
Cloud-RAIR: A Cloud Redundant Array of Independent Resources

Abdelhamid Khiat

Research Center on Scientific and Technical Information
CERIST - Algiers- Algeria

Email: a.khiat@dtri.cerist.dz

Abstract—Cloud computing is considered as a dynamic dis-
tributed environment composed of a large number of resources.
The Physical Machines (PM) and Virtual Machines (VM) are
two main Cloud components. They collaborate together with
other Cloud resources to provide a set of services to the end
user, who must be satisfied as soon as possible. Unfortunately,
the risk of a PM or VM failure is still inevitable in a Cloud
environment. To ensure the end user satisfaction, a power fault
tolerance technique must be used to avoid the service failures.
In this paper, a new VM and PM fault tolerance management
mechanism called Cloud Redundant Array of Independent Re-
sources (Cloud-RAIR) is proposed. The Cloud-RAIR solution is
based on Redundant Array of Independent Disks (RAID).

Keywords–Cloud Computing; Fault Tolerance; Redundant Array
of Independent Disks.

I. INTRODUCTION

The use of Cloud technology has increased enormously
in these last few years. Given the benefits offered by this
technology, a significant number of services have been mi-
grated to the Cloud environment, which implies a huge need
of used resources, including storage space. With this increase
in the amount of used resources in the Cloud environment,
the probability to get a PM or VM failure also increases,
possibly causing a service interruption. The recovery of such
a failed PM or VM can be achieved by using a fault
tolerance management solution. The latter must avoid any risk
of inability to recover the data after a VM or PM crash.
One of the most important parameters to take into account in
any fault tolerance solution is the used space storage, which
should be minimized as much as possible. Such minimization
can also help in optimizing other important parameters like
cost and consumed energy .

In this work, we propose Cloud-RAIR, a reactive fault
tolerance management policy based on the powerful concept
known as Redundant Array of Independent Disks (RAID)
solution. The latter is widely used by most open source
operating systems and usually provided as hardware solutions.
Cloud-RAIR allows to discover and repair the PM and VM
failures. The major contribution of the proposed solution lies in
the space storage optimization using a specific level of RAID,
namely RAID 6.

The rest of this paper is organized as follows. Section II
summarizes the related work. In Section III, the proposed
solution is described in detail. An evaluation of our solution is
presented in Section V. Finally, a conclusion and future work
are given in Section VI.

II. RELATED WORK

Two main standards of fault tolerance are defined for Cloud
environments, namely Proactive Fault Tolerance Policy and
Reactive Fault Tolerant Policy [1]. The first one envisages to
avoid failures, while the second one aims to reduce the effects
of occurring faults. Considering the nature of our proposed
policy, only some Reactive Fault Tolerant policies will be
presented in the rest of this section.

In [2], the authors have discussed some reactive fault
tolerance approaches, among which we mention:

• Task Resubmission: this technique is based on task
resubmission when a fault is detected. The resubmis-
sion processes must be done without interrupting the
system workflow.

• Check-pointing/Restart: this technique allows to
restart the failed Cloud component (application, VM
or PM) from a saved state called checkpoint. It is
considered as an efficient fault tolerance technique for
high computation intensive applications hosted in the
Cloud.

• Replication: this technique consists to keep multiple
copies of data or object, which will be used when a
fault occurrs. According to [2], the replication tech-
nique is a popular solution with many varieties.

A collaborative fault tolerance method based on the Check-
pointing technique was proposed in [3]. In this technique, both
the service consumer and provider participate to ensure the
fault tolerance management. According to authors, application
faults can be detected and repaired at the customer level, while
VM and hardware faults can be detected and repaired at the
Cloud provider level.

In [4], the authors exploit the virtualisation by adding a
service layer which acts as a Fault Tolerance Middleware
(FTM). The added service is inserted between the computing
infrastructure and the applications. Then, the proposed FTM
can offer fault tolerance support to each application individu-
ally.

A Self-tuning Fault Detection system (SFD) was proposed
in [5]. It detects faults in the Cloud computing environment.
According to authors, SFD has the advantage of ensuring
a better fault detection by adjusting fault detecting control
parameters.

A framework called BFTCloud was proposed by Yilei
Zhang et al. in [6]. The authors have used the dynamic repli-
cation technique, in which voluntary nodes are selected based
on QoS characteristics and reliability performance. Extensive

133Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

experiments on various types of Cloud environments show that
BFTCloud guarantees robustness of systems when f resources
out of a total of 3f + 1 resource providers are faulty.

Redundant Array of Independent Disks (RAID) [7], is
the standardized scheme for the design of redundant multi-
unit systems. The RAID systems can be provided either as
software solutions or as hardware solutions integrated into the
computing system. A RAID system allows to enhance fault
tolerance through redundancy. A number of standard schemes
(levels) have evolved over the years. In our case, we are
interested into the RAID 6 level, which consists in block-
level striping with double distributed parity. RAID 6 requires
a minimum of four disks and provides fault tolerance up to
two simultaneously failed drives.

In [8], the authors have combined DRBD [9] and heart-
beat [10] solutions to enhance the high availability of the sys-
tem in the case of resource failure. The proposed architecture
was designed for an OpenNebula [11] based Cloud. DRBD was
used to ensure distributed replicated storage, whereas heartbeat
was used as a high-availability solution.

A typical replication method called K-fault tolerance strat-
egy was proposed in [12]. According to the authors, the service
is not largely affected when no more than k nodes fail. In [13],
the authors propose an (m,n)-fault tolerance strategy that
can ensure (m,n)-fault tolerance and investigate the optimal
virtual machine placement strategy.

In order to minimize the number of QoS violations in a fat-
tree data center and continue to support the QoS requirement of
an application after data corruption, an optimal data replication
approach was proposed in [14]. The solution aims to preserve
the quality of service requirements after each data crash.

III. PROPOSED CLOUD-RAIR
The main objective of Cloud-RAIR consists to ensure the

service continuity by detecting and repairing the physical and
virtual machine failures. A failure can be a hard one like a
storage disk crash, or a soft one like an operating system crash.
Note that an application crash is not considered by the Cloud-
RAIR solution, the latter reacts only when the fault affects
VM , or PM components. Cloud-RAIR aims to optimize the
total used space storage, taking inspiration from RAID, a
powerful technique used in a large number of Open-Source
operating systems and in hard storage solutions. Among the
set of different RAID levels, the RAID level 6 was chosen,
given its optimization of the total space storage used to save the
data, and its ability to recover data in case of two simultaneous
resource (PM , or VM) failure.

The RAID 6 technique recommends to use disks of same
size with a total number of used disks that must be at least four.
This recommendation is taken into account in our architecture,
by dividing the set of VM and PM into sub-sets of the same
size, where a VM or PM is the equivalent of a disk in the
basic RAID solution. Two types of resources are considered in
the Cloud-RAIR architecture. The first one is the VM resource
type, while the second one is the PM resource type. The
set of resources of a given sub-set must be independent; Two
resources of type VM are independent if they are not hosted
on the same PM , hence the use of the term Independent
Resources in the name Cloud-RAIR (Cloud Redundant Array
of Independent Resources). Note that all the resources of the
PM type are independent.

Figure 1. Cloud-RAIR global architecture

As described in Figure 1, Cloud-RAIR is composed of two
modules that work in parallel and in coordination. The first one
ensures a real time Cloud monitoring, in order to detect any
event, like resource leaving/joining. The second one ensures
the backup management by repairing any resource fault.

From a practical point of view, the two modules can be
deployed on any host related to the Cloud. Those modules
interact with Cloud components using a Cloud service. Two
types of Cloud services are used by the Cloud-RAIR solution.
The first one is dedicated to provide the informations about the
status of a resource, the latter being used by the Monitoring
Resource module to monitor the status of the resources. Mean-
while, the second one is used to manage the Cloud resources
through operations like additions and deletions. This service
is used by the Resource Fault Tolerance Management module
to reconstruct the failed resource.

The global processes of Cloud-RAIR are described in the
rest of this section.

When a new VM or PM is added to the set of Cloud
resources, the addition event is detected by the Monitoring
Resource module, and an automatic script is triggered by
the module, in order to notify the Resource Fault Tolerance
Management module (RFTM) of their creation. Afterwards,
the RFTM module starts by attributing a unique R id to
the new resource and saves all informations about the new
added resource. It then uses all saved informations in order
to find the best suitable sub-set (SS id), and subsequently
integrates the new resource into that sub-set. Finally, a tuple
(R Type,R id, SS id) is constructed as follows:

R Type: Represents the resource type with several possi-
ble values. For example, a type value can be PM to represent
PM , VM Small to represent a Small VM, or VM Large to
represent a Large VM, etc. R id: Represents a unique id that
allows to identify a resource in the system.

SS id: Represents a unique id used to identify the sub-set
that includes R Id.

VM or PM deletion is another event that can appear.
Like a VM /PM addition event, the VM /PM deletion event
is detected by the Monitoring Resource module, which sub-
sequently launches an automatic script, in order to inform

134Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

the RFTM module that a component has been deleted. Then,
the RFTM module identifies the deleted resource by its id,
removes it from its sub-set and checks if the size of the sub-
set after the removal is smaller than four. If that is the case, it
deletes the whole sub-set and adds the remaining resources of
the sub-set one bye one as new resources without modifying
their id.

The third event that can appear is the resource failure.
When a resource failed to continue its service, the Monitoring
Resource module detects the event and notifies the RFTM
module to start the process that allows to recover the failed
resource. A resource is considered as a failed resource when it
does not respond to user requests, which can usually happen
if the resource is not reachable.

The proposed Cloud-RAIR approach follows the RAID
concept. Whenever the Resource Monitoring module detects
a PMi or VMj failure, Cloud-RAIR will not look for a full
copy of the lost PM /VM . It will instead reconstruct the lost
resource from the sub-set that contains VMi/PMj .

In Cloud-RAIR, VM and PM are internally coded by a
sequence of bits representing an operating system with the
users data. Assuming that a sub-set SS i contains p resources
of same size noted (R1, R2, ..., Rp), with p equal or greater
than four and Rp−1, Rp represent the parity values as shown
in (1). According to the RAID 6 level, the parity sequences
of bits Rp−1 and Rp represent the data used to recover failed
resources and are computed using Formula 1.

 Rp−1 = R1 ⊕R2 ⊕ ...⊕Rp−2

Rp = R1 ⊕ SH1(R2)⊕ ...⊕ SHp−1(Rp−2)
(1)

In the formulaes, SH represents the shift function, and a
resource Ri is coded as a sequence of bits Ri = r0r1r2...rx.
The corresponding SH function is computed as follows:

SH1 = r1r2...rxr0, SH2 = r2r3...rxr0r1, etc.
The formulaes 1 and 2 are valid only if x ≥ p, other-

wise, other functions must be applied. In general, SHx(Ri)
represents the shift of Ri by x positions.

For the reconstruction phase, two cases are possible. The
first case considers a single resource failure, while the second
considers two simultaneous resource failures. In the first case,
the reconstruction is done with a simple XOR between all the
resources that compose the corresponding sub-set except Rp.
Meanwhile, in the second case, the function 2 is applied. In
the formulae of the function where k l represent the failed
resources. The results of Formula 2 represent a system of 2x
equations with 2x unknowns which uniquely determine the
two failed resources Rk and Rl.

Rk ⊕Rl =

⊕p
i=0,i!=k,l,p Ri

SHk−1(Rk)⊕ SH l−1(Rl) =
⊕p

i=0,i!=k,l,p−1 SH
i−1(Ri)

(2)

IV. DESCRIPTION OF THE ALGORITHMS

Two algorithms can ensure the Cloud-RAIR proper system
functioning. The first one allows to manage the sub-sets

(Figure 2). The second one (Figure 3) allows to recover the
failed resource.

Input : VMi, PMj

Output: SS id
Order SS according to Size;
for SS i ∈ SS do

SB: for VM ∈ SSi do
if VM hosted on PMj then

break SB ;

else
end

end
end
if found SSi then

Add(VMi to SSi)
else

Create new SS;
migrate two others VM to the new SS;
add VMi to new SS;

end

Figure 2. Resource addition algorithm

The algorithm presented in Figure 2 allows to manage the
sub-sets over two main setups. In the first setup, the set of
sub-sets is sorted in ascending order according to their size,
aiming to insert the new VM into the smallest possible sub-set
in terms of size. The second setup consists to search the sub-set
that does not contain any VM hosted in the same PM with
the new VM ; if no sub-set is found, a new sub-set is created
and two VM are randomly chosen and migrated to the new
created sub-set, provided that these two VM are not hosted in
the same PM as the new VM. Finally the backup of the new
sub-set and the two other altered sub-sets are restarted.

Input : R1, R2,, Rp

Output: R failed
if R failed is PM then

for Ri ∈ PM do
Reconstruct(Ri)

end
else

Reconstruct(R failed)
end
function Reconstruct (R failed)
find SS id with R failed in SS id
Reconstruct R failed
end function

Figure 3. Resource recovering algorithm

Figure 3 presents the algorithm used to recover the failed
VM or PM once the failure has occurred. Two cases of
failure can appear, the first one consists into a VM failure
(VMfailed), while the second one consists into a PM failure.
In the first case, Cloud-RAIR has to identify the sub-set that
contains VMfailed, then, VMfailed is reconstructed using the
recovery process defined in Section 1. For the second case, all
the VM that have been hosted on the failed PM are identified

135Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

and the set of VM are reconstructed, similarly to the case of
VM failure.

V. EVALUATION

For the evaluation phase, the JAVA, SHELL and R lan-
guages were used to develop a simulator designed to make
our experiments. The different experiments have been done
by simulation on a personal computer equipped with an Intel
Core i5 processor and 6 GB of RAM, using Ubuntu 16.04
as an operating system. Cloud-RAIR was implemented using
the JAVA programming language, and evaluated by simulation.
Our approach was compared with the replication policy.

The replication technique used in the evaluation phase was
also implemented in JAVA and deployed with Cloud-RAIR
in the developed simulator. The implementation of the used
replication technique was done as follows: assuming that we
have a set of n VM hosted under a set of m PM , the
replication consists to make only one copy of each VM (VMi)
on a PM different from the PM that hosts VMi. Then the
OS and data of each PM are copied on another PM .

The following Cloud model was used for the evaluation
phase: assuming that the Cloud is composed of a set of m
PM and n VM . The whole set of resources (VM and VM)
is connected by a private network. The term R is used as
a common term to denote a PM or a PM . Each VM is
characterized by a tuple (TypeVMi, SizePMj).

A table called Type VM =
[”Type1”, ”Type2”, ..., ”Typek”] contains the different types
that can be taken by a VM . The variable denoted TypeVMi

is used to designate the type of VMi, and TypeVMi is
defined at the creation of VMi and can not be changed
during the VMi life cycle. An associative table denoted
Size VM = [”Type1” => Size1, ..., ”Typep” => Sizep]
contains the sizes of the different VM types,
where the size of a VMi is calculated as follows:
SizeVMi = Size VM [TypeVMi].

The variable CStorageSize denotes the total space con-
sumed by the Cloud excluding the storage space used
for the backup. Meanwhile, the variable CBackupSize
represents the space used for the backup. The variable
CTotalSize represents the total space used by the Cloud
(CTotalSize=CStorageSize + CBackupSize).

For the replication technique, the storage size consumed
by the backup (CBackupSize) is equal to CStorageSize,
since, each VM has exactly one copy. Subsequently, the size
of each copy of VMi is exactly equal to SizeVMi. Similarly
to VM , each PM haw only one copy, and the PMj copy size
is exactly equal to SizePMj . The total space consumed by
the Cloud (CTotalSize) is equal to 2 ∗ CStoeageSize.

Cloud-RAIR assumes that we have p sub-sets denoted SSi.
Following to the concept of Cloud-RAIR, all resources of the
same SSi have the same size denoted RSizei. Then the total
size of the Cloud is computed using Formula 3.

CStorageSize = CStorageSize+ (2 ∗
p∑

i=1

RSizei) (3)

In order to evaluate and compare Cloud-RAIR with the
replication policy described above, we assume that we have
5 types of VM according to their size, which are tiny, small,

medium, large, and xlarge VM . It is considered that there is
no constraint on the available storage space on the PM , that is,
the space is sufficient for all VM and backup. For evaluation
purpose, the number of PM is varied inside the following
set {5, 10, 50, 100, 250, 500, 1000, 2500, 5000, 10000, 20000}.
The number of hosted VM on each PM is randomly gen-
erated, and each PM can host between 1 and 20 VM . The
evaluation metrics are, the storage space consumed by each
policy and the percent of space saved by the Cloud-RAIR
approach compared with the replication policy.

●●●●●●
●●

●
●

●

●

●

●

●

●

●

●

●

●

0e+00

1e+07

2e+07

3e+07

0 5000 10000 15000 20000

Number of VM

U
se

d
st

or
ag

e
sp

ac
e

(M
o)

Policy
●

●

Cloud−RAIR

Replication

Figure 4. Used space comparison

As previously explained, for the replication approach, the
total size of space used for VM backup equals exactly the
sum of the sizes of all VM . In contrast, for Cloud-RAIR, the
storage space depends on the total number of VM and PM ,
as well as on the way in which VM are distributed on PM .
The total space used for backup storage is calculated for each
case, as shown in Figure 4.

●

●

●

●

●
● ● ● ● ●

60

70

80

90

100

0 5000 10000 15000 20000

Number of VM

S
av

ed
 s

to
ra

ge
 s

pa
ce

 (
%

)

colour

steelblue

Figure 5. Cloud-RAIR saved backup storage space

Figure 5 shows the percentage of backup space saved using
Cloud-RAIR compared with the replication method. The saving

136Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

becomes more important when the Cloud size in terms of
total number of PM and VM becomes large enough. The
space saved using Cloud-RAIR compared with the replication
policy peaks around 99%, where the Cloud size becomes more
important. This shows the usefulness of Cloud-RAIR when the
Cloud is large.

The overall results show the good properties of Cloud-RAIR
from a theoretical point of view, when the different times taken
by the operations are not considered. However, in practice, it
is necessary to take into account other parameters, such as
communication time. These parameters can potentially have
an impact on Cloud-RAIR efficiency, particularly when the
number of resources is large.

VI. CONCLUSION AND FUTURE WORK

In this paper, a new fault-tolerance policy for managing
both virtual and physical machine failures in a Cloud en-
vironment has been proposed. As described in this paper,
Cloud-RAIR inherits its concepts from the RAID 6 technique,
consequently, inheriting the advantages provided by RAID 6,
particularly, in terms of storage space optimization compared
with the standard backup systems, and in terms of the number
of simultaneous failures that can be recovered. Cloud-RAIR
being based on RAID 6 level, it can be useful to adapt the
policy of sub-set management defined in this paper with other
RAID levels, in order to study the impact of Cloud-RAIR
solution on the consumed storage space when changing the
RAID level.

It will also be useful to introduce the communication time
between resources, in order to compute the minimum allowed
time between two successive failures. This will allow to predict
the maximum allowed failures per unit time. It can also be
useful to study the efficiency of Cloud-RAIR if the sub-set size
is limited, (although this will increase the backup storage size,
it will probably allow to reduce the repairing time). Another
potential future work to consider, consists in making a real
implementation of the Cloud-RAIR solution on a real Cloud
environment and study its performance in terms of cost and
energy consumption. In the proposed solution, the VM and
PM failures are considered, but not the application crashes.
It could be useful to consider adding the fault management of
application level faults.

REFERENCES

[1] K. Ganga and S. Karthik, “A fault tolerent approach in scientific
workflow systems based on cloud computing,” in Pattern Recognition,
Informatics and Mobile Engineering (PRIME), 2013 International Con-
ference on. IEEE, 2013, pp. 387–390.

[2] A. Ganesh, M. Sandhya, and S. Shankar, “A study on fault tolerance
methods in cloud computing,” in Advance Computing Conference
(IACC), 2014 IEEE International. IEEE, 2014, pp. 844–849.

[3] A. Tchana, L. Broto, and D. Hagimont, “Approaches to cloud computing
fault tolerance,” in Computer, Information and Telecommunication
Systems (CITS), 2012 International Conference on. IEEE, 2012, pp.
1–6.

[4] R. Jhawar, V. Piuri, and M. Santambrogio, “A comprehensive concep-
tual system-level approach to fault tolerance in cloud computing,” in
Systems Conference (SysCon), 2012 IEEE International. IEEE, 2012,
pp. 1–5.

[5] N. Xiong, A. V. Vasilakos, J. Wu, Y. R. Yang, A. Rindos, Y. Zhou,
W. Song, and Y. Pan, “A self-tuning failure detection scheme for
cloud computing service,” in 2012 IEEE 26th International Parallel and
Distributed Processing Symposium, May 2012, pp. 668–679.

[6] Y. Zhang, Z. Zheng, and M. R. Lyu, “Bftcloud: A byzantine fault
tolerance framework for voluntary-resource cloud computing,” in 2011
IEEE 4th International Conference on Cloud Computing. IEEE, 2011,
pp. 444–451.

[7] D. A. Patterson, G. Gibson, and R. H. Katz, A case for redundant arrays
of inexpensive disks (RAID). ACM, 1988, vol. 17, no. 3.

[8] C.-T. Yang, J.-C. Liu, C.-H. Hsu, and W.-L. Chou, “On improvement
of cloud virtual machine availability with virtualization fault tolerance
mechanism,” The Journal of Supercomputing, vol. 69, no. 3, 2014, pp.
1103–1122.

[9] P. Pla, “Drbd in a heartbeat,” Linux Journal, vol. 2006, no. 149, 2006,
p. 3.

[10] D. Bartholomew, “Getting started with heartbeat,” Linux Journal, vol.
2007, no. 163, 2007, p. 2.

[11] D. Milojičić, I. M. Llorente, and R. S. Montero, “Opennebula: A cloud
management tool,” IEEE Internet Computing, vol. 15, no. 2, 2011, pp.
11–14.

[12] F. Machida, M. Kawato, and Y. Maeno, “Redundant virtual machine
placement for fault-tolerant consolidated server clusters,” in Network
Operations and Management Symposium (NOMS), 2010 IEEE. IEEE,
2010, pp. 32–39.

[13] A. Zhou, S. Wang, C.-H. Hsu, M. H. Kim, and K.-s. Wong, “Virtual
machine placement with (m, n)-fault tolerance in cloud data center,”
Cluster Computing, 2017, pp. 1–13.

[14] J. Lin, C. Chen, and J. M. Chang, “Qos-aware data replication for data-
intensive applications in cloud computing systems,” IEEE Transactions
on Cloud Computing, vol. 1, no. 1, Jan 2013, pp. 101–115.

137Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

