
BalloonJVM: Dynamically Resizable Heap for FaaS

Abraham Chan, Kai-Ting Amy Wang, Vineet Kumar
Huawei Technologies, Markham, Canada

Email: {abraham.chan, kai.ting.wang}@huawei.com, {vineet.kumar}@mail.mcgill.ca

Abstract—Serverless computing, or more specifically, Function as
a Service (FaaS), offers the ability for software developers to
quickly deploy their applications to the public without worrying
about custom server architecture. However, developers using
FaaS services must be cautious not to exceed their container
memory limits. For FaaS developers using Java, a spontaneous
out of memory exception could terminate their application. This
could prompt some developers to consider scalability rather than
focusing on functionality, reducing the advantage of FaaS. In this
paper, we present BalloonJVM, which applies ballooning, a mem-
ory reclamation technique, to dynamically resize the heap for Java
FaaS applications, deployed on Huawei Cloud’s FunctionStage
system. We explore the challenges of configuring BalloonJVM
for production and outline opportunities for improving both
developer and service provider flexibility.

Keywords–Ballooning; Function-as-a-Service; Serverless; Run-
time environment; JVM Configuration.

I. INTRODUCTION

The Function as a Service (FaaS) programming model
runs user-defined code in a process, typically a high-level
language runtime, inside an operating-system-level container.
FaaS is built upon the serverless architecture, which allows
developers to deploy their applications on the public cloud in
lieu of custom servers. A growing number of developers and
companies are choosing to deploy their applications in this
model to avoid the expenses of setting up and maintaining
custom server infrastructure [1][2]. FaaS also offers the added
advantage of billing developers only for the usage incurred.

Today, FaaS developers must carefully craft their functions
so that its runtime memory usage is within the memory limit of
its container, enforced through Linux’s cgroups feature [3]. Ex-
ceeding the cgroups limit terminates the application abruptly.
The developer must relaunch the application with the next large
sized container. Such abrupt termination is unwarranted. Both
the developer and service provider could benefit if it were
possible to dynamically increase the heap size for a memory
needy application while charging for the enlarged container.

Many service providers, including Huawei, use Oracle’s
Java Virtual Machine (JVM) to execute Java programs on FaaS.
Oracle JVM contains a maximum heap option to control the
application’s memory usage, similar to the cgroups resource
limit. Typically, a JVM running inside a 128MB container
is started with a maximum heap setting of -Xmx=128M.
Dynamically resizing the JVM heap is not supported in Oracle
JDK. JVM throws an unrecoverable Out-Of-Memory (OOM)
exception when the heap usage exceeds the maximum size.

If high memory limits were pre-allocated to applications,
this could impact both the service provider and FaaS develop-
ers negatively. Higher pre-allocated memory for applications
could diminish the number of FaaS applications runnable con-
currently on a shared cloud infrastructure, reducing the service
provider’s profitability. On the other hand, FaaS developers
could pay more for unused memory resources.

Ballooning is a memory reclamation technqiue, used by
hypervisors to leverage unused memory by guest Virtual Ma-
chines (VMs) [4]. Each guest VM is allotted a large memory,
but the guest only uses a portion of that memory in practice.
The remaining memory space can be filled with balloons,
which are pre-occupied memory spaces to an application (i.e.,
guest VM, JVM), but are actually empty memory spaces to the
operating system (OS). This means the host OS is free to use
the memory reclaimed through the balloons. When a guest VM
requires more memory, the host can free the balloons inserted
in that guest VM.

In this paper, we adopt ballooning for FaaS and expose it
as a set of Java Application Programming Interfaces (APIs).
We present BalloonJVM, a modified Java FaaS framework
that calls ballooning APIs when invoking JVM to achieve
dynamic memory adjustment. BalloonJVM is deployed on
Huawei Cloud FunctionStage [5], a FaaS platform allowing
user defined functions to be invoked on-demand. BalloonJVM
is built on top of our prior work, ReplayableJVM [6], which
features a checkpoint and restore framework that enables JVM
to launch from an existing image to avoid its cold startup
time. BalloonJVM can be launched with a larger maximum
heap size than initially required (i.e., -Xmx=512M when
only 128M is needed). Then, BalloonJVM inserts balloons at
initialization and free balloons as additional runtime memory
is required - creating the effect of dynamic memory resizing.
This offers FaaS developers more flexibility over conventional
fixed heap JVMs. Our approach does not modify JVM internals
since maintaining a custom JVM build is expensive. The
incorporation of BalloonJVM will provide an extra option to
many FunctionStage users worldwide.

In summary, we make the following contributions in this
paper.

• We present BalloonJVM, a FaaS framework with a
resizable JVM heap, by developing a set of novel Java
APIs that adapt ballooning for FaaS.

• We make recommendations of deployment configura-
tions of BalloonJVM based on a runtime and memory
analysis using eight representative FaaS applications.

• We ensure that BalloonJVM contains properly pinned
balloons, such that no memory spikes occur as object
memory is shifted around in the heap.

The remainder of the paper is organized as follows. In
Section II, we offer a motivating example of how BalloonJVM
helps FaaS developers. Then, in Section III, we outline our
implementation of ballooning and while in Section IV, we
describe GC principles that impact BalloonJVM. In Section V,
we evaluate the feasibility of BalloonJVM using FaaS bench-
marks, and in Section VI, we discuss the implications and
limitations of our work. Later, we discuss related work in
Section VII. Finally, in Section VIII, we conclude the paper.

99Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

II. MOTIVATING EXAMPLE

Consider a Java application on FaaS that provides a simple
Key-Value (KV) store. Each request to the insertion function
of the KV store allocates memory to insert a new object into
an underlying hash map. Figure 1 shows the occupied heap
memory compared to the total heap. Eventually, the memory
allocated for objects in the KV store will reach the maximum
heap size. In a regular JVM instance without ballooning,
the application encounters an OOM exception. BalloonJVM
ensures that a balloon, if one remains, is released before an
OOM occurs. This increases the maximum heap available to
the application, thus, evading the OOM.

0

128

256

0 50 100 150 200

T
o

ta
l

H
e

a
p

 M
e

m
o

ry

(M
B

)

Memory Occupied by Inserted Objects (MB)

Used Heap Max Heap w/ Ballooning

Max Heap w/o Ballooning

OOM

Figure 1. Avoiding an OOM exception with ballooning.

Without ballooning, the developer must ensure that the
memory occupied by the KV store does not reach capacity in
order to avoid a service disruption. To achieve this, the devel-
oper could either stop accepting new data, distribute insertions
into another instance or write to a remote database. All of
these options may prove to be more costly to the developer of a
small upstart app than paying marginally more for dynamically
increased heap space. BalloonJVM provides this latter option
to developers, who wish to avoid infrastructure considerations
for a simple deployment on FaaS.

III. BALLOONING

BalloonJVM uses a variation of the memory ballooning
technique, presented by OSv [7]. Unlike OSv, all of our
ballooning features are exposed as a set of Java APIs, which
are called by BalloonJVM to achieve ballooning. Our solution
consists of two parts: balloon insertion and balloon deletion.
BalloonJVM inserts balloons during the initialization of the
JVM FaaS instance, while deleting balloons during the execu-
tion of JVM, between FaaS invocations.

A. Balloon Insertion
Balloon insertion is divided into two APIs: balloon inflation

and deflation. Balloon inflation is the creation of the balloons
in the JVM heap and unmapping them from the OS memory
space. Balloon deflation involves the deallocation of OS mem-
ory occupied by balloons and returning it to the OS. Figure 2
shows balloon inflation in the first process, followed by balloon
deflation in the second process. Balloons are implemented as a
two dimensional Java byte array and are inflated and deflated
natively through the Java Native Interface (JNI).

Balloon Inflation. Each balloon is created by allocating a
single dimension array of a given balloon size in a 2D byte

array. The memory held by the balloons is unmapped between
JVM and the OS using the munmap system call, invoked
through JNI. While the byte array represents used memory
space to both JVM and the OS, JVM can no longer reference
the balloon memory legally.

Balloon Deflation. After GC, each balloon is deallocated
using the madvise system call with MADV_DONTNEED ad-
vice, through JNI. This advises the OS that the memory space
occupied by the balloon is no longer needed in the near future.
The OS has become aware that the balloon is free space.

After Balloon Insertion. At the end of balloon insertion,
JVM holds references to inserted balloons and still thinks the
balloon occupy their equivalent OS memory. However, through
compacting, JVM will not touch the balloons during GC.

Compacting the Balloons. Once the balloons are inserted
and deflated, it is important that the balloons are not moved
by the Garbage Collector (GC) unless the corresponding JVM
reference is also deleted. Otherwise, the mapped out pages may
be mapped back in, resulting in a sudden jump in resident
set size (RSS) and may lead to a JVM crash. To overcome
this, we ensure that the balloons are inserted at the beginning
of the old generation and compacted before deflation. We
explicitly call GC multiple times to compact the inserted
balloons and tenure them to the old generation. We verify that
GC is actually invoked by analyzing the output of jstat, a
JVM statistics monitoring tool. Additionally, the inflation and
deflation of the balloons is implemented as a static block so
that it executes before JVM runs main(), ensuring that the
balloons are inserted before other objects are present. Note
that our particular implementation is suitable for Serial GC
and may not work for other garbage collectors.

Figure 2. Balloon insertion.

B. Balloon Deletion
Our balloon deletion API calculates the amount of bal-

looned memory to release based on the size and number of
balloons inserted. We also provide an option, Pre-Balloon
Memory Utilization Ratio (PMUR), to control the memory
used before balloons are deleted.

Implementation. The balloon deletion API is implemented
by deleting the JVM reference to the balloon. This will
trigger a GC, which frees up the Java heap space and allow
JVM to reclaim memory from the OS. One shortcoming of
balloon deletion, including our implementation, is the impact
on JVM performance from the relative sizing of the old and

100Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

young generation heap space [8]. In Section V, we empirically
explore the feasibility of using different configurations on
BalloonJVM to minimize this impact.

Size and Number of Balloons. Our insertion API provides
options for the number of balloons to be inserted and the size
of each balloon. We accept balloons of any size, as long as all
balloons for a single configuration are equally sized. From this
point onward, we refer to the current JVM maximum heap size
as the container size in MB. We also represent this using the
variable, C. For instance, we choose a balloon size of 128MB
and insert 11 equally sized balloons in a max heap of 1.5GB.
This sample configuration is aimed to support a container size
of 128MB, with an eventual allowance to 1.5GB as heap usage
grows. When JVM is initially started with a 128MB container,
no balloons are deleted. When a 256MB container is needed,
one balloon is deleted, and eventually for the 1.5GB container,
all balloons are deleted.

Equation (1) determines the number of balloons for dele-
tion, Bdel, where C is the initial container size, H is the
eventual max heap, Bins is the number of balloons inserted,
and S is the balloon size.

Bdel = max(

⌈
C − (H −Bins × S)

S

⌉
, 0) (1)

Pre-Balloon Memory Utilization Ratio (PMUR). The
PMUR is defined as the ratio between the memory used and
the total heap memory available before a balloon is released,
ranging from 0 to 1. If PMUR is close to 1, an OOM may occur
before a balloon is released. If PMUR is too low, the developer
will be forced to pay for a larger heap space, when free heap
space is still available. We find that a value around 0.85 works
best, through experimentation described in Section V-G.

IV. GARBAGE COLLECTION (GC)
We observe that by tuning the generational heap, Balloon-

JVM can reduce time-consuming GCs, especially Full GCs.
Generation GC. Generational GC separates the heap into

a new and old generation. Newly allocated objects that survive
several rounds of GCs are tenured to the old generation [9].
Separate algorithms can be deployed for young and old objects
to maximize the efficiency of the GC.

New Generation (NewGen). This section of heap is where
all new objects are stored. It is further divided into the eden and
survivor spaces. In this paper, we refer to the NewGen as the
combination of the eden and survivor spaces. The eden space
hosts the newly allocated objects before any GC occurs, while
a pair of survivor spaces host objects that survive at least one
GC, awaiting promotion to the old generation. BalloonJVM
uses the parameters, NewSize and MaxNewSize, in Oracle
JVM to control the NewGen size.

Old Generation (OldGen). This section of heap hosts
objects that survived enough GCs to be considered old objects.
GC events occur less frequently in the OldGen compared to
the NewGen. BalloonJVM always ensures that balloons are
tenured to the OldGen to exploit this property.

Young GC (YGC) and Full GC (FGC). YGCs clean up
the new generation. Since objects in the new generation build
up quickly, YGCs occur relatively frequently and its algorithms
optimize for speed. FGCs clean up both the old and new
generations. In contrast to YGCs, they occur infrequently -

this allows its algorithms to optimize for space over speed.
While both FGCs and YGCs consume execution time, FGCs
typically take longer to run than YGCs.

GC Algorithm. There are several GC algorithms offered
by Java 8, which BalloonJVM uses, but all of them are
generational GCs. BalloonJVM uses Serial GC and we found
that it compacts balloons sufficiently. Serial GC exhibits a stop-
the-world behaviour, meaning it pauses the operation of the
application. It is typically used for smaller heaps (i.e., heaps
of 1.5GB or smaller) while faster algorithms like Parallel GC
are used for large heaps [9]. Serial GC avoids synchronization
overhead for tracking live objects, required in Parallel GC.

V. EVALUATION

We evaluate BalloonJVM with respect to these questions.

1) Is it feasible for one configuration to support all
containers?

2) How do we choose a NewGen size for BalloonJVM?
3) What is the feasibility of using two configurations?
4) Does BalloonJVM ensure that balloons are pinned?

A. Experimental Setup
The experiments are performed on an Intel Xeon CPU E5-

2687W, which is a SandyBridge EP @ 3.0 GHz machine with
12 cores and with HyperThreading enabled. It has 30MB of
L3 cache and 256GB of memory. Ubuntu 16.04 is used as the
base OS together with Docker 1.12.6.

For the remainder of this paper, DefaultJVM refers to
Oracle HotSpot 64-Bit Server VM version 1.8.0 151 with a
fixed new to old generation heap ratio of 1:2, running on
Huawei FunctionStage. We use DefaultJVM as our baseline as
it is the most prevalent default configuration for JVM on the
cloud [8]. BalloonJVM is DefaultJVM with ballooning enabled
and a variable NewGen size. Both JVMs run in a cgroup,
allowing the service provider to exploit namespace isolation,
resource limitation, and checkpoint/restore [6]. Otherwise, a
JVM in a cgroup behaves the same as a standalone JVM.

B. Benchmarks
We use eight different benchmarks that represent FaaS

applications of varying workloads and domains [10]:
Allocation, DataFilter, Inverse, Sort, TF-IDF,
ThumbNail, TimeStamp and Unzip. We found a lack of
benchmark suites for FaaS, so we manually adapted all of our
benchmarks to lambda functions. Lambda functions for FaaS
are typically self-contained, repetitive tasks that are triggered
by external events and its execution cannot exceed a strict
timeout. Allocation allocates 1MB of memory in a static
array list for each service request. It represents the workload
of memory intensive FaaS applications (i.e., a KV store).
DataFilter filters an array of random words based on a
search query, representing data querying. Inverse computes
the inverse of a 9x9 matrix, used in machine learning. Sort
sorts an array of random words alphabetically. TF-IDF com-
putes the statistical importance of a word in relation to a doc-
ument in a corpus. Thumbnail converts a JPEG photo into
a thumbnail, representing multimedia processing applications.
TimeStamp outputs the current datetime as a string. Unzip
uncompresses a zip file, performing file I/O. Inverse and
ThumbNail represent workload intensive applications while
TimeStamp and Unzip represent light utility applications.

101Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

C. Metrics
We define a configuration as feasible if it has a low

runtime overhead and a high Actual Memory Utilization Ratio
(AMUR).

a) Runtime Overhead: We define this as the runtime
performance overhead of BalloonJVM over DefaultJVM. FaaS
functions deployed on BalloonJVM should not incur a high
runtime overhead over a similar deployment in DefaultJVM.
We measure the runtime duration of a benchmark function in
nanoseconds, using System.nanoTime(). The runtime ex-
cludes the time taken for the FaaS framework to initialize since
BalloonJVM uses a checkpoint and restore mechanism [6].
All of the runtime durations are averaged over 100 runs.
The overhead is then computed by (Tb − Td)/Td, where Tb

and Td are the times taken to execute the same function in
BalloonJVM and DefaultJVM, respectively.

b) Actual Memory Utilization Ratio (AMUR): The
AMUR is defined as the percentage of actual used memory
over the container memory size. The AMUR can help guide
the selection of the PMUR, discussed in Section III-B. The
actual used memory is measured by counting the maximum
number of objects, with a size of 1MB each, which can be
allocated before JVM throws an OOM exception. This metric
provides an approximation of the total heap space utilization
before either a balloon is freed or an OOM finally occurs when
no further balloons can be freed. A larger AMUR frees fewer
balloons, preserving server resources and allowing developers
to be charged at a lower tier of memory usage.

D. Heap Flexibility at What Cost?
BalloonJVM provides memory benefits but at what over-

head to DefaultJVM? To answer this, we measure the overhead
of each request to Allocation until DefaultJVM reaches
an OOM. We initialize BalloonJVM with a container size, C
(MB) of 128, with a max heap of 512MB and DefaultJVM with
a fixed heap of 128MB. We see in Figure 3 that the overhead
is roughly 10% on average, but spikes at certain requests.
We find that the spikes are correlated with GC events - the
upwards spikes represent GCs invoked by BalloonJVM while
the downward spikes represent GCs invoked by DefaultJVM.
Hence, to improve the performance of BalloonJVM, we need
to tune the heap parameters to reduce GCs. In this paper,
we manually tune the heap using benchmark programs and
determine the configuration’s feasibility.

-100%

-75%

-50%

-25%

0%

25%

50%

75%

100%

125%

0 20 40 60 80 100 120

R
u

n
ti

m
e

 O
v
e

rh
e

a
d

 (
%

)

Number of 1MB Insertion Requests

OverheadFigure 3. Overhead of BalloonJVM over DefaultJVM, at C = 128.

E. RQ1: Feasibility of a Single Configuration
In this section, we experimentally determine whether it

is feasible to use a single max heap configuration, shown in
Figure 4, to support C of 128, 256, 512, 1024 and 1536. To
initialize our experiment, we allocate 110MB to the NewGen
in order to maximize its use. In this single configuration,
the eventual max heap size for BalloonJVM is 1536MB. The
OldGen occupies the remainder of the heap, 1426MB, and is
filled with 11 balloons of 128MB each. A NewGen of 110MB
enables 18 MB of objects to be promoted to the OldGen for
C = 128, while all 11 balloons remain. For C = 256, about
146MB of objects can be promoted to the OldGen with 10
balloons. Free OldGen space grows as balloons are released.

Balloon 10
128MB

Balloon 0
128MB

Balloon 1
128MB

New Gen
110MB

Balloon 2
128MB

Balloon 0
128MB

Balloon 1
128MB

New
Gen

110MB
Available

Heap

Available
Heap

Balloon 0
512MB

New Gen
400MB Available Heap

...

(a)

(b)

Figure 4. Single configuration, with an eventual max heap of 1.5GB.

We run the Allocation benchmark in DefaultJVM and
BalloonJVM to measure the runtime overhead. As discussed
in Section V-B, Allocation represents the most memory
intensive application. As shown in Table I, the overheads
for C = 128, 1024, 1536 exceed 10%. We then measure the
YGC and FGC counts during the execution of the function
in both JVMs using jstat. In Table I, we observe that
Allocation, running in BalloonJVM, using C = 1024
and C = 1536, incur 9 and 15 extra YGCs respectively.
C = 128 encounters an extra FGC. By inspecting the jstat
output after each object inserted, we notice that the eden space
is quickly exhausted. This is caused by insufficient memory
for the NewGen, leading to frequent YGCs. Increasing the
NewGen beyond 110MB is not practical to support the 128MB
container, as there would be insufficient space for tenured
objects and inserted balloons in the OldGen. Based on this
observation, we conclude that a single configuration to support
our range of container sizes is not feasible.

TABLE I. OVERHEADS AND GC COUNTS OF BALLOONJVM (B) VS
DEFAULTJVM (D), USING ALLOCATION AND A SINGLE MAX HEAP.

C (MB) Objs inserted Overhead YGC FGC
D B D B

128 100 13% 1 1 1 2
256 200 5% 2 2 1 1
512 400 6% 4 5 0 0

1024 800 21% 3 12 2 2
1536 1200 13% 3 18 4 2

F. RQ2: Choosing the NewGen Size
As shown in Figure 5, we partition the container sizes into

two configuration groups, one for C = 128, 256, 512, and the
other for C = 1024, 1536. For simplicity, we will refer to the
former as Config A and the latter as Config B. Since a single
configuration is not feasible, we wish to support the range of
container sizes with as few partitions as possible, to reap the
benefits of ballooning. It is important to note that the partition
we made is only one possible combination - others may exist.

We explore the challenge of finding an appropriate New-
Gen size for the two configurations. For Config A, there is
little leeway for choosing the NewGen size. A NewGen size

102Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

of 110MB is feasible, as it provides just enough OldGen space
for tenured objects. For Config B, there is an opportunity
to increase the NewGen size in a max heap of 1.5GB. We
measure the runtime overheads using three different NewGen
sizes across eight benchmarks in Figure 6 for the 1024MB
and Figure 7 for the 1536MB container sizes respectively. We
observe that a 400MB NewGen size offers the lowest overhead
for Allocation, while 200MB gives the lowest overhead
for other benchmarks. Allocation contains a lambda class
member variable, whose reference is retained between invo-
cations. Other benchmarks contain mostly transient objects,
which are deleted after an invocation. Benchmarks with many
transient objects may benefit from a smaller NewGen as a
YGC is triggered earlier, and tenured objects are subject to
infrequent FGCs. Alternatively, a larger NewGen for such
benchmarks can result in slower YGCs, by traversing objects
that should be tenured. Despite this, the configuration over-
heads differ less than 10% in the worst case or 5% on average.

Balloon 10
128MB

Balloon 0
128MB

Balloon 1
128MB

New Gen
110MB

Balloon 2
128MB

Balloon 0
128MB

Balloon 1
128MB

New
Gen

110MB
Available

Heap

Available
Heap

Balloon 0
512MB

New Gen
400MB Available Heap

...

(a)

(b)

Figure 5. Two configurations approach. (a) Max heap of 512MB, with 3
balloons. (b) Max heap of 1.5GB, with 1 balloon.

TABLE II. NUMBER OF YGCS AND FGCS OF BALLOONJVM VS
DEFAULTJVM, USING TWO CONFIGURATIONS.

Config C (MB) YGC FGC
Default Balloon Default Balloon

A
128 4 1 1 2
256 4 3 3 2
512 4 4 0 0

B 1024 3 3 2 2
1536 3 4 4 3

-55%

-45%

-35%

-25%

-15%

-5%

5%

15%

25%

Allocation DataFilter Inverse Sort TF-IDF ThumbNail Timestamp Unzip

O
v

e
rh

e
a

d
 (

%
)

Benchmark

200MB 400MB 500MB

Figure 6. Performance overhead of BalloonJVM over DefaultJVM, with
varying NewGen sizes, at C=1024MB.

-10%

-5%

0%

5%

10%

15%

20%

Allocation DataFilter Inverse Sort TF-IDF ThumbNail Timestamp Unzip

O
v
e

rh
e

a
d

 (
%

)

Benchmark

200MB 400MB 500MB

Figure 7. Performance overhead of BalloonJVM over DefaultJVM, with
varying NewGen sizes, at C=1536MB.

G. RQ3: Feasibility of using Two Configurations
We evaluate the feasibility of using Config A and B with

a NewGen of 400MB, for memory heavy workloads (i.e.,
Allocation).

First, we measure the AMURs of DefaultJVM and Bal-
loonJVM as shown in Table III. We observe that BalloonJVM
enables about the same amount of allocatable memory as
DefaultJVM but the AMUR drops slightly in configurations
with more balloons (i.e., C = 128 has 3 balloons vs. C = 512
has none). By analyzing the GC activity, we see that a FGC
immediately follows a YGC whenever the OldGen is full, in
this case, occupied by balloons. This bypasses the survivor
space, reducing the overall usable heap memory.

Next, we measure the overhead of BalloonJVM against De-
faultJVM across different container sizes using Allocation.
To effectively evaluate BalloonJVM’s performance, we condi-
tion Allocation to allocate a large number of objects, to
approach its AMUR, and measure the overhead. As shown in
Table IV, the overhead ranges from -56% to 14%. In some
cases, benchmarks run faster in BalloonJVM than on Default-
JVM. In Table II, YGCs and FGCs drop sharply compared to
the previous single configuration. Based on these observations,
we conclude that this two configuration approach is feasible for
allocation heavy workloads. However, the configuration feasi-
bility does depend on the workload of the target applications.

TABLE III. AMUR OF BALLOONJVM AND DEFAULTJVM, USING TWO
CONFIGURATIONS.

Config C (MB) Default Balloon

A
128 94% 88%
256 95% 93%
512 97% 97%

B 1024 96% 95%
1536 96% 97%

H. RQ4: Balloon Pinning
We evaluate BalloonJVM to determine whether the bal-

loons inserted are properly pinned. If the balloons are not
pinned, they may potentially move around the heap during
GCs, causing the JVM RSS to jump abruptly. This will
cause BalloonJVM to release balloons to compensate or crash
JVM. We perform an experiment on only container sizes that
have balloons. For Config A, this includes 128MB with 3

103Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

TABLE IV. OVERHEAD OF BALLOONJVM OVER DEFAULTJVM, USING
TWO CONFIGURATIONS.

C (MB)
Config A B

Benchmark 128 256 512 1024 1536
DataFilter -56% -11% -11% -50% -3%

Inverse -3% -1% -1% 1% -1%
Sort 7% 5% 1% 0% 5%

TF-IDF 0% -4% -4% -1% -4%
ThumbNail 14% -1% 1% 0% -1%
Timestamp 4% 2% 5% -6% -1%

Unzip 4% 2% 2% 5% 7%

balloons and 256MB with 2 balloons. For Config B, this
would be 1024MB with 1 balloon. For each eligible container,
we allocate P MB of objects in the first request. In each
subsequent request, we allocate A MB and randomly delete
A MB of objects. The immediate allocation and deletion of
large number of objects activates GC. We run the experiment
on 128MB using {P = 95, A = 90}, 256MB using {P =
200, A = 150}, 1024MB using {P = 800, A = 500} over
50k runs. We observe that the RSS remains consistent across
all runs, showing that BalloonJVM’s balloons are compact.

VI. DISCUSSION

A. Increased Flexibility
BalloonJVM offers increased flexibility to both the FaaS

developer and cloud service provider. For the FaaS developer,
BalloonJVM offers a safeguard when their application exceeds
the initial maximum heap size. Developers may also deploy
with a modest heap, and allow BalloonJVM to grow the heap
as their application becomes more widely used. For the service
provider, BalloonJVM allows improved resource sharing and
adjustable price tiers. The memory occupied by balloons is
directly returned to the OS, usable by other cloud applications.
When multiple applications deployed on BalloonJVM release
balloons, memory will be available on a first-come first-served
basis. An OOM exception can occur if the actual memory is
unavailable. Service providers can offer dynamic pricing where
pricing jumps to the next tier when a balloon is freed.

B. Limitations
We identity three limitations to our work: the choice of

GC algorithm, reinsertion of balloons, and the assumption of
application functional correctness. We repeated our analysis by
configuring both BalloonJVM and DefaultJVM to use Parallel
GC, and found the runtime overheads to be feasible. However,
we observe that RSS sharply increases as BalloonJVM fails
to pin the balloons. This presents a challenge for deployment
on large heaps where Parallel GC is desired over Serial GC.
Secondly, BalloonJVM does not reinsert balloons after release,
as we have not determined how to pin reinserted balloons
when live data exists in the heap. Lastly, we assume that the
FaaS application is functionally correct when requiring more
memory. If the application erroneously consumes memory,
BalloonJVM only delays its eventual failure through resizing.

VII. RELATED WORK

Ballooning is a widely used memory reclamation technique
for VM memory management [4]. Ballooning to resize JVM’s
heap was first proposed in [7], which influenced the creation
of BalloonJVM. However, our work differs in at least four
major areas: we expose the features of ballooning as Java APIs
rather than bundling it into an OS, we ensure that the inserted

balloons are properly pinned by choosing a specific GC algo-
rithm, we insert balloons before JVM is started without setting
pressure criteria, and we implement ballooning for FaaS.

Salomie et al. [11] implement JVM ballooning by modify-
ing the Parallel GC algorithm that is shipped with OpenJDK,
requiring changes to the JVM internals. Hines et al. [12]
present a framework called Ginkgo, which runs a background
thread to monitor JVM heap usage and deletes or inserts
balloons as needed. However, Java applications running on a
Ginkgo resized JVM can experience high overhead as it does
not consider the heap’s generational nature.

VIII. CONCLUSION

Developers are choosing to deploy their applications on
serverless architectures to avoid infrastructure costs. However,
applications deployed on runtime environments like JVM are
constrained by a maximum heap size. Developers either pay to
overprovision or encounter a disruptive crash when the limit
is exceeded. We present BalloonJVM, which utilizes balloon-
ing, a memory reclamation technique, offering a dynamically
resizable heap. Our results show that BalloonJVM can provide
flexible memory benefits with less than 5% average overhead
to typical FaaS applications, by carefully partitioning the
generational heap. While BalloonJVM’s ballooning implemen-
tation is specific for JVM, the concept can extend to other VM-
based languages that constrain the heap size such as Node.js,
another popular language for FaaS.

ACKNOWLEDGEMENT

We thank the anonymous reviewers and Tarek Abdelrah-
man for volunteering to provide feedback on our paper.

REFERENCES
[1] I. Baldini et al., Serverless Computing: Current Trends and Open

Problems. Springer, 2017, pp. 1–20.
[2] J. Jackson and L. Hecht, “TNS Guide to Serverless Tech-

nologies: The Best of FaaS and BaaS,” http://thenewstack.io/
guide-serverless-technologies-functions-backends-service, 2016, [Ac-
cessed: 21-Mar-2019].

[3] R. Buyya et al., “A Manifesto for Future Generation Cloud Computing:
Research Directions for the Next Decade,” CoRR, pp. 105:1–105:38,
2017.

[4] C. A. Waldspurger, “Memory Resource Management in VMware ESX
Server,” SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp. 181–194, 2002.

[5] Huawei, “Functionstage,” https://www.huaweicloud.com/en-us/product/
functionstage.html, [Accessed: 21-Mar-2019].

[6] K. Wang, R. Ho, and P. Wu, “Replayable Execution Optimized for Page
Sharing for a Managed Runtime Environment,” in Proc. EuroSys’19,
2019, pp. 39:1–39:16.

[7] A. Kivity et al., “OSv: Optimizing the Operating System for Virtual
Machines,” in Proc. USENIX ATC’14, 2014, pp. 61–72.

[8] S. Sahin, W. Cao, Q. Zhang, and L. Liu, “JVM Configuration Manage-
ment and Its Performance Impact for Big Data Applications,” in Proc.
BigData Congress’16, 2016, pp. 410–417.

[9] Sun Microsystems, “Memory Management in the Java HotSpot Virtual
Machine,” 2006.

[10] G. Fox, V. Ishakian, V. Muthusamy, and A. Slominski, “Status of
Serverless Computing and Function-as-a-Service(FaaS) in Industry and
Research,” 2017.

[11] T. Salomie, G. Alonso, T. Roscoe, and K. Elphinstone, “Application
Level Ballooning for Efficient Server Consolidation,” in Proc. Eu-
roSys’13, 2013, pp. 337–350.

[12] M. R. Hines, A. Gordon, M. Silva, D. D. Silva, K. Ryu, and M. Ben-
Yehuda, “Applications Know Best: Performance-Driven Memory Over-
commit with Ginkgo,” in Proc. CloudCom’11, 2011, pp. 130–137.

104Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

