
Performance Comparision between Scaling of Virtual Machines and Containers

using Cassandra NoSQL Database

Sogand Shirinbab, Lars Lundberg, Emiliano Casalicchio
Department of Computer Science
Blekinge Institute of Technology

Karlskrona, Sweden
email: {Sogand.Shirinbab, Lars.Lundberg, Emiliano.Casalicchio}@bth.se

Abstract—Cloud computing promises customers the on-

demand ability to scale in face of workload variations. There are

different ways to accomplish scaling, one is vertical scaling and

the other is horizontal scaling. The vertical scaling refers to

buying more power (CPU, RAM), buying a more expensive and

robust server, which is less challenging to implement but

exponentially expensive. While, the horizontal scaling refers to

adding more servers with less processor and RAM, which is

usually cheaper overall and can scale very well. The majority of

cloud providers prefer the horizontal scaling approach, and for

them would be very important to know about the advantages

and disadvantages of both technologies from the perspective of

the application performance at scale. In this paper, we compare

performance differences caused by scaling of the different

virtualization technologies in terms of CPU utilization, latency,

and the number of transactions per second. The workload is

Apache Cassandra, which is a leading Not Only Structured

Query Language (NoSQL) distributed database for Big Data

platforms. Our results show that running multiple instances of

the Cassandra database concurrently, affected the performance

of read and write operations differently; for both VMware and

Docker, the maximum number of read operations was reduced

when we ran several instances concurrently, whereas the

maximum number of write operations increased when we ran

instances concurrently.

Keywords—Cassandra; Cloud computing; Docker container;

Horizontal scaling; NoSQL database; Performance comparison;

Virtualization; VMware virtual machine

I. INTRODUCTION

Today’s modern data centers are increasingly virtualized
where applications are hosted on one or more virtual servers
that are then mapped onto physical servers in the data center.
Virtualization provides a number of benefits, such as flexible
allocation of resources and scaling of applications. Scalability
corresponds to the ability of a system uniformly to handle an
increasing amount of work [1]-[3]. Nowadays, there are two
types of server virtualization technologies that are common in
data center environments, hardware-level virtualization and
operating system level virtualization. Hardware-level
virtualization involves embedding virtual machine software
(known as Hypervisor or Virtual Machine Monitor (VMM))
into the hardware component of a server. The hypervisor
controls processor, memory, and other components by
allowing several different operating systems to run on the

same machine without the need for a source code. The
operating system running on the machine will appear to have
its own processor, memory, and other components. Virtual
machines are extensively used in today’s practice. However,
during the last few years, much attention has been given to
operating system level virtualization (also known as
container-based virtualization or containerization). Operating
system level virtualization refers to an operating system
feature in which the kernel allows the existence of multiple
isolated user-space instances (also known as partitions or
containers) instead of just one. As it has been shown in Figure
1, containers are more light weight than virtual machines,
various applications in container share the same operating
system kernel rather than launching multiple virtual machines
with separate operating system instances. Therefore,
container-based virtualization provides better scalability than
the hypervisor-based virtualization [4].

Currently, two concepts are used to scale virtualized
systems, vertical and horizontal scaling [5]-[8]. The vertical
scaling corresponds to the improvement of the hardware on
which application is running, for example addition of
memory, processors, and disk space. While the horizontal
scaling corresponds to duplication of virtual servers to
distribute the load of transactions. The horizontal scaling
approach is almost always more desirable because of its
advantages, such as no limit to hardware capacity, easy to
upgrade, and easier to run fault-tolerance. In our previous
study, we explored the performance of a real application,
Cassandra NoSQL database, on the different environments.
Our goal was to understand the overhead introduced by virtual
machines (specifically VMware) and containers (specifically
Docker) relative to non-virtualized Linux [9]. In this study,
our goal is to provide an up-to-date comparison of containers
and virtual machine environments using recent software
versions.

Figure 1. Difference between Virtual Machines and Containers

Architecture

93Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

In addition, we explore how much horizontal scaling of
virtual machines and containers will improve the performance
in terms of the system CPU utilization, latency, and
throughput. In this work, we have used multiple instances of
the Cassandra running concurrently on the different
environments.

The presented work is organized as follows: In Section II,
we discuss related work. Section III describes the
experimental setup and test cases. Section IV presents the
experimental results, and we conclude our work in Section V.

II. RELATED WORK

Both container-based and virtual machine-based
virtualization technologies have been growing at a rapid pace,
and research work evaluating the performance aspects of these
platforms provides an empirical basis for comparing their
performance. Our previous research [9], has compared
performance overheads of Docker containers, VMware virtual
machines versus Non-virtualized. We have shown that,
Docker had lower overhead compared to the VMware. In this
paper, we try to expand our previous work and compare the
two technologies; Container-based and Virtual Machine-
based virtualization in terms of their scalabilities running
Cassandra workload. There have not been many studies on
both scalability and performance comparison between the two
technologies. A comparison between Linux containers and
AWS ec2 virtual machines is performed in [10]. According to
their results, containers outperformed virtual machines in
terms of both performance and scalability. In [13], the authors
presented LightVM, which is a complete redesign of Xen. The
authors made a comparison between the performance of
LightVM and containers like Docker and LXC. According to
their results VM could be as light as containers, however there
is a development price to be paid. In our study, we used
VMware because it has been used widely by the IT industry,
hence VMware is more mature compared to LightVM.

In [11], the authors evaluated the performance differences
caused by the different virtualization technologies in data
center environments where multiple applications are running
on the same servers (multi-tenancy). According to theirs
study, containers may suffer from performance in multi-tenant
scenarios, due to the lack of isolation. However, containers
offer near bare-metal performance and low footprint. In
addition, containers allow soft resource limits which can be
useful in resource over-utilization scenarios. In [12], the
authors studied performance implications on the NoSQL
MongoDB during the horizontal scaling of virtual machines.
According to their results, the horizontal scaling affects the
average response time of the application by 40%.

III. EVALUATION

The goal of the experiment was that of comparing the
performance scalability of the Cassandra while running it on
multiple virtual machines versus on multiple containers
concurrently.

A. Experimental Setup

All our tests were performed on three HP servers DL380
G7 with processors for a total of 16 cores (plus

HyperThreading) and 64 GiB of RAM and disk of size 400
GB. Red Hat Enterprise Linux Server 7.3 (Maipo) (Kernel
Linux 3.10.0-514.e17.x86_64) and Cassandra 3.11.0 are
installed on all hosts as well as virtual machines. Same version
of Cassandra used on the load generators. To test containers,
Docker version 1.12.6 installed and in case of virtual
machines VMware ESXi 6.0.0 installed. In total, 4 times the
3-node Cassandra clusters configured for this study (see
Figure 2).

B. Workload

To generate the workload, we used Cassandra-stress tool.
The Cassandra-stress tool is a Java-based stress utility for
basic benchmarking and load testing of a Cassandra cluster.
Creating the best data model requires significant load testing
and multiple iterations. The Cassandra-stress tool helps us in
this endeavor by populating our cluster and supporting stress
testing of arbitrary Cassandra Query Language (CQL) tables
and arbitrary queries on tables. The Cassandra package comes
with a command-line stress tool (Cassandra-stress tool) to
generate the load on the cluster of servers, the cqlsh utility, a
python-based command line client for executing CQL
commands and the nodetool utility for managing a cluster.
These tools are used to stress the servers from the client and
manage the data in the servers.

The Cassandra-stress tool creates a keyspace called
keyspace1 and within that, tables named standard1 or
counter1 in each of the nodes. These are automatically created
the first time we run the stress test and are reused on
subsequent runs unless we drop the keyspace using CQL. A
write operation inserts data into the database and is done prior
to the load testing of the database. Later, after the data are
inserted into the database, we run the mix workload, and then
split up the mix workload and run the write-only workload and
the read-only workload. In [1] [9], we described in detail each
workload as well as the commands we used for generating the
workloads, in this paper we have used the same approach for
generating the workload.

Figure 2. Experimental Setup

C. Performance Metrics

The performance of Docker containers and VMware
virtual machines are measured using the following metrics:

• CPU Utilization (percentage),

• Maximum Transactions Per Second (TPS), and

• Mean Latency (milisecond).
The CPU utilization is measured directly on the server

nodes by means of sar command. The latency and maximum

94Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

TPS are measured on the client side, that are measured by the
stress test tool. The term transactions per second refers to the
number of database transactions performed per second.

D. Test Cases

1) One-Cassandra-three-node-cluster: In this case,
one virtual machine/container deployed on each host running
Cassandra application. All virtual machines/containers
configured as one 3-node cluster.

2) Two-Cassandra-three-node-clusters: In this case,
two containers/virtual machines deployed on each host
running Cassandra application. Each container/virtual
machine on each host belongs to its own 3-node cluster, so in
total two 3-node clusters configured to run concurrently.

3) Four-Cassandra-three-node-clusters: In this case,
four containers/virtual machines deployed on each host
running Cassandra application. Each container/virtual
machine on each host belongs to its own 3-node cluster, so in
total four 3-node clusters configured to run concurrently.

In this experiment, we compare the performance of virtual
machines and containers running different Cassandra
workload scenarios, Mix, Read and Write. However, unlike
our previous study [9], here we decided to set the replication-
factor as three. In our test environment with three-node
clusters, replication factor three means that each node should
have a copy of the input data splits.

IV. PERFORMANCE AND SCALABILITY COMPARISON

A. Transactions per second (tps)

Figure 3 shows transactions per second (tps) during write,
read and mixed load. In this figure, we summarized the total
transactions per second from different number of Cassandra
clusters running on Docker containers and VMware virtual
machines. According to the results, overall in all cases Docker
containers could handle higher number of database
transactions per second than VMware virtual machines. In the
case of the mixed load, Docker containers could handle
around 25% more transactions per second than VMware
virtual machines. In the case of only write load the difference
is around 19% more for containers than virtual machines.

While in the case of only read load, there is a huge difference
of around 40% in the number of transactions per second
between virtual machines and containers. Another aspect to
consider according to the transactions per second results is
that, running multiple instances of the Cassandra database
concurrently, affected the performance of read and write
operations differently; for both VMware and Docker, the
maximum number of read operations was reduced when we
ran several instances concurrently, whereas the maximum
number of write operations increased when we ran instances
concurrently. Note that increasing the number of Cassandra
clusters did not have any significant impact on the number of
transactions per second in the case of the mixed-load.

B. CPU utilization

Figure 4 shows the results of CPU utilization of multiple
numbers of Cassandra clusters running on virtual machines
and containers during write, read, and mix workloads.
According to the results, in general CPU utilization of one
cluster of virtual machines/containers are lower than two
clusters and CPU utilization of two clusters is less than three
clusters. It can be observed from the figures that, the overhead
of running multiple clusters in terms of CPU utilization is
around 10% for both containers and virtual machines. This
overhead decreases as the load increases, one reason for this
can be the background jobs that are running in Cassandra and
as the load increases Cassandra by default delays these jobs
since there are not enough resources available for executing
the jobs. In addition, it can be observed from the figures that,
the overall CPU utilization of containers is lower than virtual
machines for all different workloads. Considering the mix
workload CPU utilization of containers is around 15% lower
than CPU utilization of virtual machines.

The difference between CPU utilization of containers and
virtual machines is around 12% for the write workload which
is very close to the difference that we saw for the mix
workload case. However, this difference is significantly
higher for the read workload up to around 40%. According to
these results, read operations utilize more CPU cycles on
virtual machines than on containers.

Figure 3. Transactions per second (tps)

95Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

a.

b.

c.

d.

e.

f.

Figure 4. CPU utilization results for Write, Read and Mix workload for multiple Cassandra clusters running on virtual machines and containers concurrently.

C. Latency

Figure 5 shows the results of latency mean of multiple
numbers of Cassandra clusters running on virtual machines
and containers during write, read, and mix workloads. As it
can be observed from the figures, in general, the latency of

containers is 50% lower than virtual machines as the load
increases. In the case of the mixed workload, the latency
difference between having one cluster and two clusters is
negligible. However, the latency difference between having
one or two clusters compared with four clusters is around
33%.

96Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

a.

b.

c.

d.

e.

f.

Figure 5. Latency mean results for Write, Read and Mix workload for multiple Cassandra clusters running on virtual machines and containers
concurrently.

In the case of the write workload, the difference between
having containers.

However, for virtual machines, the latency becomes
around 10ms in the case of four clusters when the tps is only
80k. Also, in the case of two clusters and 1cluster, since the
cluster did not handle the load of 80k tps the latency is only

shown for 40k tps which is around 2-3 ms. In the case of the
read workload, for the virtual machines the latency increases
up to around 50% higher for the case with two clusters
compared with one cluster. The latency increases up to around
20% for the case of four clusters compared with the case of
two clusters and there is an increase of up to around 60%

97Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

compared to the case of only one cluster. According to these
results scaling would be very expensive for virtual machines
in terms of latency mean which will have a negative impact
on the application performance. However, in the case of
containers the cost in terms of latency difference for having
multiple clusters compared with one cluster is up to around
23%. According to the results, running multiple clusters inside
containers will have less impact on the latency and the
performance of the application (in this case Cassandra) than
running multiple clusters inside virtual machines. The latency
difference increases exponentially as the number of clusters
increases as well as the load increases. The latency difference
increases up to around 23% on containers and up to around
60% on virtual machines while having 100% read workload.
The latency difference is negligible in the case of write
workload. Also, there is a moderate latency difference in the
case of mixed workload which is up to around 20% for virtual
machines when the tps is 80k and up to around 25% for
containers when the tps is 120k.

V. DISCUSSIONS AND CONCLUSIONS

In this study, we have compared the performance of
running multiple clusters of the NoSQL Cassandra database
inside Docker containers and VMware virtual machines. We
have measured the performance in terms of CPU utilization,
Latency mean and the maximum number of Transactions Per
Second (TPS). According to our results, running Cassandra
inside multiple clusters of VMware virtual machines was
showing less performance in terms of maximum number of
transactions per second compared to the Docker containers.
The performance difference was around 20% lower during the
mixed workload, around 16% lower during the write-only
workload and around 29% lower during read-only workload.
One reason for this could be that containers are lighter-weight
compared to virtual machines, therefore there is a less
overhead of the virtualization layer and this helps the
application to get more resources and performs better on
containers than virtual machines. Another reason can be how
a write and a read operation procedure works in Cassandra. In
Cassandra, a write operation in general performs better than a
read operation because it does not involve too much I/O. A
write operation is completed when the data has been both
written in the commit log (file) and in memory (memtable).
However, a read operation may require more I/O for different
reasons. A read operation first involves reading from a filter
associated to sstable that might save I/O time saying that a
data is surely not present in the associated sstable and then if
filter returns a positive value, Cassandra starts seeking the
sstable to look for data. In terms of CPU Utilization, the
Cassandra application performs better on containers than on
virtual machines. According to our results, the difference
between CPU utilization on virtual machines is around 16%
higher than containers during the mixed workload, around 8%
higher during the write-only workload and around 32% higher
during the read-only workload. In addition, the Cassandra
application running inside virtual machines got up to around
50% higher latency than containers during the mixed
workload. The difference became up to around 40% higher on

virtual machines during the write-only workload compared to
containers, also up to around 30% higher on virtual machines
during the read-only workload compared to containers. As it
has been discussed before, in general, the read-only workload
is showing less performance than the write-only workload,
and the impact of the different types of workloads on the
performance in terms of CPU utilization is higher on virtual
machines than containers.

However, considering the scalability aspects of the virtual
machines and the containers, according to our results,
containers scale better without loosing too much performance
while virtual machines overhead is very high, and it has a
negative impact on the performance of the application. This
might differ depending on the application and the type of
workload as we have seen during our experiments. Therefore,
cloud providers need to investigate this issue while deploying
both virtual machines and containers across data centers also
at larger scale.

REFERENCES

[1] Gaopan, Huang, et al. “Auto Scaling Virtual Machines for Web
Applications with Queuing Theory,” in ICSAI conference, pp. 433-
438, 2017.

[2] Sijin, He, et al. “Elastic Application Container: A Lightweight
Approach for Cloud Resource Provisioning,” in AINA conference, pp.
15-22, 2012.

[3] A. Horiuchi and K. Saisho, “Development of Scaling Mechanism for
Distributed Web System,” in SNPD conference, pp. 1-6, 2015.

[4] Fan-Hsun, Tseng, et al. ”A Lightweight Auto-Scaling Mechanism for
Fog Computing in Industrial Applications,” in IEEE Transactions on
Industrial Informatics Journal, vol. PP, no. 99, pp. 1-1, 2018.

[5] W. Wenting, C. Haopeng, and C. Xi, “An Availability-Aware virtual
Machine Placement Approach for Dynamic Scaling of Cloud
Applications,” in UIC/ATC conference, pp. 509-516, 2012.

[6] L. Chien-Yu, S. Meng-Ru, L. Yi-fang L. Yu-Chun, and L. Kuan-Chou,
”Vertical/Horizontal Resource Scaling Mechanism for Federated
Clouds,” in ICISA conference, pp.1-4 , 2014.

[7] S. Sotiriadis, N. Bessis, C. Amza, and R. Buyya, “Vertical and
Horizontal Elasticity for Dynamic Virtual Machine Reconfiguration,”
in IEEE Transactions on Services Computing Journal, vol. PP, no. 99,
pp. 1-14, 2016.

[8] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P. Merie, ”Elasticity in
Cloud Computing: State of the Art and Research Challenges,” in IEEE
Transactions on Services Computing Journal, vol. PP, Issue. 99, pp 1-
1, 2017.

[9] S. Shirinbab, L. Lundberg, and E. Casalicchio, “Performance
Evaluation of Container and Virtual Machine Running Cassandra
Workload, ” in CloudTech conference, pp. 1-8, 2017.

[10] A.M. Joy, "Performance Comparison between Linux Containers and
Virtual Machines," in ICACEA Conference, pp. 342-346, 2015.

[11] L. Chaufournier, P. Sharma, P. Shenoy, and Y.C. Tay, "Containers and
Virtual Machines at scale: A Comparative Study," in Middleware
Conference, pp. 1-13, 2016.

[12] Chao-Wen, Huang, et al. “The Improvement of Auto-Scaling
Mechanism for distributed Database- A Case Study for MongoDB,” in
APNOMS conference, pp. 1-3, 2013.

[13] Manco, Filipe, et al. “My VM is Lighter (and Safer) than your
Container,” Proceedings of the 26th Symposium onOperating Systems
Principles (SOSP 17). ACM, 2017.

98Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

