
Secure Business Intelligence Markup Language (secBIML) for the Cloud

Aspen Olmsted

Fisher College

Department of Computer Science, Boston, MA 02116

e-mail: aolmsted@fisher.edu

Abstract— Enterprise organizations have relied on correct data

in business intelligence visualization and analytics for years.

Before the adoption of the cloud, most data visualizations were

executed and displayed inside enterprise applications. As

application architectures have moved to the cloud, many cloud

services now provide business intelligence functionality. The

services are delivered in a way that is more accessible for end-

users using web browsers, mobile devices, data feeds, and email

attachments. Unfortunately, along with all the benefits of the

cloud business intelligence services comes complexity. The

complexity can lead to slow response times, errors, and integrity

issues. An information technology department or service

provider must get ahead of the problems by automating the

execution of reports to know when availability or integrity issues

exist and dealing with those issues before they turn into end-user

trouble tickets. In this paper, we develop an Extensible Markup

Language programming language that allows execution against

many cloud documents and business intelligence services. The

language enables issues to be proactively discovered before end-

users experience the problems.

Keywords-Business Intelligence; Cloud Computing;

Heterogeneous Data

I. INTRODUCTION

Forrester Research defines business intelligence as "a set
of methodologies, processes, architectures, and technologies
that transform raw data into meaningful and useful
information used to enable more effective strategic, tactical,
and operational insights and decision-making [1]. For today’s
businesses, this mainly takes shape through data visualization
(tabular and charts), business documents, data mining,
customer interaction automation, and email marketing.

Data visualizations have been developed by enterprises
for decades to allow users to analyze their data in tabular or
chart format. The visualizations change based on runtime
prompts that filter the data displayed in the visualization.
Data from separate Online Transaction Processing (OTP)
systems are often aggregated into data warehouses to allow
visualizations that span data from multiple source systems.
Unfortunately, little tooling was provided to ensure the
visualizations guaranteed the required availability and
integrity. This paper describes our work in developing a
programming language to help an organization with these
issues. We call our programming language, Secure Business
Intelligence Markup Language (secBIML). Our
programming language secBIML allows an organization to
script the correctness requirements and receive proactive
notification of security issues.

Data mining allows an enterprise to discover new
knowledge from their OTP data using data science

algorithms. Unfortunately, the integrity of the source data is
often ignored, leading to new knowledge derived from bad
information. Utilizing secBIML, an organization can script
the correctness requirements into comparison tables and
receive proactive notification of integrity issues in the source
data.

Many cloud application providers sell customer
relationship management (CRM) and email marketing
solutions and advertise their ability to automate interactions
with customers based on changes in the data. Unfortunately,
little attention is provided to how the data is aggregated and
the availability and integrity of the information that is used as
the source of the automation or email marketing. Our
programming language secBIML can alert an organization of
issues so they can proactively solve the problems with the
correctness of the data used in the process.

The organization of the paper is as follows. Section II
describes the related work and the limitations of current
methods. In Section III, we describe the elements in the
secBIML programming language. Section IV provides the
motivating example behind our work. Section V describes
how we developed our runtime engine. Section VI drills into
the data we gather in our experimentation with data
visualizations. Section VII investigates the tests we used in
our experimentation with business document integrity.
Section VIII describes the test implementation used in our
experimentation with business email integrity. We conclude
in Section IX and discuss future work.

II. RELATED WORK

The large corporate cloud providers such as Microsoft,
Google, Amazon, and IBM hold many patents in the domain
of recognizing application availability. The patents are
designed for business to consumer websites where there is
less control than we have in our enterprise BI environment.
The lower level of control stems from the client machines in
business to consumer architectures are unknown to the
provider. One example of such a patent is from Letca et al.[7].
In the patent, Microsoft inserts a stub between the calling
client and the web application. The stub gathers performance
data as the user is using the web application. Unfortunately,
with such a solution, a flaw in the stub can reduce the
availability of the service. In our work, we utilize the network
during off-hours for the enterprise to gather application data.
The information gathered informs the information
technology staff of priorities to proactively solve problems
before they are filed as end-user trouble tickets.

Codd [1] describes integrity constraints in his original
work on relational databases. Codd's original work assumed
the data sources are two-dimensional tables that are

1Copyright (c) IARIA, 2020. ISBN: 978-1-61208-778-8

CLOUD COMPUTING 2020 : The Eleventh International Conference on Cloud Computing, GRIDs, and Virtualization

normalized to eliminate redundancy. Codd’s ideas made it
into most online transaction processing (OTP) databases but
never made it to the BI or document level. The data layer

behind most BI architectures often increases availability by
allowing dirty data through the use of database hints. In our
work, we are looking for integrity errors by defining
constraints in the document testing language itself and not in
the data layer behind the documents.

Many security software vendors offer a web application
security scanner. These scanners try to break a web
application to find common vulnerabilities such as cross-site
scripting and SQL injection. Khoury et al. [8] evaluate the
state of art black-box scanners that support detecting stored
SQL injection vulnerabilities. Our work utilizes white box
testing to find vulnerabilities in access control on both the
docuememt or data element level.

III. LANGUAGE ELEMENTS

The programming language secBIML is defined in
Extensible Markup Language (XML) with elements

expressing the statements and expressions. Attributes or child
elements express the parameters to the statements and
expressions. Elements are identified in a SecBIML program
as a start-tag, which gives the element name and attributes,
followed by the content, followed by the end tag. Start-tags
are delimited by `<, ' and `>'; end tags are delimited by `</'
and `>'. TABLE I shows a breakdown of the tags available in
the secBIML language.

A. Statement Tags

secBIML syntax is made up of declarative statements that
define one of eight statement entities: credential, report,
execution, parameter, alert, RESTaction, DBaction, and
LOGaction. Figure 1 shows an example set of declarations to
define a single implementation of a report with two runtime
parameters. The parameters are set for a date range of the
entire month of July 2019. The following is the set of
language elements currently supported by secBIML:

• Credentials – The credential tag declare

• Reports – The report tag states the details on the server
and the name of a specific report that is tested.

• Executions – The execution tag declares a specific test
case for a report.

• Parameters – The parameter tag declares the runtime
values used in the test of a specific execution.

• Alerts – The alert tag defines the data that is tested
specify actions to take on failures. Actions can add tuples
to a datastore, send emails, or call web-services. Parent
tags for Alerts can either be comparison entities or
execution entities.

• RESTactions – The RESTaction tag defines actions that
call to web-services. The web-services call has the key-
value pairs in the delivery.

• DBActions – The DB actions tag defines tuples written
to a database table. The key in the key-value pair
returned from the ActionValue entity matches with a
table column, and the value is inserted in the tuple.

• Logactions – The “Logaction” tag is used to define
values written to a log file.

B. Expression Tags

Expressions in the secBIML are entities where the syntax
returns one of five different data types: list, boolean,
numbers, text, or key-value pairs. Expressions are used to
find a specific value in the report output, aggregate a set of
values in the report output, express literal values, or define
what data is sent to actions. Operators can combine
expressions to be used in complex relational comparisons.
There are four expression elements that return values in the
secBIML language. The four elements are reference, literal,
comparison, and ActionValue. We document the four
elements below:

• References – The reference tag allows for the
retrieval of a value from a report. The values are

<report name="eventbyhour"
server=https://logireports.fi.edu?rdName=Reports.Admissio

ns.Event_ByHour credential=”bilogin”/>

<execution name="eventbyhourjuly"
report="eventbyhour"/>

<parameter execution="eventbyhourjuly"

name="BeginDate" value="07/01/2019"/>

<parameter execution="eventbyhourjuly"
name="EndDate" value="07/31/2019"/>

Figure 1. Example Report, Execution and Parameter Declaration Elements

TABLE I. secBIML TAGS.

Tag Type Parent

Credential Statement

Report Statement Credential

Execution Statement Report

Parameter Statement Execution

Alert Statement Comparison
or Execution

RestAction Statement Alert

DBAction Statement Alert

LogAction Statement Alert

Reference Expression Comparison

Comparison Expression Comparison

Literal Expression Comparison

ActionValue Expression RESTAction,
DBAction or
LogAction

2Copyright (c) IARIA, 2020. ISBN: 978-1-61208-778-8

CLOUD COMPUTING 2020 : The Eleventh International Conference on Cloud Computing, GRIDs, and Virtualization

specified in the output by the hypertext markup
language (HTML) id or a position in an HTML table.
The type attribute allows values to be accumulated,
counted, or averaged. The selector attribute is used
to aggregate the values in a row or column within an
HTML table. Selectors are patterns that match
against elements in a tree and are the primary method
used to select nodes in an XML document. secBIML
supports CSS Level 3 selectors [9].

• Literals - The literal tag allows the expression of a
constant value. Literal tags are used when comparing
a value in a report to a static value defined at the time
the test is created.

• Comparisons – The comparison tag allows values to
be compared. A comparison tag returns a Boolean
value based on the results of the comparison. The
comparison tag requires an operator attribute to
specify the comparison operation type. There are six
supported comparison operator abbreviations: equal
(EQ), not equal (NE), greater than (GT), less than
(LT), great than or equal to (GE), less than or equal
to (LE). The value in the parenthesis is the
abbreviated version of the comparison operator.
Figure 2 shows the declaration of a reference to a cell
within the last row of a table in the report output. A
comparison of a literal value of 23,201 is made to the
value on the report, and if the data is different, a
REST web service call is made to save the data. By
default, actions include the data used in the
comparison, the name, the compared values, and a
timestamp marking the comparison evaluation time.

• ActionValues – The ActionValue tag allows the
delivery and storage of key-value pairs in response to
the alert. The type attribute defaults to a comparison
name but can be a comparison, reference, literal, or
execution result. There are two available values from
the execution results; the HTTP status and the
duration of the execution.

C. Attributes & Child Elements

In both the statement and expression tags, white space and
attributes are allowed between the element name and the

closing delimiter. An attribute specification consists of an
attribute name, an equal sign, and a value. A child element is
a tag fully enclosed between the open tag of another
statement or expression and the matching closing tag. White
space is allowed around the equal sign. Attributes and child
elements in the secBIML syntax specify the parameters in the
statements or the expressions. It is possible to express any
parameter either through an attribute or through a child
element. The expression of a child element allows for more
complicated parameters including collections of values.
Figure 2 shows how the RestAction and ActionValue entities
can be rolled up into attributes. Attribute parameters are
similar to read but do not allow for more than one value of
the same attribute type.

IV. SECBISQL& MOTIVATING EXAMPLE

To facilitate the usage of the programming language by
non-programmers, we developed a version of the language
that has the tags stored in a SQL database. The SQL version
is called secBISQL. The semantics of the two versions
secBIML and secBISQL are identical. The difference is in
how the programming language is stored in the source
format. Figure 3 shows an entity-relationship diagram (ER)
for secBISQL.

secBISQL was developed for The Franklin Institute (TFI)
in Philadelphia, PA [10] to allow them to identiy availability
and integrity errors in their business intelligence operations.
In their business intelligence operations, TFI had one hundred
and twenty custom reports that ran in the cloud using a
business intelligence tool name Logi Analytics [11]. The
custom reports were developed over many years by several

<reference name="attendancetotal"
execution="eventbyhourjuly" type="sum"

selector=”#attendance”/>

<comparison name="totalattendance"
reference="attendancetotal" literal="23201"/>

<alert comparison="totalattendance"

action="writeerror"/>

<action name="writeerror" restaction="
http://https.logireports.fi.edu/saveerror"/

actionvalue=”totalattendance”>

Figure 2. Example Alert and Supporting Elements

Figure 3. secBISQL ER Diagram

3Copyright (c) IARIA, 2020. ISBN: 978-1-61208-778-8

CLOUD COMPUTING 2020 : The Eleventh International Conference on Cloud Computing, GRIDs, and Virtualization

different developers. Unfortunately, the end-users were
experiencing errors and timeouts throughout the day.

In our first iteration, we used secBISQL to measure the
security of data visualizations. We followed this iteration up
by experimenting with other generated business documents
and communications. The documents we experimented with
can be categorized into three primary categories; word
processing, presentation, and spreadsheet documents. Each
document we looked at had aggregation of values or
references to data from business intelligence reports. We also
looked at automated emails sent to patrons after activities
with the patrons, along with mass emails that were sent for
marketing future events to patrons.

For the word processing, presentation, and spreadsheet
documents, we utilized Microsoft™ Office 365 [8]. Office
365 is a cloud-based software as a service (SAAS) solution
for word processing. To programmatically reference the
word processing document, the URL of the office 365
document is added in the entity object as a “report” entity.
Comparisons can be defined to compare individual values in
the document to other values or aggregated values in the same
document or a data visualization. For example, an invoice
document laid out in Microsoft™ Word can be verified to
ensure that the columns for quantity and amount are equal to
the total column. A spreadsheet document has the
functionality to aggregate values but a word processing
document is often used for the end printed business document
because of layout concerns. Integrity checks can be
established in secBIML to ensure the word processing data is
correct. Values in a business document could also be
compared to a source business visualization. Often data is
pulled from a data visualization and placed in a flyer or
presentation, but that data may change in the source system.
secBIML can ensure that data remains correct. This same
technique can be used with documents stored in competitive
cloud SAAS word processing solution providers such as
Google™ GSuite [9].

After tackling the business documents, we looked at
emails generated from back-end business transactional data.
We were able to retrieve emails from an email service
provider (ESP) through the Representational state transfer
(REST) application programmer interface (API)s. REST is a
software architectural style that defines a set of constraints
for Web services creation. Web services that conform to the
REST architectural style, called RESTful Web services,
provide interoperability between computer systems on the
Internet. The “report” entity was used to specify a REST front
end URL, and the parameters were used to call out to the web-
service for the specific REST data. The data was then
compared to a report that listed the source data consumed in
the generation of the email marketing or business automation.

V. RUNTIME ENGINE

The language compiler and execution engine were built
using the C Sharp programming language on the .NET Core
runtime engine [12]. .NET Core is an open-source, managed
execution framework that allows execution on the Microsoft

Windows, Linux, and macOS operating systems. The
framework is a cross-platform successor to the .NET
Framework. The framework allows the implementation of
secBIML on any modern operating system.

secBIML links to a .NET library named Puppeteer Sharp
[13]. Puppeteer Sharp is a .NET port of the Node.JS
Puppeteer API [14]. Puppeteer is a Node programming
language library that provides a high-level API to control the
Chrome browser. Puppeteer allows a program to run the
browser headless so that the browser interface is not exposed
to the console. This layer of browser execution is critical in
the execution of the business intelligence reports to ensure
proper execution of JavaScript rendered HTML reports.

VI. EMPIRICAL DATA – DATA VISUALIZATION

In this section, we look at the empirical data we gathered
to support our hypothesis that the usage of the secBIML
language could increase the security of business intelligence
reports and visualizations. To measure the availability of the
business intelligence reports, we scheduled one hundred and
twenty reports to run overnight in six modes. The six modes
were sequential with a cache and without a cache, four

Figure 4. Average Timing

TABLE II SECBIML PRE-TESTING DATA

Data Point Timing Executions

Cache-miss sequential 17652 120

Cache-hit sequential 1464 120

Cache-miss 4 thread 20556 120

Cache-hit 4 thread 1824 120

Cache-miss 8 thread 22380 120

Cache-hit 8 thread 2016 120

Cache-hit production 145873 910

Cache-miss production 4864 320

4Copyright (c) IARIA, 2020. ISBN: 978-1-61208-778-8

CLOUD COMPUTING 2020 : The Eleventh International Conference on Cloud Computing, GRIDs, and Virtualization

concurrent threads with a cache and without a cache, and
eight current threads with a cache and without a cache. The
tests were run over thirty days, and the average execution is
shown in TABLE III. Also, include in the table is the average
production data for the same period. The production data was
gathered by parsing the web server logs for calls to the
business intelligence report.

The reports that exhibit slow behavior were optimized
based on the data gathered in the first phase and were
optimized, and the experiment was run again for thirty days.
TABLE III shows the average timing data collected in the post-
optimization period. Figure 4 shows the comparison of the
average per report timing for both pre-optimization and post-
optimization timing experiments. The data clearly shows that
the availability was increased in every mode of data gathering
based on the knowledge gathered from the secBIML
executions.

VII. EMPIRICAL DATA – BUSINESS DOCUMENTS

In this section, we look at the empirical data we gathered
to support our hypothesis that the usage of the secBIML
language could increase the security of business documents.
We sampled fifty-seven business documents stored as
Microsoft™ Office 365 documents. The data was either
stored in Word, PowerPoint, or Excel applications. TABLE IV
shows the documents used in our tests. The internal and
external columns represent the number of tests that we
established in each category. The internal tests compare
values within the document, and the external tests compare
values across documents. The initial integrity column
displays the percentage of the correctness of the numbers
returned from the first execution of the test. The continuous
integrity displays the rate of accuracy over 12 weeks. After
the initial test, corrections were applied to the documents, and
continuous integrity tests ran nightly. The test demonstrates
how often the data changed in the source data. We only found
one excel document that had external budget data, and the
data was correct and did not change over the 12-week test
period. Discovery and setup of tests for business documents
was a tedious process. In our future work, we plan to develop
a Chrome web browser plugin to allow the automation of the
test creation within the document. Nightly executions of the
tests for business documents helped to improve the integrity,
but trigger-based test execution would be a better solution.
Both Microsoft Office 365 and Google GSuite offer API
hooks that can be used to launch the test when a document is

saved. The test could then run and immediately notify the
user of the error. We would also plan to add web browser
notifications immediately when an integrity error occurs.

VIII. EMPIRICAL DATA –EMAILS

In this section, we look at the empirical data we gathered
to support our hypothesis that the usage of the secBIML
language could increase the security of email marketing and
business automation. Many CRM and email marketing
vendors claim functionality to allow artificial intelligence
with email marketing and continuous communication with
customers based on business automation. We believe this is
a more difficult process than vendors imply. The difficulty
comes from the fact that the data used to generate these
emails and automation must be accurate and current. So, we
wanted to test the correctness of data used in a production
system. To measure the integrity of the data, we used an email
services provider (ESP) Mailgun [13]. An ESP is a cloud
service provider that manages the delivery of email messages.
Some vendors provide analytic data on email delivery, such
as the number of messages delivered, suppressed, and
dropped. Data about the email clients, click-throughs, and
unsubscribe data is also maintained. An added benefit of the
provider we chose is that a free version is available through
the GitHub Student Developer Pack [14].

A Standard Query Language (SQL) Server Common
Language Runtime (CLR) extension was developed to send

TABLE III SECBIML POST-TESTING DATA

Data Point Timing Executions

Cache-miss
sequential

14808 120

Cache-hit sequential 1452 120

Cache-miss 4 thread 18324 120

Cache-hit 4 thread 1812 120

Cache-miss 8 thread 20556 120

Cache-hit 8 thread 2016 120

Cache-hit production 139647 989

Cache-miss
production

4393 289

TABLE IV SECBIML BUSINESS DOCUMENT TESTS

Document Type Count Internal External Initial Integrity Continuous Integrity

Word Documents 102 24 82 82% 94%

PowerPoint
Documents

55 2 53 86% 92%

Excel Documents 1 0 1 100% 100%

5Copyright (c) IARIA, 2020. ISBN: 978-1-61208-778-8

CLOUD COMPUTING 2020 : The Eleventh International Conference on Cloud Computing, GRIDs, and Virtualization

the emails with proper tagging and retrieve the sent email
data through the APIs. Database triggers were used to send
automation responses based on the visitation of patrons. For
example, an email was sent before a visitation that included
details on arrival, directions to the venue, and the group's
itinerary. Surveys were also sent to the patrons the day after
visitation. Using the APIs from Mailgun, we were able to
retrieve the data about the sent emails and check the integrity
of the merged fields, appropriateness of the content in the
email, and problems with delivery. TABLE V shows the errors
found over a month of tests. The errors fell into two
categories; data errors with the automated emails and data
merge errors where data was truncated or displayed
improperly in the final layout. The automation errors
originated from data entry errors from operators entering
transaction data and poor design in the transactional systems
to allow the data inconsistencies to exist. The merge errors
originated from live data that did not look like the data used
in the testing of the email templates. In both cases, the
percentage of error is small, but if an organization works hard
to acquire a customer, these types of errors can negate that
hard work.

IX. CONCLUSIONS AND FUTURE WORK

Based on our research, we demonstrate that the
availability and integrity of business visualizations,
documents, and communications increase using the secBIML
programming language. This work demonstrates the
successful implementation of the tests written in secBIML for
an actual organization utilizeing their production
environment. Our future work will develop tooling to make
it easier to create business document tests while doing layout
in the document. The tooling will make it more likely that an
end-user will specify the correctness of a document. We will
also create trigger-based executions of our testing programs.
The triggers will enable on the fly verification instead of a
point in time testing.

REFERENCES

[1] B. Evelson, "Topic Overview: Business Intelligence,"
Forrester, 2018.

[2] I. Letca et al., "Measuring Actual End User Performance
And Availability Of Web Applications". Patent US
8,938,721 B2, 2015.

[3] C. E. F., "A relational model of data for large shared data
banks," Communications of the ACM, vol. 13, no. 6, pp.
377-387 , 1970.

[4] N. Khoury, P. Zavarsky, D. Lindskog and R. Ruhl, "An
Analysis of Black-Box Web Application Security
Scanners against Stored SQL Injection," in 2011 IEEE
Third International Conference on Privacy, Security, Risk
and Trust and 2011 IEEE Third International Conference
on Social Computing, Boston, MA, 2011, pp 1095-1101.

[5] World Wide Web Consortium (W3C), "Selectors Level
3," 18 November 2018. [Online]. Available:
https://www.w3.org/TR/selectors-3/. [Accessed 16
October 2019].

[6] The Franklin Institute, "The Franklin Institute," 2019.
[Online]. Available: http://www.fi.edu. [Accessed 16
October 2019].

[7] Logi Analytics, "Business Intelligence is Dead," 2019,
[Online]. Available: https://www.logianalytics.com.
[Accessed 16 October 2019].

[8] Microsoft Corporation, "What is Office 365," [Online].
Available: https://www.office.com/. [Accessed 12
November 2019].

[9] Google, Inc., "About Google Docs," [Online]. Available:
https://www.google.com/docs/about/. [Accessed 12
November 2019].

[10] Microsoft, ".NET Core Guide," [Online]. Available:
https://docs.microsoft.com/en-us/dotnet/core/. [Accessed
23 October 2019].

[11] D. Kondratiuk, "Puppeteer Sharp," [Online]. Available:
https://www.puppeteersharp.com/. [Accessed 23 October
2019].

[12] Google, "Puppeteer," [Online]. Available:
https://developers.google.com/web/tools/puppeteer.
[Accessed 23 October 2019].

[13] Mailgun Technologies, Inc, "The Email Service for
Developers," [Online]. Available:
https://www.mailgun.com/. [Accessed 3 December
2019].

[14] GitHub, "GitHub Education," [Online]. Available:
https://education.github.com/pack. [Accessed 3
December 2019].

TABLE V SECBIML EMAIL AND AUTOMATION TESTS

Type Count Errors

Visitation Email
Automation

18,114 13

Email Merge Errors 756,123 1,243

6Copyright (c) IARIA, 2020. ISBN: 978-1-61208-778-8

CLOUD COMPUTING 2020 : The Eleventh International Conference on Cloud Computing, GRIDs, and Virtualization

