
Anomaly Detection and Analysis for Clustered Cloud Computing Reliability

Areeg Samir

Faculty of Computer Science
Free University of Bozen-Bolzano

Bolzano, Italy
Email: areegsamir@unibz.it

Claus Pahl

Faculty of Computer Science
Free University of Bozen-Bolzano

Bolzano, Italy
Email: Claus.Pahl@unibz.it

Abstract—Cloud and edge computing allow applications to be
deployed and managed through third-party provided services
that typically make virtualised resources available. However,
often there is no direct insight into execution parameters at
resource level, and only some quality factors can be directly
observed while others remain hidden from the consumer. We
investigate a framework for autonomous anomaly analysis for
clustered cloud or edge resources. The framework determines
possible causes of consumer-observed anomalies in an underlying
provider-controlled infrastructure. We use Hidden Markov Mod-
els to map observed performance anomalies to hidden resources,
and to identify the root causes of the observed anomalies in
order to improve reliability. We apply the model to clustered
hierarchically organised cloud computing resources.

Index Terms—Cloud Computing; Edge Computing; Container
Cluster; Hidden Markov Model; Anomaly; Performance.

I. INTRODUCTION

Cloud and edge computing allow applications to be de-
ployed and managed by third parties based on provided virtu-
alised resources [2],[3]. Due to the dynamicity of computation
in cloud and edge computing, consumers may experience
anomalies in performance caused by the distributed nature of
clusters, heterogeneity, or scale of computation on underlying
resources that may lead to performance degradation and ap-
plication failure: (1) change in cluster node workload demand
or configuration updates may cause dynamic changes, (2)
reallocation or removal of resources may affect the workload
of system components. Recent works on anomaly detection
[1],[4],[5] have looked at resource usage, rejuvenation or
analyzing the correlation between resource consumption and
abnormal behaviour of applications. However, more work is
needed on identifying the reason behind observed resource
performance degradations.

In a shared virtualised environment, some factors can be
directly observed (e.g., application performance) while others
remain hidden from the consumer (e.g., reason behind the
workload changes, the possibility of predicting the future
load, dependencies between affected nodes and their load).
In this paper, we investigate the possible causes of perfor-
mance anomalies in an underlying provider-controlled cloud
infrastructure. We propose an anomaly detection and analysis
framework for clustered cloud and edge environments that
aims at automatically detecting possibly workload-induced

performance fluctuations, thus improving the reliability of
these architectures. We assume a clustered, hierarchically
organised environment with containers as loads on the indi-
vidual nodes, similar to container cluster solutions like Docker
Swarm or Kubernetes.

System workload states that might be hidden from the
consumer may represent anomalous or faulty behaviour that
occurs at a point in time or lasts for a period of time. An
anomaly may represent undesired behaviour such as overload
or also appreciated positive behaviour like underload (the latter
can be used to reduce the load from overloaded resources in
the cluster). Emissions from those states (i.e., observations)
indicate the possible occurrence of failure resulting from a
hidden anomalous state (e.g., high response time). In order to
link observations and the hidden states, we use Hierarchical
Hidden Markov Models (HHMMs) [8] to map the observed
failure behaviour of a system resource to its hidden anomaly
causes (e.g., overload) in a hierarchically organised clustered
resource configuration. Hierarchies emerge as a consequence
of a layered cluster architecture that we assume based on a
clustered cloud computing environment. We aim to investigate,
how to analyse anomalous resource behaviour in clusters
consisting of nodes with application containers as their load
from a sequence of observations emitted by the resource.

This paper is organized as follows. Section II provided the
related work. Section III explores our wider anomaly man-
agement framework. Section IV details the anomaly detection
and fault analysis. Section V discusses evaluation concerns,
followed by conclusions an future work.

II. RELATED WORK

Several studies [9] and [5] have addressed workload anal-
ysis in dynamic environments. Sorkunlu et al. [10] identified
system performance anomalies through analyzing the correla-
tions in the resource usage data. Peiris et al. [11] analyzed
the root causes of performance anomalies by combining the
correlation and comparative analysis techniques in distributed
environments. Dullmann et al. [12] provided an online perfor-
mance anomaly detection approach that detects anomalies in
performance data based on discrete time series analysis. Wang
et al. [5] proposed to model the correlation between workload
and the resource utilization of applications to characterize

110Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

the system status. However, the technique neither classifies
the different types of workloads, or recovers the anomalous
behaviour. Maurya and Ahmad [14] proposed an algorithm
that dynamically estimates the load of each node and migrates
the task on the basis of predefined constraint. However, the
algorithm migrates the jobs from the overloaded nodes to the
underloaded one through working on pair of nodes, it uses a
server node as a hub to transfer the load information in the
network which may result in overhead at the node.

Many literatures used HMM, and its derivations to detect
anomaly. In [15], the author proposed various techniques
implemented for the detection of anomalies and intrusions in
the network using HMM. Ge et al. [17] detected faults in
real-time embedded systems using HMM through describe the
healthy and faulty states of a system’s hardware components.
In [20] HMM is used to find which anomaly is part of the
same anomaly injection scenarios.

III. SELF-ADAPTIVE FAULT MANAGEMENT

Our ultimate goal is a self-adaptive fault management
framework [7],[6],[21] for cloud and edge computing that
automatically identifies anomalies by locating the reasons for
degradations of performance, and making explicit the depen-
dency between observed failures and possible faults cause by
the underlying cloud resources.

A. The Fault Management Framework

Our complete framework consists of two models: (1)
Fault management model that detects and identifies anomalies
within the cloud system. (2) Recovery model that applies
a recovery mechanism considering the type of the detected
anomaly and the resource capacity. Figure 1 presents the
overall approach. The focus in this paper is on the Fault
management model.

FIGURE 1. THE PROPOSED FAULT MANAGEMENT FRAMEWORK.

The cloud resources consist of a cluster, which composed
of a set of nodes that host application containers as loads
deployed on them. Each node has an agent that can deploy
containers and discover container properties. We use the
container notion to embody some basic principles of container
cluster solutions [13] such as Docker Swarm or Kubernetes,
to which we aim to apply our framework ultimately.

We align the framework with the Monitor Analysis, Plan,
Execute based on the anomaly detection Knowledge (MAPE-
K) feedback control loop. Monitor, collects data regarding the
performance of the system as the observable state of each
resource [16]. This can later be used to compare the detected
status with the currently observed one. Each anomalous state
has a weight (probability of occurrence). An identification step
is followed by the detection to locate the root cause of anomaly
(Analysis and Plan). The identified anomalous state is added
to a queue that is ordered based on its assigned weight to
signify urgency of healing. Knowledge about anomalous states
are kept on record. Different recovery strategies (Execute)
can mitigate the detected anomalies. Different pre-defined
thresholds for recovery activities are assigned to each anomaly
category based on observed response time failures.

The detection of an anomaly is based on using historical per-
formance data to determine probabilities. We classify system
data into two categories. The first one reflects observed system
failures (essentially regarding permitted response time), and
the second one indicates the (hidden) system faults related
to workload fluctuations (e.g., by containers consuming a
resource). We further annotate each behavioural category to
reflect the severity of anomalous behaviour within the system,
and the probability of its occurrence. The response time
behaviour captures the amount of time taken from sending a
request until receiving the response (e.g., creating container(s)
within a node). For example, observed response time can
fluctuate. The classified response time should be linked to
the failure behaviour within system resources (i.e., CPU) to
address unreliable behaviour. We can also classify the resource
workload into normal (NL), overload (OL), underload (UL)
categories to capture workload fluctuations.

B. Anomaly Detection and Identification

Anomaly detection, the Monitoring stage in MAPE-K, col-
lects and classifies system data. It compares new collected
data with previous observations based on the specified rules
in the Knowledge component. Fault identification, the Analysis
and Plan stages in MAPE-K, identifies the fault type and its
root cause to explain the anomalous behaviour. The main aim
of this step is specifying the dependency between faults (the
proliferation of an anomaly within the managed resources),
e.g., an inactive container can cause another container to
wait for input. We use Hierarchical Hidden Markov models
(HHMM) [8], a doubly stochastic model for hierarchical
structures of data to identify the source of anomalies.

Based on the response time emissions, we track the path
of the observed states in each observation window. Once
we diagnose anomalous behaviour, the affected nodes will
be annotated with a weight, which is a probability of fault
occurrence for an observed performance anomaly. Nodes that
have a high workload will be prioritised in the later fault
handling based on the assigned weight. Nodes with the same
weight can be addressed based on a first-detected-first-healed
basis. In order to illustrate the usefulness of this analysis, we

111Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

will also discuss the fault handling and recovery in the next
subsection. Afterwards, we define the HHMM model structure
and the analysis process in detail.

C. Fault Handling and Recovery

After detecting and identifying faults, a recovery mecha-
nism, the Execute stage in MAPE-K, is applied to carry out
load balancing or other suitable remedial actions, aiming to
improve resource utilization. Based on the type of the fault,
we apply a recovery mechanism that considers the dependency
between nodes and containers. The recovery mechanism is
based on current and historic observations of response time
for a container as well as knowledge about hidden states
(containers or nodes) that might have been learned. The
objective of this step is to self-heal the affected resource. The
recovery step receives an ordered weighted list of faulty states.
The assigned probability of each state based on a predefined
threshold is used to identify the right healing mechanism, e.g.,
to achieve fair workload distribution.

We specify the recovery mechanism using the following
aspects: Analysis: relies on e.g., current observation, historic
observation. Observation: indicates the type of observed
failure (e.g., low response time). Anomaly: reflects the kind
of fault (e.g., overload). Reason: explains the root causes of
the problem. Remedial Action: explains the solution that can
be applied to solve the problem. Requirements: steps and
constraints that should be considered to apply the action(s).
We will apply this to two sample strategies below.

D. Motivating Failure/Fault Cases and Recovery Strategies

In the following, we present two samples failure-fault situa-
tions, and suitable recovery strategies. The recovery strategies
are applied based on the observed response time (current and
historic observations), and its related hidden fault states. We
illustrate two sample cases–overloaded neighbouring container
and node overload.

1) Container Neighbour Overload (external dependency)

Analysis: based on current/historic observations, hidden states
Observation: low response time at the connected containers
(overall failure to need performance targets).
Anomaly: overload in one or more containers results in
underload for another container at different node.
Reason: heavily loaded container with external dependent one
(communication)
Remedial Actions: Option 1: Separate the overloaded con-
tainer and the external one depending on it from their nodes.
Then, create a new node containing the separated containers
considering the cluster capacity. Redirect other containers that
in communication to these 2 containers in the new node.
Connect current nodes with the new one, and calculate the
probability of the whole model to know the number of
transitions (to avoid the occurrence of overload), and to predict
the future behaviour. Option 2: For the anomalous container,
add a new one to the node that has the anomalous container

to provide fair workload distribution among containers con-
sidering the node resource limits. Or, if the node does not
yet reach the resource limits available, move the overloaded
container to another node with free resource limits. At the
end, update the node. Option 3: create another node within
the node with anomalous container behaviour. Next, direct the
communication of current containers to this node. We need to
redetermine the probability of the whole model to redistribute
the load between containers. Finally, update the cluster and
the nodes. Option 4: distribute load. Option 5: rescale node.
Option 6: do nothing, if the observed failure relates to regular
system maintenance/update, then no recovery is applied.
Requirements: need to consider node capacity.

2) Node overload (self-dependency)

Analysis: current and historic observations
Observation: low response time at node level (a failure).
Anomaly: overloaded node.
Reason: limited node capacity.
Remedial Actions: Option 1: distribute load. Option 2: rescale
node. Option 3: do nothing.
Requirements: collect information regarding containers and
nodes, consider node capacity and rescale node(s).

IV. ANOMALY DETECTION AND ANALYSIS

A failure is the inability of a system to perform its required
functions within specified performance requirements. Faults
(or anomalies) describe an exceptional condition occurring in
the system operation that may cause one or more failures.
It is a manifestation of an error in system [22]. We assume
that a failure is an undesired response time observed during
system component runtime (i.e., observation). For example,
fluctuations in workload are faults that may cause a slowdown
in system response time (observed failure).

A. Motivation

As an example, Figure 2 shows several observed failures
and related resource faults in a test environment. These failures
occurred either at a specific time (e.g., F1, F9) or over a period
of time (e.g., F2−F8). These failures result from fluctuations
in resource utilization (e.g., CPU). Utilization measures a
resource’s capacity that is in use. It aids us in knowing the
resource workload, and aid us in reducing the amount of jobs
from the overloaded resources, e.g., a resource is saturated
when its usage is at over 50% of its maximum capacity.

The response time varies between high, low and normal
categories. It is associated with (or caused by) resource work-
load fluctuations (e.g., overload, underload or normal load).
The fluctuations in workload shall be categorised into states
that reflect faults. The anomalous response time is the observed
failure that we use initially to identify the type of workload that
causes the anomalies. In more concrete terms, we can classify
the response time by the severity of a usage anomaly on a
resource: low response time (L) varies from 501 − 1000ms,
normal response time (N) reflects the normal operation time

112Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

of a resource and varies from 201−500ms, and high response
time (H) occurs when a response time is less than or equal
200ms, which can be used to transfer the workload from the
heavy loaded resources to the underloaded resources.

As a result, the recovery strategy will differ based on
the type of observed failure and hidden fault. The period
of recovery, which is the amount of time taken to recover,
differs based on: (1) the number of observed failures, (2) the
volume of transferred data (nodes with many tasks require
longer recovery time), and (3) network capacity.

FIGURE 2. RESPONSE TIME AND WORKLOAD FLUCTUATIONS.

B. Observed Failure to Fault Mapping

The first problem is the association of underlying hidden
faults to the observed failures. For the chosen metrics (e.g.,
resource utilization, response time), we can assume prior
knowledge regarding (1) the dependency between containers,
nodes and clusters; (2) past response time fluctuations for the
executable containers; and (3) workload fluctuations that cause
changes in response time. These can help us in identifying
the mapping between anomalies and failures. An additional
difficulty is the hierarchical organisation of clusters consisting
of nodes, which themselves consist of containers. We associate
an observed container response time to its cause at container,
node, or cluster level, where for instance also a neighbouring
container can cause a container to slow down. We define a
mapping based on an analysis of possible scenarios.

The interaction between the cluster, node and container
components in our architecture is based on the following
assumptions. A cluster, which is the root node, is consisted of
multiple nodes, and it is responsible for managing the nodes.
A node, which is a virtual machine, has a capacity (e.g.,
resources available on the node such as memory or CPU).
The main job of the node is to submit requests to its un-
derlying substates (containers). Containers are self-contained,
executable software packages. Multiple containers can run on
the same node, and share the operating environment with other
containers. Observations include the emission of failure from
a state (e.g., high, low, or normal response time may emit
from one or more states). Observation probabilities express the
probability of an observation being generated from a resource
state. We need to estimate the observation probabilities in

order to know under which workloads large response time
fluctuations occur and therefore to efficiently utilize a system
resource while achieving good performance.

We need a mechanism that dynamically detects the type
of anomaly and identifies its causes using this mapping. We
identified different cases that may occur at container, node or
cluster levels as illustrated in Figure 3. These detected cases
will serve as a mapping between observable and hidden states,
each annotated with a probability of occurrence that can be
learned from a running system as a cause will often not be
identifiable with certainty.

FIGURE 3. THE INTERACTION BETWEEN CLUSTER, NODES AND
CONTAINER.

1) Low Response Time Observed at Container Level: There
are different reasons that may cause this:

• Case 1.1. Container overload (self-dependency): means
that a container is busy, causing low response times, e.g.,
c1 in N1 has entered into load loop as it tries to execute its
processes while N1 keeps sending requests to it, ignoring
its limited capacity.

• Case 1.2. Container sibling overloaded (internal con-
tainer dependency): this indicates another container c2
in N1 is overloaded. This overloaded container indirectly
affects the other container c1 as there is a communica-
tion between them. For example, c2 has an application
that almost consumes its whole resource operation. The
container has a communication with c1. At such situation,
when c2 is overloaded, c1 will go into underload, because
c2 and c1 share the resources of the same node.

• Case 1.3. Container neighbour overload (external con-
tainer dependency): this happens when a container c3
in N2 is linked to another container c2 in another node
N1. In another case, some containers c3, and c4 in N2

dependent on each other and container c2 in N1 depends
on c3. In both cases c2 in N1 is badly affected once c3 or
c4 in N2 are heavily loaded. This results in low response
time observed from those containers.

2) Low Response Time Observed at Node Level: There are
different reasons that cause such observations:

• Case 2.1. Node overload (self-dependency): generally
node overload happens when a node has low capacity,
many jobs waited to be processed, or problem in network.
Example, N2 has entered into self load due to its limited

113Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

capacity, which causes an overload at the container level
as well c3 and c4.

• Case 2.2. External node dependency: occurs when low
response time is observed at node neighbour level, e.g.,
when N2 is overloaded due to low capacity or network
problem, and N1 depends on N2. Such overload may
cause low response time observed at the node level,
which slow the whole operation of a cluster because of
the communication between the two nodes. The reason
behind that is N1 and N2 share the resources of the same
cluster. Thus, when N1 shows a heavier load, it would
affect the performance of N2.

3) Low Response Time Observed at Cluster Level (Cluster
Dependency): If a cluster coordinates between all nodes and
containers, we may observe low response time at container
and node levels that cause difficulty at the whole cluster level,
e.g., nodes disconnected or insufficient resources.

• Case 3.1. Communication disconnection may happen due
to problem in the node configuration, e.g., when a node
in the cluster is stopped or disconnected due to failure or
a user disconnect.

• Case 3.2. Resource limitation happens if we create a
cluster with too low capacity which causing low response
time observed at the system level.

This mapping between anomalies and failures across the
three hierarchy layers of the architecture needs to be for-
malised in a model that distinguishes observations and hidden
states, and that allows weight to be attached. Thus, HHMMs
are used to reflect the system topology.

C. Hierarchical Hidden Markov Model

Hierarchical Hidden Markov Model (HHMM) is a gener-
alization of the Hidden Markov Model (HMM) that is used
to model domains with hierarchical structure (e.g., intrusion
detection, plan recognition, visual action recognition). HHMM
can characterize the dependency of the workload (e.g., when
at least one of the states is heavy loaded). The states (cluster,
node, container) in HHMM are hidden from the observer,
and only the observation space is visible (response time).
The states of HHMM emit sequences rather than a single
observation by a recursive activation of one of the substates
(nodes) of a state (cluster). This substate might also be hier-
archically composed of substates (containers). Each container
has an application that runs on it. In case a node or a container
emit observation, it will be considered a production state. The
states that do not emit observations directly are called internal
states. The activation of a substate by an internal state is a
vertical transition that reflects the dependency between states.
The states at the same level have horizontal transitions. Once
the transition reaches to the End state, the control returns to
the root state of the chain as shown in Figure 4. The edge
direction indicates the dependency between states.

HHMM is identified by HHMM =< λ, θ, π >. The λ
is a set of parameters consisted of horizontal ζ and vertical

χ transitions between states qd, state transition probability A,
observation probability distribution B, initial transition π; d
specifies the number of vertical levels, i the horizontal level
index, the state space SP at each level and the hierarchical
parent-child relationship qdi , qd+1

i . The Σ consists of all
possible observations O. γin is the transition to qdj from any
qdi . γout is the transition of leaving qdj from any qdi .

We choose HHMM as every state can be represented as a
multi-levels HMM in order to:

1) show communication between nodes and containers,
2) demonstrate impact of workloads on the resources,
3) track the anomaly cause,
4) represent the response time variations that emit from

nodes and containers.

FIGURE 4. HHMM FOR WORKLOAD.

D. Detection and Root Cause Identification using HHMM

Each state may show an overload, underload or normal load
state. Each workload is correlated to the resource utilization
such as CPU, and it is associated with response time obser-
vations that are emitted from container or node through the
above case mapping. The existence of anomalous workload in
one state not only affects the current state, but it may also
affect the other states in the same level or across the levels.
The vertical transitions in Figure 4 trace the fault and identify
the fault-failures relation. The horizontal transitions show the
request/reply transfered between states.

The observation O is denoted by Fi = {f1, f2, ..., fn} to
refer to the response time observations sequence (failures).
The substate and production states are denoted by N and C
respectively. A node space SP containing a set of containers,
N2

1 = {C3
1 , C

3
2}, N2

3 = {C3
3 , C

3
4}. Each container produces an

observation that reflects the response time fluctuation, C3
1 =

{f1}, C3
2 = {f1}, C3

3 = {f2}. A state C starts operation
at time t if the observation sequence (f1, f2, ..., fn−1) was
generated before the activation of its parent state N . A state
ends its operation at time t if the Ft was the last observation
generated by any of the production states C reached from N ,
and the control returned to N from Cend. The state transition
probability A

Nd
i

ij = (aN
d

ij), aN
d

ij = P (Nd+1
j |Nd+1

i) indicates
the probability of making a horizontal transition from Nd

i to
Nd

j . Both states are substates of cluster1.

114Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

An observed low response time might reflect some overload
(OL). This overload can occur for a period of time or at a
specific time before the state might return to normal load (NL)
or underload (UL). This fluctuation in workload is associated
with a probability that reflects the state transition status from
OL to NL (PFOL→NL) at a failure rate <, which indicates
the number of failures for a N , C or cluster over a period of
time. Sometimes, a system resource remains OL/UL without
returning to its NL. We reflect this type of fault as a self-
transition overload/underload with probability PFOL (PFUL).
Further, a self-transition is applied on normal load PFNL

to refer to continuous normal behaviour. In order to address
the reliability of the proposed fault analysis, we define a
fault rate based on the number of faults occurring during
system execution <(FN) and the length of failure occurrences
<(FL) as depicted in ”(1)” and ”(2)”

<(FN) =
No of Detected Faults

Total No of Faults of Resource
(1)

<(FL) =
Total T ime of Observed Failures

Total T ime of Execution of Resource
(2)

As failure varies over different periods of time, we can
also determine the Average Failure Length (AFL). These
metrics feed later into a proactive recovery mechanism. Pos-
sible observable events can be linked to each state (e.g., low
response time may occur for an overload state or normal load)
to determine the likely number of failures observed for each
state, and to estimate the total failures numbers for all the
states. To estimate the probability of a sequence of failures
(e.g., probability of observing low response time for a given
state). Its sum is based on the probabilities of all failure
sequences that generated by (qd−1), and where (qdi) is the
last node activated by (qd−1) and ending at End state. This is
done by moving vertically and horizontally through the model
to detect faulty states. Once the model reaches the end state,
it has recursively moved upward until it reaches the state that
triggered the substates. Then, we sum all possible starting
states called by the cluster and estimate the probability.

We used the generalized Baum-Welch algorithm [8] to
train the model by calculating the probabilities of the model
parameters. As shown in ”(3)” and ”(4)”, first, we calculate
the number of horizontal transitions from a state to another,
which are substates from qd−1, using ξ as depicted in ”(3)”.
The γin refers to the probability that the O is started to be
emitted for statedi at t. statedi refers to container, node, or
cluster. The γout refers to the O of statedi were emitted and
finished at t. Second, as in ”(4)”, χ(t, Cd

i , Nl) is calculated to
obtain the probability that stated−1 is entered at t before Ot

to activate state statedi . The α, and β denote the forward and
backward transition from bottom-up.

ξ(t, Cd
i , C

d
End, Nl) =

1

P (O|λ)[∑t
s=1 γin(Nl, cluster) α(t, Cd

i , Nl)
]

aCl

Endγout(t, Cl, cluster)

(3)

χ(t, Cd
i , Nl) =

γin(t,Nl, cluster)π
Nl(Cd

i)

P (O|λ)[∑T
e=t β(t, e, Cd

i , Nl)γout(e,Nl, cluster)
] (4)

The output of algorithm will be used to train Viterbi algorithm
to find the anomalous hierarchy of the detected anomalous
states. As shown in ”(5)-(7)”, we recursively calculate = which
is the ψ for a time set (t̄ = ψ(t, t+k,Cd

i , C
d−1)), where ψ is

a state list, which is the index of the most probable production
state to be activated by Cd−1 before activating Cd

i . t̄ is the time
when Cd

i was activated by Cd−1. The δ is the likelihood of
the most probable state sequence generating (Ot, · · · , O(t+k))
by a recursive activation. The τ is the transition time at which
Cd

i was called by Cd−1. Once all the recursive transitions are
finished and returned to cluster , we get the most probable
hierarchies starting from cluster to the production states at T
period through scanning the sate list ψ, the states likelihood
δ, and transition time τ .

L = max
(1≤r≤Nd

i)

{
δ(t̄, t+ k,Nd+1

r , Nd
i) a

Nd
i

End

}
(5)

= = max
(1≤y≤Nj−1)

{
δ(t, t̄− 1, Nd

i , N
d−1)aN

d−1

End L
}

(6)

stSeq = max
cluster

{
δ(T, cluster), τ(T, cluster), ψ(T, cluster)

}
(7)

Once we have trained the model, we compare the detected
hierarchies against the observed one to detect and identify the
type of workload. If the observed hierarchies and detected one
are similar, and within the specified threshold, then the status
of the observed component will be declared as ’Anomaly
Free’, and the framework will return to gather more data for
further investigation. Otherwise, the hierarchies with the low-
est probabilities will be considered anomaly. Once we detected
and identified the workload type (e.g., OL), a path of faulty
states (e.g., cluster, N2

1 , C3
2 and C3

3) is obtained that reflects
observed failures. We repeat these steps until the probability of
the model states become fixed. Each state is correlated with
time that indicates: the time of it’s activation, it’s activated
substates, and the time at which the control returns to the
calling state. This aid us in the recovery procedure as the
anomalous state will be recovered first come-first heal.

E. Workload and Resource Utilization Correlation

To check if the anomaly at cluster, node, container resource
due to workload, we calculated the correlation between the
workload (user transactions), and resource utilization to spec-
ify thresholds for each resource. The user transactions refer
to the request rate per second. Thus, we used spearman’s
rank correlation coefficient to generate threshold to indicate
the occurrence of fault at the monitored metric in multiple
layers.

Our target is to group similar workload for all containers
that run the same application in the same period. So that the
workloads in the same period have the similar user transactions
and resource demand. We added a unique workload identifier

115Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

to the group of workloads in the same period to achieve
traceability through the entire system. We utilized the proba-
bilities of states transitions that we obtained from the HHMM
to describes workload during T period. We transformed the
obtained probabilities to get a workload behavior vector ω to
characterize user transactions behaviors as in ”(8)”.

ω = {Cd=3
i=1 , · · · , Cd=n

j=m, · · · , Nd=2
i=1 , · · · , Nd=n

j=m, · · · , cluster}
(8)

The correlation between the workload and resource utilization
metric is calculated in the normal load behaviour to be a
baseline. In case the correlation breaks down, then this refers
to the existence of anomalous behaviour (e.g., OL).

V. EVALUATION

The proposed framework is run on Kubernetes and docker
containers. We deployed TPC-W1 benchmark on the contain-
ers to validate the framework. We focused on three types of
faults CPU hog, Network packet loss/latency, and performance
anomaly caused by workload congestion.

A. Environment Set-Up

To evaluate the effectiveness of the proposed framework,
the experiment environment consists three VMs. Each VM is
equipped with LinuxOS, 3VCPU, 2GB VRAM, Xen 4.11 2,
and an agent. Agents are installed on each VM to collect the
monitoring data from the system (e.g., host metrics, container,
performance metrics, and workloads), and send them to the
storage to be processed. The VMs are connected through a
100 Mbps network. For each VM, we deployed two containers,
and we run into them TPC-W benchmark.

TPC-W benchmark is used for resource provisioning, scal-
ability, and capacity planning for e-commerce websites. TPC-
W emulates an online bookstore that consists of 3 tiers: client
application, web server, and database. Each tier is installed on
VM. We didn’t considered the database tier in the anomaly
detection and identification, as a powerful VM should be
dedicated to the database. The CPU and Memory utilization
are gathered from the web server, while the Response time is
measured from client’s end. We ran TPC-W for 300 min. The
number of records that we obtained from TPC-W was 2000.

We used docker stats command to obtain a live data stream
for running containers. SignalFX Smart Agent3 monitoring
tool is used and configured to observe the runtime performance
of components and their resources. We also used Heapster4

to group the collected data, and store them in a time series
database using InfluxDB5. The data from the monitoring and
from datasets are stored in the Real-Time/Historical Data
storage to enhance the future anomaly detection. The gathered
datasets are classified into training and testing datasets 50%
for each. The model training lasted 150 minutes.

1http://www.tpc.org/tpcw/
2https://xenproject.org/
3https://www.signalfx.com/
4https://github.com/kubernetes-retired/heapster
5https://www.influxdata.com/

B. Fault Scenarios

To simulate real anomalies of the system, script is written to
inject different types of anomalies into nodes and containers.
The anomaly injection for each component last 5 minutes to
be in total 30 minutes for all the system components. The
starting and end time of each anomaly is logged.

• CPU Hog: such anomaly is injected to consume all CPU
cycles by employing infinite loops. The stress6 tool is
used to create pressure on CPU

• Network packet loss/latency: the components are injected
with anomalies to send or accept a large amount of
requests in network. Pumba7 is used to cause network
latency and package loss

• Workload contention: web server is emulated using client
application, which generates workload (using Remote
Browser Emulator) by simulating a number of user re-
quests that is increased iteratively. Since the workload
is always described by the access behavior, we consider
the container is gradually workloaded within [30-2000]
emulated users requests, and the number of requests
is changed periodically. The client application reports
response time metric, and the web server reports CPU and
Memory utilization. To measure the number of requests
and response (latency), HTTPing8 is installed on each
node. Also AWS X-Ray9 is used to trace of the request
through the system.

C. Fault-Failure Mapping Detection and Identification

To address the fault-failure cases, the fault injection (CPU
Hog and Network packet loss/latency) is done at two phases:
(1) the system level (nodes), (2) components such as nodes
and containers, one component at a time. The detection and
identification will be differed as the injection time is varied
from one component to another. The injection pause time
between each injected fault is 180 sec.

a) Low Response Time Observed at Container Level:
Case 1.1. Container overload (self-dependency): here, we
added a new container C3

5 in N2
1 , and we injected it by

one anomaly at a time. For the CPU Hog, the anomaly was
injected at 910 sec. It took from the model 30 sec to detect
the anomaly and 15 sec to localize it. For the Network packet
loss/latency, the injection of anomaly happened at 1135 sec,
and the model detected and identified anomaly at 1145 and
1163 sec respectively.

Case 1.2. Container sibling overloaded (internal container
dependency): in this case, the injection occurred at C3

3 which
in relation with C3

4 . The CPU injection began at 700 sec for
C3

3 , the model detected the anomalous behaviour at 710 sec
and localized it at 725 sec. For Network packet loss/latency,
the injection of anomaly occurred at 905 sec. The model

6https://linux.die.net/man/1/stress
7https://alexei-led.github.io/post/pumba docker netem/
8https://www.vanheusden.com/httping/
9https://aws.amazon.com/xray/

116Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

needed 46 sec for the detection and 19 sec for the iden-
tification. For the C3

4 the detection happened 34 sec later
the detection of C3

3 for the CPU Hog and the anomaly was
identified at 754 sec. For the Network, the detection and
identification occurred at 903 and 990 sec respectively.

Case 1.3. Container neighbour overload (external container
dependency): at this case, a CPU Hog was injected at C3

1

which in relation with C3
3 . The injection began at 210 sec.

After training the HHMM, the model detected and localized
the anomalous behaviour for C3

1 at 225 and 230 sec. For
Network fault, the injection occurred at 415 sec for C3

1 . The
model took 429 sec for the detection and 450 sec for the
identification. While for C3

3 , the CPU and Network faults were
detected at 215/423 sec and identified at 240/429 sec.

b) Low Response Time Observed at Node Level: Case
2.1. Node overload (self-dependency): at this case we created a
new node N2

4 with small application and we injected the node
by one anomaly at a time. For the CPU Hog, the anomaly was
injected at N2

4 . The injection began at 413 sec. After training
the HHMM, the model detected the anomalous behaviour at
443 sec and localized it at 461 sec. For the Network packet
loss/latency, the injection of anomaly happened at 1210 sec,
and the model detected and identified anomaly at 1260 and
1275 sec respectively.

Case 2.2. External node dependency: at such situation, a
CPU Hog anomaly was injected at N2

1 . The injection began
at 813 sec. After training the HHMM, the model detected the
anomalous behaviour at 846 sec and localize it at 862 sec. For
Network packet loss/latency, the injection of anomaly occurred
at 1024 sec. The model needed 1084 sec for the detection and
1115 sec for the identification.

c) Low Response Time Observed at Cluster Level (Clus-
ter Dependency): Case 3.1. Communication disconnection: at
this case, we terminated N2

1 and N2
2 , and we injected N2

3 once
with CPU Hog at 290 sec, and once with Network fault 525
sec. The detection and identification for each anomaly was:
for CPU 335 and 345 sec respectively, and for Network was
585 sec for the detection and 610 sec for the identification.

Case 3.2. Resource limitation: at this case, we injected
N2

1 , and N2
3 at the same time with the CPU Hog fault to

exhaustive the nodes capacity. The injection, detection, and
identification were 1120, 1181, and 1192 sec. For the Network
fault, the injection happened at 1372 sec, and the detection,
and identification were at 1387, and 1392 sec.

D. Detection and Identification of Workload Contention

For the workload, to show the Influence of workload on
CPU utilization monitored metric, we measured the response
time (i.e., the time required to process requests), and through-
put (i.e., the number of transactions processed during a period).
We first generated gradual requests/sec at the container level.
The number of users requests increases from 30 to 2000 with
a pace of 10 users incrementally, and each workload lasts
for 10 min. As shown in Figure 5, the results show that the

throughput increases when the number of requests increases,
then it remains constant once the number of requests reached
220 request/sec. This means that when the number of users
requests is reached 220 request/sec, the utilization of CPU
reached a bottleneck at 90%, and the performance degrades.
On the other hand, the response time keep increasing with
the increasing number of requests as shown in Figure 6. The
result demonstrated that dynamic workloads has a noticeable
impact on the container metrics as the monitored container was
unable to process more than those requests. We also noticed
that there is a linear relationship between the number of con-
current users and CPU utilization before resource contention
in each user transaction behavior pattern. We calculated the
correlation between the monitored metric, and the number of
user requests. We obtained a strong correlation between the
two measured variables reached 0.25775 for two variables.
The result concludes that the number of requests influences
the performance of the monitored metrics.

FIGURE 5. WORKLOAD - THROUGHPUT AND NO. OF USER REQUESTS.

FIGURE 6. WORKLOAD - RESPONSE TIME AND NO. OF USER REQUESTS.

E. Assessment of Detection and Identification

The model performance is compared with other techniques
such as Dynamic Bayesian Network (DBN), and Hierarchical
Temporal Memory (HTM). To evaluate the effectiveness of
anomaly detection, common measures in anomaly detection
are used:
Root Mean Square Error (RMSE) measures the differences
between detected and observed value by the model. A smaller
RMSE value indicates a more effective detection scheme.
Mean Absolute Percentage Error (MAPE) measures the de-
tection accuracy of a model. Both RMSE and MAPE are
negatively-oriented scores, i.e., lower values are better.

117Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

Number of Correctly Detected Anomaly (CDA) It measures
percentage of the correctly detected anomalies to the total
number of detected anomalies in a given dataset. High CDA
indicates the model is correctly detected anomalous behaviour.
Recall It measures the completeness of the correctly detected
anomalies to the total number of anomalies in a given dataset.
Higher recall means that fewer anomaly cases are undetected.
Number of Correctly Identified Anomaly (CIA) CIA is the
number of correct identified anomaly (NCIA) out of the
total set of identification, which is the number of correct
Identification (NCIA) + the number of incorrect Identification
(NICI)). The higher value indicates the model is correctly
identified anomalous component.

CIA =
NCIA

NCIA+NICI
(9)

Number of Incorrectly Identified Anomaly (IIA) is the number
of identified components which represents an anomaly but
misidentified as normal by the model. A lower value indicates
that the model correctly identified anomalies.

IIA =
FN

FN + TP
(10)

FAR The number of the normal identified component which
has been misclassified as anomalous by the model.

FAR =
FP

TN + FP
(11)

The false positive (FP) means the detection/identification of
anomaly is incorrect as the model detects/identifies the normal
behaviour as anomaly. True negative (TN) means the model
can correctly detect and identify normal behaviour as normal.

TABLE I. VALIDATION RESULTS.

Metrics HHMM DBN HTM
RMSE 0.23 0.31 0.26
MAPE 0.14 0.27 0.16
CDA 96.12% 91.38% 94.64%
Recall 0.94 0.84 0.91
CIA 94.73% 87.67% 93.94%
IIA 4.56% 12.33% 6.07%
FAR 0.12 0.26 0.17

The results in Table I depicted that both HHMM and HTM
achieved good results for the detection and identification.
While the results of the DBN a little bit decayed for the CDA
with approximately 5% than HHMM and 3% than HTM. The
three algorithms can detect obvious anomalies in the datasets.
Both HHMM and HTM showed higher detection accuracy as
they are able to detect temporal anomalies in the dataset. The
result interferes that the HHMM is able to link the observed
failure to its hidden workload.

VI. CONCLUSION AND FUTURE WORK

This paper presented a framework for the detection and
identification of anomalies in clustered computing environ-
ments. The key objective was to provide an analysis feature
that maps observable quality concerns onto hierarchical hidden

resources in a clustered environment and their operation in
order to identify the reason for performance degradations
and other anomalies. We used hidden hierarchical Markov
models (HHMM) to reflect the hierarchical nature of the
unobservable resources. We have analysed mappings between
observations and resource usage based on a clustered container
scenario. To evaluate the performance of proposed framework,
HHMM is compared with other machine learning algorithms
such as Dynamic Bayesian Network (DBN), and Hierarchical
Temporal Memory (HTM). The results show that the proposed
framework is able to detect and identify anomalous behavior
with more than 96%.

In the future, we aim to fully implement the framework,
and carry out further experimental evaluations to fully confirm
these conclusions. Further, we will provide a self-healing
mechanism to recover the localized anomaly. More practical
concerns from microservices and container architectures shall
also be investigated [19],[18]

REFERENCES

[1] X. Chen, C.-D. Lu, and K. Pattabiraman, “Failure Predic-
tion of Jobs in Compute Clouds: A Google Cluster Case
Study,” International Symposium on Software Reliability
Engineering, ISSRE, pp. 167–177, 2014.

[2] C. Pahl, P. Jamshidi, O. Zimmermann, “Architectural
principles for cloud software,” ACM Transactions on
Internet Technology (TOIT) 18 (2), 17, 2018.

[3] D. von Leon, L. Miori, J. Sanin, N. El Ioini, S. Helmer,
C. Pahl, “A Lightweight Container Middleware for Edge
Cloud Architectures,” Fog and Edge Computing: Princi-
ples and Paradigms, 145-170, 2019.

[4] G. C. Durelli, M. D. Santambrogio, D. Sciuto, and
A. Bonarini, “On the Design of Autonomic Techniques
for Runtime Resource Management in Heterogeneous
Systems,” PhD dissertation, Politecnico di Milano, 2016.

[5] T. Wang, J. Xu, W. Zhang, Z. Gu, and H. Zhong, “Self-
adaptive cloud monitoring with online anomaly detec-
tion,” Future Generation Computer Systems, vol. 80, pp.
89–101, 2018.

[6] P. Jamshidi, A. Sharifloo, C. Pahl, H. Arabnejad, A.
Metzger, G. Estrada, “Fuzzy self-learning controllers for
elasticity management in dynamic cloud architectures,”
Intl Conf on Quality of Software Architectures, 2016.

[7] P. Jamshidi, A. Sharifloo, C. Pahl, A. Metzger, G.
Estrada, “Self-learning cloud controllers: Fuzzy q-
learning for knowledge evolution,” Intl Conference on
Cloud and Autonomic Computing, 208-211, 2015.

[8] S. Fine, Y. Singer, and N. Tishby, “The hierarchical hid-
den Markov model: Analysis and applications,” Machine
Learning, vol. 32, no. 1, pp. 41–62, 1998.

[9] R. N. Calheiros, E. Masoumi, R. Ranjan, and R. Buyya,
“Workload Prediction Using ARIMA Model and Its
Impact on Cloud Applications,” IEEE Transactions on
Cloud Computing, vol. 3, no. 4, pp. 449–458, oct 2015.

[10] N. Sorkunlu, V. Chandola, and A. Patra, “Tracking
System Behavior from Resource Usage Data,” in Pro-

118Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

ceedings - IEEE International Conference on Cluster
Computing, ICCC, 2017, pp. 410–418.

[11] M. Peiris, J. H. Hill, J. Thelin, S. Bykov, G. Kliot,
and C. Konig, “PAD: Performance anomaly detection in
multi-server distributed systems,” in Intl Conference on
Cloud Computing, CLOUD, 2014.

[12] T. F. Düllmann, “Performance Anomaly Detection in
Microservice Architectures Under Continuous Change,”
Master, University of Stuttgart, 2016.

[13] C. Pahl, A. Brogi, J. Soldani, P. Jamshidi, “Cloud
container technologies: a state-of-the-art review,” IEEE
Transactions on Cloud Computing, 2018.

[14] S. Maurya and K. Ahmad, “Load Balancing in Dis-
tributed System using Genetic Algorithm,” Intl Jrnl of
Engineering and Technology, vol. 5, no. 2, 2013.

[15] H. Sukhwani, “A Survey of Anomaly Detection Tech-
niques and Hidden Markov Model,” Intl Jrnl of Computer
Applications, vol. 93, no. 18, pp. 975–8887, 2014.

[16] R. Heinrich, A. van Hoorn, H. Knoche, F. Li, L.E.
Lwakatare, C. Pahl, S. Schulte, J. Wettinger, “Perfor-
mance engineering for microservices: research challenges
and directions,” ACM, 2017.

[17] N. Ge, S. Nakajima, and M. Pantel, “Online diagno-
sis of accidental faults for real-time embedded sys-
tems using a hidden Markov model,” SIMULATION, pp.
0 037 549 715 590 598—-, 2015.

[18] R. Scolati, I. Fronza, N. El Ioini, A. Samir, C. Pahl, “A
Containerized Big Data Streaming Architecture for Edge
Cloud Computing on Clustered Single-Board Devices,”
CLOSER, 2019.

[19] D. Taibi, V. Lenarduzzi, C. Pahl, “Architecture Patterns
for a Microservice Architectural Style,” Springer, 2019.

[20] G. Brogi, “Real-time detection of Advanced Persistent
Threats using Information Flow Tracking and Hidden
Markov,” Doctoral dissertation, 2018.

[21] A. Samir, C. Pahl, “A Controller Architecture for
Anomaly Detection, Root Cause Analysis and Self-
Adaptation for Cluster Architectures,” Intl Conf on Adap-
tive and Self-Adaptive Systems and Applications, 2019.

[22] IEEE, “IEEE Standard Classification for Software
Anomalies (IEEE 1044 - 2009),” pp. 1–4, 2009.

119Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

	Introduction
	Related Work
	Self-Adaptive Fault Management
	The Fault Management Framework
	Anomaly Detection and Identification
	Fault Handling and Recovery
	Motivating Failure/Fault Cases and Recovery Strategies

	ANOMALY DETECTION AND ANALYSIS
	Motivation
	Observed Failure to Fault Mapping
	Low Response Time Observed at Container Level
	Low Response Time Observed at Node Level
	Low Response Time Observed at Cluster Level (Cluster Dependency)

	Hierarchical Hidden Markov Model
	Detection and Root Cause Identification using HHMM
	Workload and Resource Utilization Correlation

	Evaluation
	Environment Set-Up
	Fault Scenarios
	Fault-Failure Mapping Detection and Identification
	Detection and Identification of Workload Contention
	Assessment of Detection and Identification

	Conclusion and Future Work

