pay effort to deploy, monitor or
maintain a system which is formed by a class of applications.
Thus, Our System Operator is created to provide a help. It is able
to connect applications in Kubernetes by connecting applications’
Operator in Graphic User Interface (GUI) canvas. Instead of
users, System Operator can help maintain the whole system
according to organized pattern. It will be a great help for the
flexible utilization of Kubernetes.

Keywords–Container; Kubernetes; Kubernetes Operator; System
Operator

I. INTRODUCTION

Virtual machines used to be one of the best options when
companies deploy their services. At that time, OpenStack
and Amazon Web Services (AWS)) are famous for its stable
virtual server quality. During that period, a large number
of software applications are designed in monolithic archi-
tecture pattern [1]. Monolithic architecture pattern, trending
to integrate all components in one server, tends to cause
problems like long building time, poor resilience to failures,
incompatibility issues. Then, container [2] is invented to be a
new form of operating system virtualization. Kubernetes [3],
an open source container platform, is raised by Google to
help manage containers and automates many of the manual
processes in container’s deployment and management. Because
of its convenience and powerful advantages, now Kubernetes
is becoming the most popular container orchestration tool in
IT industry.

Along with the benefits Kubernetes brings to us, it also
introduces some new issues. Due to the abundant functionality
of Kubernetes, in order to get qualified as a Kubernetes
engineer, meticulous training is commonly required. Engineers
who are not familiar with infrastructure technology will feel
it difficult to try Kubernetes because of its complexity [4].

On the other side, concept Kubernetes Operator [5] raised
by CoreOS is designed for packaging, deploying and managing
a Kubernetes application automatically. With Kubernetes Op-
erators, people are able to share their knowledge on application
management, as well as save effort and time on DevOps.

Operators bring convenience to Kubernetes users. However,
users still need to deploy Operators by themselves.

With Kubernetes and Operator, more and more companies
trend to migrate their legacy systems to modern architecture.
However, lack of specialized knowledge becomes a barrier for
the migration.

Legacy system requires system management as a entirety,
while Kubernetes allows container-specific management of
distributed system. Even with Kubernetes Operator’s help,
engineers need to deploy individual applications and connect
them to build an entire system. Engineers who are used to
legacy management mode need to try hard to break down
barriers.

In the other hand, the Cloud Native Ecosystems like
Cloud Native Computing Foundation (CNCF) Cloud Native
Interactive Landscape [6] and OperatorHub [7] obtain favor-
able development. Containers based applications and related
Operators are developed and released as Open Source Software
(OSS), which are available to anyone. This is a great benefit
to develop our proposal, System Operator.

The remaining of this paper is organized as follows. Section
2 gives a brief introduction of System Operator. Section
3 explains how System Operator works and what System
Operator can be used to do. Finally, in section 4, we make
the conclusion, and list out our future work at the same time.

II. SYSTEM OPERATOR

In order to solve above issues, we designed a new tool,
System Operator. System Operator is used to create and
maintain systems which are composed by various applications.

System Operator is designed to meet following targets:

1) Easy to use: reduce the requirements on user’s knowl-
edge on Kubernetes.

2) High applicability: by choosing proper Application
Operators, users are able to create all appropriate
systems they want.

3) Expandability: users can apply their own configs to
System Operator to achieve their requirements on
system maintenance.

The complete workflow of System Operator will be divided
into several steps. First, users need to select all necessary
Application Operators, connect and configure them to make up
a system. Then, System Operator will automatically generate

83Copyright (c) IARIA, 2020. ISBN: 978-1-61208-778-8

CLOUD COMPUTING 2020 : The Eleventh International Conference on Cloud Computing, GRIDs, and Virtualization

① ②
③ ④
⑤ ⑥
⑦ ⑧

① ②
Deploy System

Operator Controller

Generate Example
Manifest

Config
Size:
Version:

GUI of System Operator

Figure 1. GUI of System Operator

the deployment manifest. Using the generated manifest, users
can easily deploy the system to target Kubernetes cluster.

Besides deployment, System Operator can also contin-
uously monitor all resources created by these Application
Operators. According to the result of monitoring, adjustment
will be executed to keep the system stable. To achieve this
aim, there is an issue needs to be solved first. Application
Operator is always designed as a black box. Only part of
the Application Operators are providing the API for calling
corresponding resource’s status. Due to this reason, it is not
easy for System Operator to get status of resources created by
selected Application Operators. Detailed information will be
introduced in next section ”How System Operator works”.

A. Graphic User Interface (GUI)
GUI support is important on improving the usability of

this tool. Inspired by OpenStack Heat Dashboard [8], GUI of
the System Operator is designed as Figure 1. Various kinds
of Operator icons are listed on the left side. Users need to
select Application Operators with different functions from the
left-hand column. Then, drag and drop selected Operator icons
to the canvas on the right side. After dragging and dropping
Operator icons, users can connect these icons to build the
skeleton of their target system. The line used to connect two
icons is a directed arrow. An arrow (x, y) is considered to
be directed from icon x to icon y, another arrow (y, z) is
considered to be directed from icon y to icon z. Thus, icon
y is a previous node of icon z, and icon x is also previous
node of icon z. These arrows are used to arrange the network
traffic in target system.

By connecting the Operators, the skeleton of system will
be presented in the canvas. In order to generate the manifest,
users are also required to fill the config for each Operator.
System Operator controller which is used to manage these
selected Operators in Kuberntes cluster will also be deployed
by clicking the button on canvas.

III. HOW SYSTEM OPERATOR WORKS

System Operator is used to manage the Application Oper-
ators instead of human. By monitoring the status of resources,
System Operator can make rapid reaction when sudden events
happen. In the following subsections, we will introduce how
System Operator works from brief architecture to details.

A. Architecture of System Operator
Figure 2 shows a brief architecture of System Operator as

well as the steps System Operator will do to deploy a system
in the Kubernetes cluster.

1

User
GUI

System Operator Application

Kubernetes Cluster

System
Operator
Controller

Operators
Database

Operator Image

System Operator Server

User’s Deployed System

App1

App2
…

In
gr

es
s

Service2

Service1
App1-Operator

App2-Operator

Kuberenetes API-server

1. Draw the system
architecture in GUI
and make config

2. Output system
manifest according
to user's config

3. Deploy this system
in Kubernetes cluster

4. Deploy System
Operator controller

5. Recognize 2nd resources
6. Create Kubernetes Services

Figure 2. Architecture of System Operator

First, System Operator Application will provide a GUI for
accepting user’s request, a database and a storage to store the
information for Application Operators and Application Oper-
ator images. After System Operator accepting user’s request
(step 1), it will generate a manifest and respond to users
(step 2). After deploying of the manifest (step 3), System
Operator Application will also deploy corresponding System
Operator controller in the same Kubernetes cluster (step 4)
to maintain the deployed system. Then, System Operator
controller will call Kubernetes API server to recognize all
secondary resources of each Application (step 5). At last,
System Operator controller in Kubernetes will complete the
user’s system deployment in Kubernetes cluster by connect-
ing all applications deployed by adding Kubernetes Services
among them (step 6). Detailed description will be introduced
in following subsections.

B. Use Kubernetes Service resource to connect applications
In normal cases, an integrated system is composed by

several applications. In legacy system, engineers use IP address
or hostname to make the connection for integrated system. In
Kubernetes cluster, in order to generate invariable cluster IP,
System Operator will use Kubernetes Service resource to bind
applications and make the connection. In order to bind Kuber-
netes Services with application resources, we need to recognize
these application resources first. Not only the Custom Resource
[9] defined by Custom Resource Definition (CRD), but also the
secondary resources of those CRD resources.

C. Secondary resources
Secondary resources are defined as resources created by

Application Operator and managed by Operator’s CRD re-
sources. Taking Nginx Operator as an example, Nginx is
the CRD resource and deployment created by Nginx is its
secondary resource. For keeping the active status of CRD
resources, the status of secondary resources is important. Also,
we need to bind Kubernetes Service resources to secondary
resources in order to integrate the whole system. That is
the reason why we need to recognize all applications’ the
secondary resources.

84Copyright (c) IARIA, 2020. ISBN: 978-1-61208-778-8

CLOUD COMPUTING 2020 : The Eleventh International Conference on Cloud Computing, GRIDs, and Virtualization

Ku
be

rn
et

es
 A

PI
Custom Resource:

(App1)

Custom Resource:
(App2)

Sy
st

em
 O

pe
ra

to
r2nd Resource

(e.g.Deployment)

2nd Resource
(e.g.Deployment)

App1
Operator

App2
Operator

Query and respond for App2’s 2nd resource status

A
P
I

A
P
I

Status

Statusx

Figure 3. Not all Application Operators provide API for status of secondary
resources

D. How to recognize secondary resources

Basically, an Application Operator is designed as black
box. Only a few APIs are provided by an Application Op-
erator to communicate with users. In most cases, Applica-
tion Operator will provide the API to show its secondary
resources’ status. However, there is no assurance that every
Application Operator provides this feature. As Figure 3 shows,
without these specific APIs, it is hard for System Operator
to recognize secondary resources of Application Operators.
System Operator needs to first recognize secondary resources
for those Application Operators. Then, System Operator can
query secondary resources’ status by calling Kubernetes API
directly.

As a solution, System Operator can utilize the name
and created time of secondary resource to do the reverse
inference. In order to accelerate this process, System Operator
will maintain a database to record all resource’s information
collected after manifest applied. Items like resource name,
resource type, created time and current status will be recorded
in the database. We suppose that there are n Resources in this
Kubernetes cluster (R1, ..., Rn), and in our target system, there
are m Custom Resources are deployed (C1, ..., Cm). What we
want to do is to select resources which belong to specified
Custom Resource. According to the information recorded in
the database, we use following evaluation methods to evaluate
the belonging of these secondary resources.

1) Time period evaluation: We define the interval between
resource created time and manifest applied time as α. First,
we should note that in various Kubernetes clusters, time used
to create a resource is not fixed. That means α in various
Kubernetes clusters is not a constant. It depends on the
transmission delay, computing capability of the hosts and some
other factors. In order to keep the accuracy of this evaluation,
we need to eliminate this interference caused by the variable
α. System Operator will first do dry run several times to create
several mock resources. By recording the time difference every
time, System Operator can calculate the average value as α in
each specific Kubernetes cluster.

Resources whose creating time is close to (manifest applied
time + α) tend to be real secondary resources. Either too
early or too late will reduce the possibility. To emphasize this
characteristic, we can use exponential function to make this
evaluation:

Figure 4. Graph of the time period based evaluation function, suppose
α = 1(s)

yij = e−
(tij−α)2

2 , (tij ≥ 0) (1)

Figure 4 shows the graph of this function. Here, tij is the
difference between Resource Ri’s created time and manifest
of Custom Resource Cj’s applied time. When tij is equal to
α, the evaluation will meet the largest value: 1.

2) Name and label mapping evaluation: According to the
convention that the resource name should include the CRD
type name as much as possible. We can set the second
evaluation equation as follows:

xi,j =
(l1i,j + l2i,j)

2

4L2
j

, (l1i,j , l
2
i,j ≤ L) (2)

Here Lj is the character length of CRD type name of
Custom Resource Cj ; l1i,j is the matched character length
between Resource Ri’s name and Custom Resource Cj’s
CRD type name; l2i,j is the matched character length between
Resource Ri’s label and Custom Resource Cj’s CRD type
name.

For instance, there are two resources R1 and R2, whose
names are example-keycloak (R1) and example-kafka (R2).
R1’s label is instance = example − keycloak while R2’s
label is instance = example−kafka. Then, comparing with
Custom Resource C1 Keycloak, we can count that L1 = 8,
l11,1 = l21,1 = 8, l12,1 = l22,1 = 1. Then, finally calculate the
value x1,1 = 1, x2,1 = 1

64 .
3) Joint Evaluation: An much more exact and rational

result can be obtained by joint optimization of (1) and (2).
We can get the possibility of the belonging of each resource
is shown as following:

ri,j = xi,j · yi,j (3)

For each Resource Ri, we can find the Custom Resource
Cj to meet the largest value. Then, we can find out the Custom
Resource which Resource Ri belongs to by following equation:

arg max
j∈[1,M]

{ri,j} (4)

85Copyright (c) IARIA, 2020. ISBN: 978-1-61208-778-8

CLOUD COMPUTING 2020 : The Eleventh International Conference on Cloud Computing, GRIDs, and Virtualization

We should note that some resources already exist before
target system’s deployment. That means not every Resource
Ri belongs to some Custom Resource Cj . For this reason, we
should set an threshold θj for each Custom Resource Cj to
cut those confusing resources. For a Resource Ri, if its max
possibility value maxj∈[1,M]{ri,j} < θj , we can confirm that
this Resource Ri does not belong to any Custom Resource Cj .

Regarding to the estimation of the variable θj , there are
several algorithms to determine the threshold automatically.
Since the possibility r(i, j) ∈ [0, 1], some automatic image
thresholding algorithms like Otsu’s method [10] can be applied
here for threshold determining.

4) Reversing verification: After matching Custom Re-
sources and secondary resources, System Operator needs to do
the reversing verification to confirm this resource recognition is
correct. Check the network traffic between neighbor secondary
resources to verify the secondary resources recognition is
a good method. Since System Operator already knows the
connection of Custom Resources and traffic according to user’s
definition, the data stream used for testing should be able to
pass through all related secondary resources in turn.

After secondary resources recognition, System Operator
can get the status of recognized secondary resources by calling
Kubernetes API directly. System Operator will do the regular
polling to watch all related resources’ status and update them
in its internal database.

E. System regulation
Besides system deployment, another function of System

Operator is system regulation. In current stage, we have
designed two application scenarios for System Operator to
handle the whole system. System Operator will do something
when:

1) Error happens on secondary resource.
2) Upgrade is executed.

System Operator will watch the status of all secondary
resources and make rapid reactions to any changes on the
system level. Once unhealthy status happens on any secondary
resource, System Operator should send a ”stop signal” to all
previous Operators of the error one. Here the sequential order
of Application Operator can be decided by directed arrows
connected in GUI by users.

By default, the Operator received ”stop signal” will do
nothing, and users can define what should the Operator do
properly according to Kubernetes resource ConfigMap. On
the other hand, when the unhealthy status recover, System
Operator will also send another signal ”recover signal” to
previous Operators to tell them issue settled. After receiving
”recover signal”, Operators which have made any changes will
revert to the original status.

Similar to the case error happening, when users are making
upgrade to some application through Application Operator,
System Operator will detect this upgrade action and send
stop signal to previous Application Operators. After upgrade,
recover signal will be sent as well.

Figure 5 shows an example for application upgrade case.
When users applied an updated manifest to upgrade App2,
System Operator can easily detect the status change on App2’s
resource. Then, a stop signal will be sent to the previous node

Example-App1

App1 Operator

Example-App2

System Operator

Kubernetes Cluster

abnormal status detectedstop signal

recover signal status recovered

①
②

App1 Operator
Kubernetes APIApp1

Upgrade
App1 Upgrade

Figure 5. System regulation illustration

(App1). After completing the upgrade, recover signal will be
sent to previous node to end this upgrade process.

IV. CONCLUSION

In conclusion, System Operator allows Kubernetes users to
design their own integrated system by connecting applications
with various functionalities and provide simple approach for
deploying this system in Kubernetes cluster, as well as subse-
quent operations. With System Operator’s help, the difficulty
of using Kubernetes will be greatly reduced.

We believe that System Operator is a promising project to
develop and operate application system in Kubernetes clusters.
Currently, we just proposed a basic prototype for it. Details
and part of concept are still working in progress. For example,
by utilizing Prometheus Operator and Prometheus third-party
exporters, we can definitely enhance the monitoring feature
for System Operator. Mature and well-tested system ”recipe”
can be spread among users for efficient system construction.
System Operator can be more powerful and useful than it
seems.

REFERENCES
[1] M. Mosleh, K. Dalili, and B. Heydari, “Distributed or monolithic? a

computational architecture decision framework,” IEEE Systems journal,
vol. 12, no. 1, 2016, pp. 125–136.

[2] C. Pahl, A. Brogi, J. Soldani, and P. Jamshidi, “Cloud container
technologies: A state-of-the-art review,” IEEE Transactions on Cloud
Computing, vol. 7, no. 3, 2019, pp. 677–692.

[3] D. Bernstein, “Containers and cloud: From lxc to docker to kubernetes,”
IEEE Cloud Computing, vol. 1, no. 3, 2014, pp. 81–84.

[4] “Kubernetes: Advantages and Disadvantages - The Business Perspec-
tive,” 2019, URL: https://devspace.cloud/blog/2019/10/31/advantages-
and-disadvantages-of-kubernetes [retrieved: July, 2020].

[5] “Introducing Operators: Putting Operational Knowledge into Soft-
ware,” 2016, URL: https://coreos.com/blog/introducing-operators.html
[retrieved: July, 2020].

[6] “CNCF Cloud Native Interactive Landscape,” URL:
https://landscape.cncf.io/ [retrieved: July, 2020].

[7] “Welcome to OperatorHub.io, a new home for the Kubernetes commu-
nity to share Operators.” URL: https://operatorhub.io/ [retrieved: July,
2020].

[8] “OpenStack Documentation: Welcome to Heat Dashboard!” URL:
https://docs.openstack.org/heat-dashboard/latest/ [retrieved: July, 2020].

[9] “Kubernetes Documentation, Concepts: Custom Reources,”
URL: https://kubernetes.io/docs/concepts/extend-kubernetes/api-
extension/custom-resources/ [retrieved: July, 2020].

[10] N. Otsu, “A threshold selection method from gray-level histograms,”
IEEE transactions on systems, man, and cybernetics, vol. 9, no. 1, 1979,
pp. 62–66.

86Copyright (c) IARIA, 2020. ISBN: 978-1-61208-778-8

CLOUD COMPUTING 2020 : The Eleventh International Conference on Cloud Computing, GRIDs, and Virtualization

