
Version Control Using Distributed Ledger Technologies for

Internet of Things Device Software Updates

Magnus Westerlund

Department of Business Management and Analytics

Arcada University of Applied Sciences

Helsinki, Finland

magnus.westerlund@arcada.fi

John Wickström

Department of Business Management and Analytics

Arcada University of Applied Sciences

Helsinki, Finland

wickstjo@arcada.fi

Göran Pulkkis

Department of Business Management and Analytics

Arcada University of Applied Sciences

Helsinki, Finland

goran.pulkkis@arcada.fi

Abstract—The number of installed Internet of Things

(IoT) devices is growing rapidly and securing these IoT

installations is an important task that may require

technical knowledge that the owners of these devices do

not always possess. Although experts have pointed out,

that security should always be a priority when creating

IoT products, the challenges are numerous and security

solutions are not always targeted to decentralized or

distributed architectures. In this paper, we explore the

mechanisms for creating a method for a distributed IoT

software update service that utilize distributed ledger

technologies, such as Ethereum smart contracts and the

InterPlanetary File System (IPFS). Our aim is to present

a method that offers a more transparent version control

of updates than current solutions, which are mostly

conceptually centralized. We also aim to avoid relying

on a central node for distributing updates and to create

a fully secured and automated process for update

management.

Keywords-IoT; distributed ledger; blockchain; version

control; software update.

I. INTRODUCTION

Version control has been an integral part of software
development for a long time. Common techniques and
methods for provisioning IT-services (incl. configuration,
deployment, orchestration and management) depend on
formalizing a process for handling changes made to files and
data. Version Control Systems (VCS) became commonplace
in the late 1990s and initially catered mostly to intra-
organizational software development (internally) and a well-
known system was Rational ClearCase [1]. As software
development matured and inter-organizational development
(between organizations), became commonplace through,
e.g., open source development, new distributed VCS, such as
Git [2], emerged. These VCS have distributed features
primarily from the perspective of access, who can
collaborate and contribute to a project hosted on a web-based

Git repository (such as Gitlab). Although it is possible to
mirror Git repositories, these services have no proper
distributed features in terms of inherent trustless consensus
and guarantee for service availability. Such fears among
developers were quite evident when Microsoft acquired
GitHub [3], another Git-based repository many open source
projects are relying on.

Traditionally, version control has strictly meant tracking
changes in text-based files. To store binary files in a VCS
offers mainly a stored version path. For some binary files,
plugins exist that will allow a diff to executed, but often this
would be an exception. However, there are new use cases for
version control that go beyond the initial ability of
performing a comparison between file versions. These use
cases are coming from new technologies, such as machine
learning (incl. Artificial Intelligence (AI)) and Internet of
Things (IoT). For an AI-enabled service, version control
extends to, that the process must include training data,
network initialization, parameter settings, and serialization of
the trained network to a file. Often, other types of metadata
should be stored as well, e.g., statistical properties of training
data, output quality metrics and naturally if the model is
updated online it requires further measures. Any autonomous
AI-based service aimed for production use will need
continuous catering for forensic investigations during the
longevity of the service.

This paper focuses on the IoT use case, to extend the
understanding for what purposes version control is usable
and how to implement a Proof of Concept (PoC) of a VCS
for IoT software updates using Distributed Ledger
Technology (DLT), such as blockchain, smart contracts, and
the InterPlanetary File System (IPFS) [4]. This paper adopts
a methodology intended to identify single case mechanisms
through an exploratory approach [5]. Our long-term research
aim is to develop a new methodology for fully secured and
automated IoT device updates. This process must also be
transparent in terms of who has created updates and be
auditable in case there are detected vulnerabilities. We limit
the scope for this paper to the backend architecture utilizing
IPFS, Ethereum smart contracts, and browser-based
Distributed Applications (DApp).

43Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

This paper has the following structure: Section II
describes the problem setting of reliability in IoT devices.
Section III presents relevant IoT policies and standardization
efforts. Section IV discusses DLT-based update services.
Section V surveys other proposals for distributed update
services and presents our PoC. Section VI contains
conclusion and proposal for future development

II. PROBLEM SETTING FOR IOT DEVICE RELIABILITY

The proliferation of IoT devices and services based on
these are helping to digitize the physical landscape. IoT
enabled devices have been introduced into almost any setting
and convey large volume of data and varieties of data, e.g.,
in the format of video, sound, and potentially any data type
that can be measured with a sensor that converts analogue
measurements into a digital data flow. We can anticipate the
technological progress will continue to shape new domains
in our lives and within the coming decades, extending to
include many new areas, e.g., personal healthcare and home
automation. These new domains will introduce a myriad of
highly sensitive information sources, information that must
be processed, and often stored for an indefinite and
sometimes an infinite period for the digitization of these
areas. By embedding information-sharing electronics into
everyday physical objects, we will create a “global cyber-
physical infrastructure” [6]. IoT uses standardized
communication protocols and merges computer networks
into a “common global IT platform of seamless networks and
networked “Smart things/objects”” [7]. From the perspective
of platform and service innovation, by utilizing IoT
technology, the focus will be on creating AI-enabled services
that are able to draw inferences from the data collected from
IoT devices. This will offer users descriptive answers,
predict future behavior and needs, and eventually provide
prescriptive suggestions for improving daily life. We here
define AI-enabled services as based on machine learning
techniques that infer decision support or decisions based on
the collected IoT data. Therefore, relying on data veracity
becomes crucial for the trustworthiness of these services.

Network and information security are often more
challenging for IoT systems than for traditional networks.
Cloud resources used by many IoT systems are publicly
accessible and thereby, through this availability, increase the
risk of intrusion. The increase in the processing of sensitive
data in IoT systems makes security challenges more
noteworthy, particularly in light of legal issues around cross-
border transfers and data protection [8]. The debate
regarding a sustainability problem in IoT security has
resulted in some experts calling for a halt to IoT deployments
and innovations [9] and that IoT devices should come with
public safety warnings [10]. This paper takes the position
that there is currently a sustainability problem in IoT security
and we should innovatively address this problem with new
secure IoT management methods designed specifically for
the distributed architecture of IoT networks.

III. CURRENT IOT POLICY SITUATION

In a traditional IoT architecture, IoT devices are network
nodes, which transmit their data (incl. logs) to a data store

through some proxy. IoT device management for enterprise-
level devices is often a manual process, whereas consumer
devices may query a manufacturer-defined end-point for
software updates, which typically are impossible to validate
for origin or content. Device administrators have local
credentials for authentication, but an Identity and Access
Management (IAM) solution is often missing. Only
authenticated users should have authorization to access IoT
devices and to update device firmware from device
deliverers’ databases. A system log stored on a respective
node would require device access for collection (pull) of
data. Storage space is often very limited so only the most
recent activities may be stored on the device. Hence,
continuous collection to an external data store is required.

From an accountability perspective, continuous delivery
of new updates to a node is also a necessity, something that
often requires a manual process by a system administrator.
The manufacturer should also provide new software (e.g.,
firmware) security updates for the lifetime of said IoT
devices. For this process to be complete, traditional IoT
systems require many manual process steps that are often not
possible to ensure in today’s environment. Hence, we find it
motivated to propose a new type of architecture better suited
to a decentralized or distributed network topology.

A secure IoT system is one that can fulfil the following
criteria [11]:

• does not contain any hardware, software, or
firmware component with any known security
vulnerabilities or defects,

• relies on software or firmware components capable
of accepting properly authenticated and trusted
updates from the vendor,

• uses only non-deprecated industry-standard
protocols and technologies for functions such as
communication, encryption, and intercommunication
with other devices, and

• does not include any fixed or hard-coded credentials
used for remote administration, the delivery of
updates, or communication.

The Cloud Security Alliance (CSA) [12] IoT Working
Group published in 2018, 10 security recommendations for
IoT firmware updates [13]. The recommendations focus on
device integrity and the use of a conceptually centralized
service backend.

A. IoT Device Software Update Standardization Efforts

The Internet Engineering Task Force (IETF) has a
currently active Security Area Working Group called
Software Updates for Internet of Things (suit) [14]. The
focus is on secure firmware update solutions, which include
a mechanism for transporting firmware images to compatible
devices, a digitally signed manifest containing firmware
image meta-data and the firmware image(s).

A recent informational Internet-Draft [15] defines that
the purpose of an IoT firmware update is to fix
vulnerabilities, to update configuration settings, and to add
new functionality for improved security. A firmware update
must ensure firmware image authentication and integrity
protection. In certain cases, prevention of the use of modified

44Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

firmware images or images from unknown sources may be
necessary. Here, it is important to understand the dilemma of
potentially installing vulnerable software, versus an informed
operator installing a trusted open source-based alternative.
Encryption based confidentiality protection can prevent
unauthorized access to and modification of the plaintext
binary of a firmware image. However, encryption may
decrease transparency in some cases.

Firmware updates can be client-initiated by polling for
new firmware images or server-initiated by status tracking of
IoT devices. A firmware update in an IoT device consists of
following steps [15]:

• the device is notified that an update exists,

• a pre-authorization verifies if the manifest signer is
authorized to update device firmware. IoT device
decide on acceptance of the new firmware image,

• dependency resolution is needed when more than
one firmware component can be updated,

• a local copy of the firmware image is downloaded,

• the image is processed into a format the IoT device
can recognize and install. Thereafter, the bootloader
boots from the installed firmware image.

IV. DISTRIBUTED UPDATE SERVICES BASED ON DLT

CONCEPTS

As discussed in the previous section, traditional IT-
architectures, incl. cloud computing based Software-as-a-
Service, rely mainly on a conceptually centralized service
provision model, while IoT networks and DLT originate
from decentralized or distributed architectures. The Bitcoin
blockchain [16] introduced a cryptographically secured and
distributed ledger. The ability to append transactions to an
otherwise immutable ledger comes from a distributed and
pseudonymous consensus mechanism, i.e., Nakamoto
consensus [16]. Bitcoin’s consensus protocol includes both a
validity check of a certain transaction and an information
sharing protocol, where accepted transactions are stored in
blocks chained together in a chronological order. The ledger
is an immutable transactional database, thus, the blockchain
only stores transactional changes and thereby stays
immutable by not forcing an update on pre-existing variable
values. In [17], this represents the first generation of DLT.
The second DLT generation is in [17] defined to be based on
smart contracts, which not only perform an authentication of
users and verification of transactions, but may also involve
more advanced logical condition states for authorization and
automated continuous verification of these condition states.

DLT-based protocol extensions to the web software stack
have inter alia provided a new distributed approach to
provisioning web services. IPFS provides a Peer-to-Peer
(P2P) hypermedia protocol [4] that makes it possible to
distribute high volumes of data with high efficiency. IPFS is
a distributed file system that utilizes content addressing to
fetch static information, rather than location addressing like
most traditional file systems. Hashing the content of files or
the entire directories achieves this. A resulting hash string
works as a link, which also makes IPFS immune to duplicate
files. IPFS file versioning based on the generated content

identifier (hash) is directly usable for a known latest revision.
However, an InterPlanetary Name System (IPNS) [18]
identifier exists based on the node peer ID that provides a
mutable resource link to the IPFS file hash which when
published can be bound to the IPNS. Accessing a file
through the IPNS link allows the revision of the IPFS file to
change, by republishing the new hash of the file to the IPNS;
see Fig. 1 for an illustration.

The data structure behind IPFS is the Merkle Directed
Acyclic Graph (DAG), whose links are hashes. Users are the
individual peer nodes in a larger swarm. All hashed content
published in that particular swarm is retrievable for any
participating user. Each IPFS node utilizes a Public Key
Infrastructure (PKI) based identification that generates an
IPNS, which is a self-certifying PKI namespace (IPNS). This
provides all objects in IPFS some useful properties:

• authenticated content,

• permanent cached content,

• a universal data structure, a Merkle DAG,

• a decentralized platform for collaboration.

V. VERSION CONTROL DLT SOLUTIONS

This paper focuses on a new extended VCS use case for
fully secured and automated IoT device updates and related
management. The first sub-section presents the existing
literature of other proposed DLT-based solutions to version
control of IoT software updates. The following sub-sections
presents initial results of our study on how to implement a
fully secured and automated architecture for handling IoT
software updates. As stated, the aim of this research is to
bring transparency into the process of maintaining IoT
devices, by utilizing the earlier mentioned beneficial
properties of IPFS and smart contracts executed on the
Ethereum blockchain and the Ethereum virtual machine. The
benefit of these distributed ledger technologies is that they
are, often similarly to the architecture for IoT devices, based
on an automated process and can be configured to construct
a decentralized platform. Therefore, combining these
technologies in a system architecture should improve the
reliability, maintainability, and forensic abilities in IoT
network supervision.

A. Proposed DLT-Based Solutions to Version Control of

IoT Software Updates.

Several authors have accentuated the data structure
similarities between Git and DLT, and that it is possibly
usable for some form of DLT-based version control, e.g.,
“blockchain can be seen as a Peer-to-Peer (P2P) hosted Git
repository” [19].

IPNS node-based
hash

M
u

tab
le

Im
m

u
tab

le

Node storage

IPFS content hash

Im
m

u
tab

le

Sw
arm

IPFS content hash

Im
m

u
tab

le

Sw
arm

Version 1

Version 2

< /DApp >

Figure 1. IPFS addressing process flow.

45Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

Feature wise Git repository branches are blockchains
according to the definition “A blockchain is a sequence of
blocks of data in which each block, other than the first, is
cryptographically linked to its predecessor” [20]. A
blockchain network definition is “a Peer-to-Peer network in
which peers collaborate to achieve a common goal by using
a blockchain” [20]. According to this definition, a Git
repository is a blockchain network, the Git repository peers
are developers in a software development project, and the
blockchain is the master branch. Git peers often fork the
master branch when new versions are stored in the
repository, collaborate on the master branch, and strive to
merge other branches with the master branch. A Git
repository is permission-based and consensus is trust-based
on some Git hosting service.

In a proposed setup for IoT device firmware updates, a
device manufacturer provides a master update node and
configures all IoT devices from the manufacturer as nodes in
the same blockchain network [21]. The setup deploys a smart
contract for storing the hash of the latest firmware update as
a transaction record in a blockchain and for retrieving the
latest stored transaction record. The corresponding firmware
file is stored in a distributed P2P file system such as IPFS.
The manufacturer’s blockchain node stores new firmware
updates. IoT devices can find hashes of new firmware
updates by querying the smart contract and then to request
and locally store the firmware file from the distributed P2P
file system by its hash. An IoT device joining the blockchain
network after the manufacturer’s node has left the network
can therefore still retrieve the latest firmware update. The
hash stored of the blockchain verifies that the firmware file
stored in a distributed P2P file system is untampered

For another proposed blockchain-based solution for
secure firmware updates in IoT devices [22], the blockchain
network consists of normal nodes, which are IoT devices and
verification nodes, which store firmware files and hash
values of firmware files called verifiers in their databases.
Outside the blockchain network are firmware vendor nodes.
A vendor node maintains a secure communication channel to
a verification node for delivery of new firmware updates. A
normal node requests a firmware update by broadcasting a
version check message to other blockchain network nodes,
which respond to the message. If the first response comes
from a verification node, then the verification node checks
whether the firmware of requesting normal node already is
up-to-date. If the firmware is up-to-date, then the verification
node checks integrity of the firmware. If the requesting
normal node’s firmware is not up-to-date, the responding
verification node downloads the latest firmware version to
the requesting normal node. If the first response comes from
another normal node, then the responding normal node
compares the version of its firmware with the requesting
node’s firmware version. If the firmware versions are the
same, then a lightweight Proof-of-Work mining procedure in
blockchain network checks the correctness of the verifier of
the requesting node’s firmware. Six confirmations from
other blockchain network nodes prove the correctness of the
verifier. If the firmware versions are different, then a
verification node downloads an up-to-date firmware file to

the normal blockchain node whose firmware version is older.
The proposed firmware update scheme uses a blockchain
block scheme, where each block has a header and a
verification field. In the header is stored the size and version
of the block, a hash of the header of the previous block, and
the root of the Merkle hash tree in the verification field.

The CSA Blockchain/Distributed Ledger Technology
Working Group published in 2018 a report “Using
Blockchain Technology to Secure the Internet of Things”
[23]. In a preferred communication model, each IoT device
is a blockchain network node hosting the full ledger of
transactions and is capable of participating in blockchain
transaction validation and mining. Because of the limited
processing, storage, and power resources of most IoT
devices, the report proposes a communication model where
IoT devices are clients with Application Programming
Interfaces (APIs) to blockchain nodes in a cloud based
blockchain network service. An IoT device sends digitally
signed data from its API to a blockchain network node for
processing. A trusted secure communication channel is
required between the IoT device and the blockchain network
node. The blockchain ledger can store the last version of
validated IoT firmware or its hash. An IoT device requests
its blockchain network node to deliver, from the transaction
ledger, the latest firmware version or the hash of this version.
If the blockchain network node delivers a hash, then the IoT
device retrieves the latest firmware version from a cloud
service and checks if the hash of the retrieved version
matches the hash delivered by the blockchain network node.

B. Development of PoC for our Solution

The literature review on the security of IoT software
updates shows that research on this topic area has yet to
receive the focus it deserves. Although several expressed
opinions exist, a universal method (de-facto standard) for
solving the problem does not yet exist. That secure IoT
device updates and management is problematic or even
unsustainable has been established, still very few, if any,
solutions exist for either the open source community or for
commercial manufacturers to automate and secure software
updates to IoT devices in a transparent fashion. The papers
reviewed provide several good ideas for further study to
identify single case mechanisms for providing IoT update
services utilizing DLT-based version control. We proceed
through an exploratory approach aimed at understanding the
engineering demands of such systems by constructing a PoC
backend as an initial step [5].

In our distributed IoT architecture proposal, shown in
Fig. 2, IoT nodes transmit their log data to a distributed and
replicated data store. The data store exists outside the limited
nodes and utilizes a P2P protocol. Utilization of different
data stores depend on requirements, such as scalability,
speed, or post-processing. A suitable batch-based solution
may be the IPFS or a proprietary P2P data transfer protocol.
If a streaming solution is required, then the use of a
decentralized data and analytics marketplace such as Streamr
[24] is an option. Smart contracts executed on top of a DLT
implementation may authorize IoT devices and furthermore
offer device management, e.g., issue management

46Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

commands. Implementation of an automatic service for IoT
device firmware updates may be similar. Storing the latest
version of a binary update file in IPFS and in a smart
contract store an IPFS immutable content address that allows
the node to query correct IPFS file and firmware signature to
confirm file integrity. This tells the IoT node how to access
IPFS files and how to perform verification of the needed
update. A different solution is to make use of an IPNS hash
that points to the latest IPFS hash. The third solution is to
mix both approaches. As these systems require two different
logins for a manufacturer to share an update, 2-step
verification is achievable by using both techniques (smart
contract and IPFS) in combination and then compare the
content hashes to the downloaded file update hash.

For the future, we consider it important that a
manufacturer may want to offer a service contract to any IoT
system maintainer/owner. Currently, a significant problem is
that IoT nodes have no long-term support as the
manufacturer often fails to get financial compensation for
updating firmware once the product enters a
maintenance/archival phase. A smart contract providing the
manufacturer with a decentralized platform for selling
firmware updates could implement this business model. An
automated update function and contract resolution can be
provided to any IoT node maintainer, either on a node basis
(number of nodes) or on a network basis (maintaining
organization).

C. Explored Mechanisms and Methods

This section is devoted to reviewing the technical
mechanisms used for the implementation of the frontend
interface for the software update manufacturer and the
backend. The frontend utilizes a DApp that allows the
software developer to deploy new software releases to the
platform. A DApp is a stateless web application stored on
IPFS and is executable without any dedicated server. This is
possible by creating a web application that is self-contained
and run within a browsing session initiated by a user. Hence,
no server-side processing is required as the client downloads
and executes the application. Routines in a JavaScript API
library [25] push data to and pull data from IPFS node
storage.

The DApp can be, while it is running, as dynamic as a
traditional web application; however, from the statelessness
follows, that no collected data is normally sent back to a
server and stored when the browser is shutdown. Naturally,
in the future, there will be more advanced use cases as well,
but the idea of decentralized platforms such as ours is to
avoid centralized processing that introduces dependencies,
bottlenecks and transparency concerns. User authentication
occurs before publishing new updates through the IPFS node
and through Ethereum [26]. In addition to maintaining the
latest content update in IPNS we also propose to store it in a
smart contract. The main reason for this is that dual

verification can ensure either a two-factor authentication or
that the development team can share the IPFS node key for
administration purposes, while the final software update
release will require the Ethereum key as well. The smart
contract is also usable for auditing purposes, as each
published directory hash (i.e., a combined hash taken of all
files in a directory each time it changes) is stored on the
blockchain. In Fig. 3, we present an information flow for the
backend of the DApp for releasing software updates. The
PoC proposal makes use of a smart contract for guaranteeing
revision history and IPFS for file update distribution and file
history record.

VI. CONCLUSIONS AND FUTURE DEVELOPMENT

An important task in keeping devices secure in IoT
systems, is by ensuring automatic and secure delivery of
updates. These challenges involve version control of the
software intended to run on the edge nodes, confirming
installed software and hardware versions, and linking the
versioning data to usage data that may reveal patterns and
storing the data that allows auditing of the system. Because
IoT networks are distributed/decentralized (depending on
network topology choices), we find that not only new
technologies, but also new methods for securing IoT devices
are needed.

Our paper presents an initial PoC and explores some of
the important mechanisms involved in creating a method that
offers a more transparent version control of updates than
today’s services that are conceptually centralized. Our
solution does not rely on a central node for distributing
updates as IPFS handles file distribution and Ethereum smart
contracts handle version management. Our continued
development will focus on creating a fully secured and
automated process for management of IoT software updates
management and on verifying this process with IoT device
integration.

Figure 2. Proposed architecture solution, integrating IoT and DLT.

47Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 3. DApp information flow.

REFERENCES

[1] IBM Rational ClearCase. [Online]. Available from:
https://www.ibm.com/fi-en/marketplace/rational-clearcase
2019.04.08

[2] Git–fast-version-control. [Online]. Available from: https://git-
scm.com 2019.04.08

[3] Built for developers. [Online]. Available from:
https://github.com/ 2019.04.08

[4] IPFS. IPFS is the Distributed Web. [Online]. Available from:
https://ipfs.io/ 2019.04.08

[5] R. J. Wieringa, Design Science Methodology for Information
Systems and Software Engineering. Berlin, Heidelberg:
Springer-Verlag, 2014

[6] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac,
“Internet of things: Vision, applications and research
challenges” Ad Hoc Networks, vol. 10, no. 7, pp. 1497-1516,
2012.

[7] O. Vermesan and P. Friess, Internet of Things - Global
Technological and Societal Trends From Smart Environments
and Spaces to Green ICT, Denmark: River Publishers, 2011.

[8] M. Westerlund, “A study of EU data protection regulation and
appropriate security for digital services and platforms,”
Doctoral Dissertation, Åbo Akademi University, Åbo,
Finland, 2018.

[9] M. Giles. For safety’s sake, we must slow innovation in
internet-connected things. [Online]. Available from:
https://www.technologyreview.com/s/611948/for-safetys-
sake-we-must-slow-innovation-in-internet-connected-things/
2019.04.08

[10] J. Condliffe. Should IoT Devices Come with Public Safety
Warnings? [Online]. Available from:
https://www.technologyreview.com/the-
download/609124/should-iot-devices-come-with-public-
safety-warnings/ 2019.04.08

[11] M. Westerlund, M. Neovius, and G. Pulkkis, “Providing
Tamper-Resistant Audit Trails with Distributed Ledger based
Solutions for Forensics of IoT Systems using Cloud
Resources.” International Journal on Advances in Security,
vol.11, no. 3 and 4, pp. 288-300, 2018

[12] CSA cloud security alliance. [Online]. Available from:
https://cloudsecurityalliance.org 2019.04.08

[13] CSA cloud security alliance. Recommendations for IoT
Firmware Update Processes. [Online]. Available from:
https://downloads.cloudsecurityalliance.org/assets/research/int

ernet-of-things/recommendations-for-iot-firmware-update-
processes.pdf 2019.04.08

[14] IETF. Software Updates for Internet of Things (suit).
[Online]. Available from:
https://datatracker.ietf.org/wg/suit/about/ 2019.04.08

[15] B. Moran, M. Meriac, H. Tschofenig, and D. Brown. A
Firmware Update Architecture for Internet of Things Devices.
draft-ietf-suit-architecture-02. [Online]. Available from:
https://datatracker.ietf.org/doc/draft-ietf-suit-architecture/
2019.04.08

[16] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash
System,” 2008. [Online]. Available from:
https://bitcoin.org/bitcoin.pdf 2019.04.08

[17] M. Westerlund and N. Kratzke, “Towards Distributed
Clouds,” Proc. 16th International Conference on High
Performance Computing & Simulation (HPCS), IEEE Press,
July 2018, pp. 655-663, doi:10.1109/HPCS.2018.00108.

[18] Data done differently. [Online]. Available from:
https://www.streamr.com/ 2019.04.08

[19] J. Ramos. Blockchain: Under the Hood. [Online]. Available
from:
https://www.thoughtworks.com/insights/blog/blockchain-
under-hood 2019.04.08

[20] E. Feig, “A Framework for Blockchain-Based Applications,”
arXiv:1803.00892 [cs.CY], 2018. [Online]. Available from:
https://arxiv.org/abs/1803.00892 2019.04.08

[21] K. Christidis and M. Devetsikiotis, “Blockchains and smart
contracts for the Internet of Things,” IEEE Access, vol 4, pp.
2292–2303, 2016, doi: 10.1109/ACCESS.2016.2566339.

[22] B. Lee and J.-H. Lee, “Blockchain-based secure firmware
update for embedded devices in an Internet of Things
environment,” The Journal of Supercomputing, pp. 1–6, 2016,
doi: 10.1007/s11227-016-1870-0.

[23] CSA cloud security alliance. Using Blockchain Technology to
Secure the Internet of Things. [Online]. Available from:
https://downloads.cloudsecurityalliance.org/assets/research/bl
ockchain/Using_BlockChain_Technology_to_Secure_the_Int
ernet_of_Things.pdf 2019.04.08

[24] IPFS Documentation - IPNS [Online]. Available from:
https://docs.ipfs.io/guides/concepts/ipns/ 2019.04.08

[25] A client library for the IPFS HTTP API, implemented in
JavaScript. [Online]. Available from:
https://github.com/ipfs/js-ipfs-http-client 2019.04.08

[26] Ethereum JavaScript API. [Online]. Available from:
https://github.com/ethereum/web3.js/ 2019.04.08

48Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

