
Version Control Using Distributed Ledger Technologies for  

Internet of Things Device Software Updates 

Magnus Westerlund 

Department of Business Management and Analytics 

Arcada University of Applied Sciences 

Helsinki, Finland 

magnus.westerlund@arcada.fi 

John Wickström 

Department of Business Management and Analytics 

Arcada University of Applied Sciences 

Helsinki, Finland 

wickstjo@arcada.fi 

Göran Pulkkis 

Department of Business Management and Analytics 

Arcada University of Applied Sciences 

Helsinki, Finland 

goran.pulkkis@arcada.fi

 

Abstract—The number of installed Internet of Things 

(IoT) devices is growing rapidly and securing these IoT 

installations is an important task that may require 

technical knowledge that the owners of these devices do 

not always possess. Although experts have pointed out, 

that security should always be a priority when creating 

IoT products, the challenges are numerous and security 

solutions are not always targeted to decentralized or 

distributed architectures. In this paper, we explore the 

mechanisms for creating a method for a distributed IoT 

software update service that utilize distributed ledger 

technologies, such as Ethereum smart contracts and the 

InterPlanetary File System (IPFS). Our aim is to present 

a method that offers a more transparent version control 

of updates than current solutions, which are mostly 

conceptually centralized. We also aim to avoid relying 

on a central node for distributing updates and to create 

a fully secured and automated process for update 

management. 

Keywords-IoT; distributed ledger; blockchain; version 

control; software update. 

I.  INTRODUCTION 

Version control has been an integral part of software 
development for a long time. Common techniques and 
methods for provisioning IT-services (incl. configuration, 
deployment, orchestration and management) depend on 
formalizing a process for handling changes made to files and 
data. Version Control Systems (VCS) became commonplace 
in the late 1990s and initially catered mostly to intra-
organizational software development (internally) and a well-
known system was Rational ClearCase [1]. As software 
development matured and inter-organizational development 
(between organizations), became commonplace through, 
e.g., open source development, new distributed VCS, such as 
Git [2], emerged. These VCS have distributed features 
primarily from the perspective of access, who can 
collaborate and contribute to a project hosted on a web-based 

Git repository (such as Gitlab). Although it is possible to 
mirror Git repositories, these services have no proper 
distributed features in terms of inherent trustless consensus 
and guarantee for service availability. Such fears among 
developers were quite evident when Microsoft acquired 
GitHub [3], another Git-based repository many open source 
projects are relying on. 

Traditionally, version control has strictly meant tracking 
changes in text-based files. To store binary files in a VCS 
offers mainly a stored version path. For some binary files, 
plugins exist that will allow a diff to executed, but often this 
would be an exception. However, there are new use cases for 
version control that go beyond the initial ability of 
performing a comparison between file versions. These use 
cases are coming from new technologies, such as machine 
learning (incl. Artificial Intelligence (AI)) and Internet of 
Things (IoT). For an AI-enabled service, version control 
extends to, that the process must include training data, 
network initialization, parameter settings, and serialization of 
the trained network to a file. Often, other types of metadata 
should be stored as well, e.g., statistical properties of training 
data, output quality metrics and naturally if the model is 
updated online it requires further measures. Any autonomous 
AI-based service aimed for production use will need 
continuous catering for forensic investigations during the 
longevity of the service. 

This paper focuses on the IoT use case, to extend the 
understanding for what purposes version control is usable 
and how to implement a Proof of Concept (PoC) of a VCS 
for IoT software updates using Distributed Ledger 
Technology (DLT), such as blockchain, smart contracts, and 
the InterPlanetary File System (IPFS) [4]. This paper adopts 
a methodology intended to identify single case mechanisms 
through an exploratory approach [5]. Our long-term research 
aim is to develop a new methodology for fully secured and 
automated IoT device updates. This process must also be 
transparent in terms of who has created updates and be 
auditable in case there are detected vulnerabilities. We limit 
the scope for this paper to the backend architecture utilizing 
IPFS, Ethereum smart contracts, and browser-based 
Distributed Applications (DApp). 
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This paper has the following structure: Section II 
describes the problem setting of reliability in IoT devices.  
Section III presents relevant IoT policies and standardization 
efforts. Section IV discusses DLT-based update services. 
Section V surveys other proposals for distributed update 
services and presents our PoC. Section VI contains 
conclusion and proposal for future development 

II. PROBLEM SETTING FOR IOT DEVICE RELIABILITY 

The proliferation of IoT devices and services based on 
these are helping to digitize the physical landscape. IoT 
enabled devices have been introduced into almost any setting 
and convey large volume of data and varieties of data, e.g., 
in the format of video, sound, and potentially any data type 
that can be measured with a sensor that converts analogue 
measurements into a digital data flow. We can anticipate the 
technological progress will continue to shape new domains 
in our lives and within the coming decades, extending to 
include many new areas, e.g., personal healthcare and home 
automation. These new domains will introduce a myriad of 
highly sensitive information sources, information that must 
be processed, and often stored for an indefinite and 
sometimes an infinite period for the digitization of these 
areas. By embedding information-sharing electronics into 
everyday physical objects, we will create a “global cyber-
physical infrastructure” [6]. IoT uses standardized 
communication protocols and merges computer networks 
into a “common global IT platform of seamless networks and 
networked “Smart things/objects”” [7]. From the perspective 
of platform and service innovation, by utilizing IoT 
technology, the focus will be on creating AI-enabled services 
that are able to draw inferences from the data collected from 
IoT devices. This will offer users descriptive answers, 
predict future behavior and needs, and eventually provide 
prescriptive suggestions for improving daily life. We here 
define AI-enabled services as based on machine learning 
techniques that infer decision support or decisions based on 
the collected IoT data. Therefore, relying on data veracity 
becomes crucial for the trustworthiness of these services. 

Network and information security are often more 
challenging for IoT systems than for traditional networks. 
Cloud resources used by many IoT systems are publicly 
accessible and thereby, through this availability, increase the 
risk of intrusion. The increase in the processing of sensitive 
data in IoT systems makes security challenges more 
noteworthy, particularly in light of legal issues around cross-
border transfers and data protection [8]. The debate 
regarding a sustainability problem in IoT security has 
resulted in some experts calling for a halt to IoT deployments 
and innovations [9] and that IoT devices should come with 
public safety warnings [10]. This paper takes the position 
that there is currently a sustainability problem in IoT security 
and we should innovatively address this problem with new 
secure IoT management methods designed specifically for 
the distributed architecture of IoT networks. 

III. CURRENT IOT POLICY SITUATION 

In a traditional IoT architecture, IoT devices are network 
nodes, which transmit their data (incl. logs) to a data store 

through some proxy. IoT device management for enterprise-
level devices is often a manual process, whereas consumer 
devices may query a manufacturer-defined end-point for 
software updates, which typically are impossible to validate 
for origin or content. Device administrators have local 
credentials for authentication, but an Identity and Access 
Management (IAM) solution is often missing. Only 
authenticated users should have authorization to access IoT 
devices and to update device firmware from device 
deliverers’ databases. A system log stored on a respective 
node would require device access for collection (pull) of 
data. Storage space is often very limited so only the most 
recent activities may be stored on the device. Hence, 
continuous collection to an external data store is required. 

From an accountability perspective, continuous delivery 
of new updates to a node is also a necessity, something that 
often requires a manual process by a system administrator. 
The manufacturer should also provide new software (e.g., 
firmware) security updates for the lifetime of said IoT 
devices. For this process to be complete, traditional IoT 
systems require many manual process steps that are often not 
possible to ensure in today’s environment. Hence, we find it 
motivated to propose a new type of architecture better suited 
to a decentralized or distributed network topology. 

A secure IoT system is one that can fulfil the following 
criteria [11]: 

• does not contain any hardware, software, or 
firmware component with any known security 
vulnerabilities or defects,  

• relies on software or firmware components capable 
of accepting properly authenticated and trusted 
updates from the vendor, 

• uses only non-deprecated industry-standard 
protocols and technologies for functions such as 
communication, encryption, and intercommunication 
with other devices, and 

• does not include any fixed or hard-coded credentials 
used for remote administration, the delivery of 
updates, or communication. 

The Cloud Security Alliance (CSA) [12] IoT Working 
Group published in 2018, 10 security recommendations for 
IoT firmware updates [13]. The recommendations focus on 
device integrity and the use of a conceptually centralized 
service backend. 

A. IoT Device Software Update Standardization Efforts 

The Internet Engineering Task Force (IETF) has a 
currently active Security Area Working Group called 
Software Updates for Internet of Things (suit) [14]. The 
focus is on secure firmware update solutions, which include 
a mechanism for transporting firmware images to compatible 
devices, a digitally signed manifest containing firmware 
image meta-data and the firmware image(s). 

A recent informational Internet-Draft [15] defines that 
the purpose of an IoT firmware update is to fix 
vulnerabilities, to update configuration settings, and to add 
new functionality for improved security. A firmware update 
must ensure firmware image authentication and integrity 
protection. In certain cases, prevention of the use of modified 
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firmware images or images from unknown sources may be 
necessary. Here, it is important to understand the dilemma of 
potentially installing vulnerable software, versus an informed 
operator installing a trusted open source-based alternative. 
Encryption based confidentiality protection can prevent 
unauthorized access to and modification of the plaintext 
binary of a firmware image. However, encryption may 
decrease transparency in some cases.  

Firmware updates can be client-initiated by polling for 
new firmware images or server-initiated by status tracking of 
IoT devices. A firmware update in an IoT device consists of 
following steps [15]: 

• the device is notified that an update exists, 

• a pre-authorization verifies if the manifest signer is 
authorized to update device firmware. IoT device 
decide on acceptance of the new firmware image, 

• dependency resolution is needed when more than 
one firmware component can be updated, 

• a local copy of the firmware image is downloaded, 

• the image is processed into a format the IoT device 
can recognize and install. Thereafter, the bootloader 
boots from the installed firmware image. 

IV. DISTRIBUTED UPDATE SERVICES BASED ON DLT 

CONCEPTS 

As discussed in the previous section, traditional IT-
architectures, incl. cloud computing based Software-as-a-
Service, rely mainly on a conceptually centralized service 
provision model, while IoT networks and DLT originate 
from decentralized or distributed architectures. The Bitcoin 
blockchain [16] introduced a cryptographically secured and 
distributed ledger. The ability to append transactions to an 
otherwise immutable ledger comes from a distributed and 
pseudonymous consensus mechanism, i.e., Nakamoto 
consensus [16]. Bitcoin’s consensus protocol includes both a 
validity check of a certain transaction and an information 
sharing protocol, where accepted transactions are stored in 
blocks chained together in a chronological order. The ledger 
is an immutable transactional database, thus, the blockchain 
only stores transactional changes and thereby stays 
immutable by not forcing an update on pre-existing variable 
values. In [17], this represents the first generation of DLT. 
The second DLT generation is in [17] defined to be based on 
smart contracts, which not only perform an authentication of 
users and verification of transactions, but may also involve 
more advanced logical condition states for authorization and 
automated continuous verification of these condition states.  

DLT-based protocol extensions to the web software stack 
have inter alia provided a new distributed approach to 
provisioning web services. IPFS provides a Peer-to-Peer 
(P2P) hypermedia protocol [4] that makes it possible to 
distribute high volumes of data with high efficiency. IPFS is 
a distributed file system that utilizes content addressing to 
fetch static information, rather than location addressing like 
most traditional file systems. Hashing the content of files or 
the entire directories achieves this. A resulting hash string 
works as a link, which also makes IPFS immune to duplicate 
files. IPFS file versioning based on the generated content 

identifier (hash) is directly usable for a known latest revision. 
However, an InterPlanetary Name System (IPNS) [18] 
identifier exists based on the node peer ID that provides a 
mutable resource link to the IPFS file hash which when 
published can be bound to the IPNS. Accessing a file 
through the IPNS link allows the revision of the IPFS file to 
change, by republishing the new hash of the file to the IPNS; 
see Fig. 1 for an illustration. 

The data structure behind IPFS is the Merkle Directed 
Acyclic Graph (DAG), whose links are hashes. Users are the 
individual peer nodes in a larger swarm. All hashed content 
published in that particular swarm is retrievable for any 
participating user.  Each IPFS node utilizes a Public Key 
Infrastructure (PKI) based identification that generates an 
IPNS, which is a self-certifying PKI namespace (IPNS). This 
provides all objects in IPFS some useful properties: 

• authenticated content, 

• permanent cached content, 

• a universal data structure, a Merkle DAG, 

• a decentralized platform for collaboration. 

V. VERSION CONTROL DLT SOLUTIONS 

This paper focuses on a new extended VCS use case for 
fully secured and automated IoT device updates and related 
management. The first sub-section presents the existing 
literature of other proposed DLT-based solutions to version 
control of IoT software updates. The following sub-sections 
presents initial results of our study on how to implement a 
fully secured and automated architecture for handling IoT 
software updates. As stated, the aim of this research is to 
bring transparency into the process of maintaining IoT 
devices, by utilizing the earlier mentioned beneficial 
properties of IPFS and smart contracts executed on the 
Ethereum blockchain and the Ethereum virtual machine. The 
benefit of these distributed ledger technologies is that they 
are, often similarly to the architecture for IoT devices, based 
on an automated process and can be configured to construct 
a decentralized platform. Therefore, combining these 
technologies in a system architecture should improve the 
reliability, maintainability, and forensic abilities in IoT 
network supervision. 

A. Proposed DLT-Based Solutions to Version Control of 

IoT Software Updates. 

Several authors have accentuated the data structure 
similarities between Git and DLT, and that it is possibly 
usable for some form of DLT-based version control, e.g., 
“blockchain can be seen as a Peer-to-Peer (P2P) hosted Git 
repository” [19].  

IPNS node-based 
hash

M
u

tab
le

Im
m

u
tab

le

Node storage

IPFS content hash

Im
m

u
tab

le

Sw
arm

IPFS content hash

Im
m

u
tab

le

Sw
arm

Version 1

Version 2

< /DApp >

 
 

Figure 1.  IPFS addressing process flow. 
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Feature wise Git repository branches are blockchains 
according to the definition “A blockchain is a sequence of 
blocks of data in which each block, other than the first, is 
cryptographically linked to its predecessor” [20]. A 
blockchain network definition is “a Peer-to-Peer network in 
which peers collaborate to achieve a common goal by using 
a blockchain” [20]. According to this definition, a Git 
repository is a blockchain network, the Git repository peers 
are developers in a software development project, and the 
blockchain is the master branch. Git peers often fork the 
master branch when new versions are stored in the 
repository, collaborate on the master branch, and strive to 
merge other branches with the master branch. A Git 
repository is permission-based and consensus is trust-based 
on some Git hosting service. 

In a proposed setup for IoT device firmware updates, a 
device manufacturer provides a master update node and 
configures all IoT devices from the manufacturer as nodes in 
the same blockchain network [21]. The setup deploys a smart 
contract for storing the hash of the latest firmware update as 
a transaction record in a blockchain and for retrieving the 
latest stored transaction record. The corresponding firmware 
file is stored in a distributed P2P file system such as IPFS. 
The manufacturer’s blockchain node stores new firmware 
updates. IoT devices can find hashes of new firmware 
updates by querying the smart contract and then to request 
and locally store the firmware file from the distributed P2P 
file system by its hash. An IoT device joining the blockchain 
network after the manufacturer’s node has left the network 
can therefore still retrieve the latest firmware update. The 
hash stored of the blockchain verifies that the firmware file 
stored in a distributed P2P file system is untampered 

For another proposed blockchain-based solution for 
secure firmware updates in IoT devices [22], the blockchain 
network consists of normal nodes, which are IoT devices and 
verification nodes, which store firmware files and hash 
values of firmware files called verifiers in their databases. 
Outside the blockchain network are firmware vendor nodes. 
A vendor node maintains a secure communication channel to 
a verification node for delivery of new firmware updates. A 
normal node requests a firmware update by broadcasting a 
version check message to other blockchain network nodes, 
which respond to the message. If the first response comes 
from a verification node, then the verification node checks 
whether the firmware of requesting normal node already is 
up-to-date. If the firmware is up-to-date, then the verification 
node checks integrity of the firmware. If the requesting 
normal node’s firmware is not up-to-date, the responding 
verification node downloads the latest firmware version to 
the requesting normal node. If the first response comes from 
another normal node, then the responding normal node 
compares the version of its firmware with the requesting 
node’s firmware version. If the firmware versions are the 
same, then a lightweight Proof-of-Work mining procedure in 
blockchain network checks the correctness of the verifier of 
the requesting node’s firmware. Six confirmations from 
other blockchain network nodes prove the correctness of the 
verifier. If the firmware versions are different, then a 
verification node downloads an up-to-date firmware file to 

the normal blockchain node whose firmware version is older. 
The proposed firmware update scheme uses a blockchain 
block scheme, where each block has a header and a 
verification field. In the header is stored the size and version 
of the block, a hash of the header of the previous block, and 
the root of the Merkle hash tree in the verification field.  

The CSA Blockchain/Distributed Ledger Technology 
Working Group published in 2018 a report “Using 
Blockchain Technology to Secure the Internet of Things” 
[23]. In a preferred communication model, each IoT device 
is a blockchain network node hosting the full ledger of 
transactions and is capable of participating in blockchain 
transaction validation and mining. Because of the limited 
processing, storage, and power resources of most IoT 
devices, the report proposes a communication model where 
IoT devices are clients with Application Programming 
Interfaces (APIs) to blockchain nodes in a cloud based 
blockchain network service. An IoT device sends digitally 
signed data from its API to a blockchain network node for 
processing. A trusted secure communication channel is 
required between the IoT device and the blockchain network 
node. The blockchain ledger can store the last version of 
validated IoT firmware or its hash. An IoT device requests 
its blockchain network node to deliver, from the transaction 
ledger, the latest firmware version or the hash of this version. 
If the blockchain network node delivers a hash, then the IoT 
device retrieves the latest firmware version from a cloud 
service and checks if the hash of the retrieved version 
matches the hash delivered by the blockchain network node. 

B. Development of PoC for our Solution 

The literature review on the security of IoT software 
updates shows that research on this topic area has yet to 
receive the focus it deserves. Although several expressed 
opinions exist, a universal method (de-facto standard) for 
solving the problem does not yet exist. That secure IoT 
device updates and management is problematic or even 
unsustainable has been established, still very few, if any, 
solutions exist for either the open source community or for 
commercial manufacturers to automate and secure software 
updates to IoT devices in a transparent fashion. The papers 
reviewed provide several good ideas for further study to 
identify single case mechanisms for providing IoT update 
services utilizing DLT-based version control. We proceed 
through an exploratory approach aimed at understanding the 
engineering demands of such systems by constructing a PoC 
backend as an initial step [5]. 

In our distributed IoT architecture proposal, shown in 
Fig. 2, IoT nodes transmit their log data to a distributed and 
replicated data store. The data store exists outside the limited 
nodes and utilizes a P2P protocol. Utilization of different 
data stores depend on requirements, such as scalability, 
speed, or post-processing. A suitable batch-based solution 
may be the IPFS or a proprietary P2P data transfer protocol. 
If a streaming solution is required, then the use of a 
decentralized data and analytics marketplace such as Streamr 
[24] is an option. Smart contracts executed on top of a DLT 
implementation may authorize IoT devices and furthermore 
offer device management, e.g., issue management 
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commands. Implementation of an automatic service for IoT 
device firmware updates may be similar. Storing the latest 
version of a binary update file in IPFS and in a smart 
contract store an IPFS immutable content address that allows 
the node to query correct IPFS file and firmware signature to 
confirm file integrity. This tells the IoT node how to access 
IPFS files and how to perform verification of the needed 
update. A different solution is to make use of an IPNS hash 
that points to the latest IPFS hash. The third solution is to 
mix both approaches. As these systems require two different 
logins for a manufacturer to share an update, 2-step 
verification is achievable by using both techniques (smart 
contract and IPFS) in combination and then compare the 
content hashes to the downloaded file update hash. 

For the future, we consider it important that a 
manufacturer may want to offer a service contract to any IoT 
system maintainer/owner. Currently, a significant problem is 
that IoT nodes have no long-term support as the 
manufacturer often fails to get financial compensation for 
updating firmware once the product enters a 
maintenance/archival phase. A smart contract providing the 
manufacturer with a decentralized platform for selling 
firmware updates could implement this business model. An 
automated update function and contract resolution can be 
provided to any IoT node maintainer, either on a node basis 
(number of nodes) or on a network basis (maintaining 
organization).  

C. Explored Mechanisms and Methods 

This section is devoted to reviewing the technical 
mechanisms used for the implementation of the frontend 
interface for the software update manufacturer and the 
backend. The frontend utilizes a DApp that allows the 
software developer to deploy new software releases to the 
platform. A DApp is a stateless web application stored on 
IPFS and is executable without any dedicated server. This is 
possible by creating a web application that is self-contained 
and run within a browsing session initiated by a user. Hence, 
no server-side processing is required as the client downloads 
and executes the application. Routines in a JavaScript API 
library [25] push data to and pull data from IPFS node 
storage. 

The DApp can be, while it is running, as dynamic as a 
traditional web application; however, from the statelessness 
follows, that no collected data is normally sent back to a 
server and stored when the browser is shutdown. Naturally, 
in the future, there will be more advanced use cases as well, 
but the idea of decentralized platforms such as ours is to 
avoid centralized processing that introduces dependencies, 
bottlenecks and transparency concerns. User authentication 
occurs before publishing new updates through the IPFS node 
and through Ethereum [26]. In addition to maintaining the 
latest content update in IPNS we also propose to store it in a 
smart contract. The main reason for this is that dual 

verification can ensure either a two-factor authentication or 
that the development team can share the IPFS node key for 
administration purposes, while the final software update 
release will require the Ethereum key as well. The smart 
contract is also usable for auditing purposes, as each 
published directory hash (i.e., a combined hash taken of all 
files in a directory each time it changes) is stored on the 
blockchain. In Fig. 3, we present an information flow for the 
backend of the DApp for releasing software updates. The 
PoC proposal makes use of a smart contract for guaranteeing 
revision history and IPFS for file update distribution and file 
history record. 

VI. CONCLUSIONS AND FUTURE DEVELOPMENT 

An important task in keeping devices secure in IoT 
systems, is by ensuring automatic and secure delivery of 
updates. These challenges involve version control of the 
software intended to run on the edge nodes, confirming 
installed software and hardware versions, and linking the 
versioning data to usage data that may reveal patterns and 
storing the data that allows auditing of the system. Because 
IoT networks are distributed/decentralized (depending on 
network topology choices), we find that not only new 
technologies, but also new methods for securing IoT devices 
are needed. 

Our paper presents an initial PoC and explores some of 
the important mechanisms involved in creating a method that 
offers a more transparent version control of updates than 
today’s services that are conceptually centralized. Our 
solution does not rely on a central node for distributing 
updates as IPFS handles file distribution and Ethereum smart 
contracts handle version management. Our continued 
development will focus on creating a fully secured and 
automated process for management of IoT software updates 
management and on verifying this process with IoT device 
integration. 

 

Figure 2.  Proposed architecture solution, integrating IoT and DLT. 
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Figure 3.  DApp information flow. 

REFERENCES 

[1] IBM Rational ClearCase. [Online]. Available from: 
https://www.ibm.com/fi-en/marketplace/rational-clearcase 
2019.04.08 

[2] Git–fast-version-control. [Online]. Available from: https://git-
scm.com 2019.04.08 

[3] Built for developers. [Online]. Available from: 
https://github.com/ 2019.04.08 

[4] IPFS. IPFS is the Distributed Web. [Online]. Available from: 
https://ipfs.io/ 2019.04.08 

[5] R. J. Wieringa, Design Science Methodology for Information 
Systems and Software Engineering. Berlin, Heidelberg: 
Springer-Verlag, 2014 

[6] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, 
“Internet of things: Vision, applications and research 
challenges” Ad Hoc Networks, vol. 10, no. 7, pp. 1497-1516, 
2012. 

[7] O. Vermesan and P. Friess, Internet of Things - Global 
Technological and Societal Trends From Smart Environments 
and Spaces to Green ICT, Denmark: River Publishers, 2011. 

[8] M. Westerlund, “A study of EU data protection regulation and 
appropriate security for digital services and platforms,” 
Doctoral Dissertation, Åbo Akademi University, Åbo, 
Finland, 2018. 

[9] M. Giles. For safety’s sake, we must slow innovation in 
internet-connected things. [Online]. Available from: 
https://www.technologyreview.com/s/611948/for-safetys-
sake-we-must-slow-innovation-in-internet-connected-things/ 
2019.04.08 

[10] J. Condliffe. Should IoT Devices Come with Public Safety 
Warnings? [Online]. Available from: 
https://www.technologyreview.com/the-
download/609124/should-iot-devices-come-with-public-
safety-warnings/ 2019.04.08 

[11] M. Westerlund, M. Neovius, and G. Pulkkis, “Providing 
Tamper-Resistant Audit Trails with Distributed Ledger based 
Solutions for Forensics of IoT Systems using Cloud 
Resources.” International Journal on Advances in Security, 
vol.11, no. 3 and 4, pp. 288-300, 2018 

[12] CSA cloud security alliance. [Online]. Available from: 
https://cloudsecurityalliance.org 2019.04.08 

[13] CSA cloud security alliance. Recommendations for IoT 
Firmware Update Processes. [Online]. Available from: 
https://downloads.cloudsecurityalliance.org/assets/research/int

ernet-of-things/recommendations-for-iot-firmware-update-
processes.pdf 2019.04.08 

[14] IETF. Software Updates for Internet of Things (suit). 
[Online]. Available from:  
https://datatracker.ietf.org/wg/suit/about/ 2019.04.08 

[15] B. Moran, M. Meriac, H. Tschofenig, and D. Brown. A 
Firmware Update Architecture for Internet of Things Devices. 
draft-ietf-suit-architecture-02. [Online]. Available from: 
https://datatracker.ietf.org/doc/draft-ietf-suit-architecture/ 
2019.04.08 

[16] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash 
System,” 2008. [Online]. Available from: 
https://bitcoin.org/bitcoin.pdf 2019.04.08 

[17] M. Westerlund and N. Kratzke, “Towards Distributed 
Clouds,” Proc. 16th International Conference on High 
Performance Computing & Simulation (HPCS), IEEE Press, 
July 2018, pp. 655-663, doi:10.1109/HPCS.2018.00108. 

[18] Data done differently. [Online]. Available from:  
https://www.streamr.com/ 2019.04.08 

[19] J. Ramos. Blockchain: Under the Hood. [Online]. Available 
from:  
https://www.thoughtworks.com/insights/blog/blockchain-
under-hood 2019.04.08 

[20] E. Feig, “A Framework for Blockchain-Based Applications,” 
arXiv:1803.00892 [cs.CY], 2018. [Online]. Available from: 
https://arxiv.org/abs/1803.00892 2019.04.08 

[21] K. Christidis and M. Devetsikiotis, “Blockchains and smart 
contracts for the Internet of Things,” IEEE Access, vol 4, pp. 
2292–2303, 2016, doi: 10.1109/ACCESS.2016.2566339.  

[22] B. Lee and J.-H. Lee, “Blockchain-based secure firmware 
update for embedded devices in an Internet of Things 
environment,” The Journal of Supercomputing, pp. 1–6, 2016, 
doi: 10.1007/s11227-016-1870-0. 

[23] CSA cloud security alliance. Using Blockchain Technology to 
Secure the Internet of Things. [Online]. Available from: 
https://downloads.cloudsecurityalliance.org/assets/research/bl
ockchain/Using_BlockChain_Technology_to_Secure_the_Int
ernet_of_Things.pdf 2019.04.08 

[24] IPFS Documentation - IPNS [Online]. Available from: 
https://docs.ipfs.io/guides/concepts/ipns/ 2019.04.08 

[25] A client library for the IPFS HTTP API, implemented in 
JavaScript. [Online]. Available from:  
https://github.com/ipfs/js-ipfs-http-client 2019.04.08 

[26] Ethereum JavaScript API.  [Online]. Available from: 
https://github.com/ethereum/web3.js/ 2019.04.08 

 

48Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization


