
CloudMediate

Showcase Implementation with Google Firebase

Raimund K. Ege

Computer Science

Northern Illinois University

DeKalb, IL, USA

email: ege@niu.edu

Abstract—CloudMediate is a peer-to-peer multimedia stream

sharing platform. It provides a media aggregation framework

that is flexible, powerful and scalable to identify, establish and

manage connections to input media stream sources. It enables

the mediation of input streams into consumable output streams,

which become part of the shared content pool. Google Firebase

is a cloud service. It is used to implement CloudMediate in

conjunction with the Angular JavaScript web-application

framework. The implementation serves as a showcase for

modern, efficient and powerful realization of cloud-based

distributed applications. Details of the use of hosting, user

authentication and real-time database can serve as recipe for

many similar efforts.

Keywords-peer to peer; multimedia; stream sharing; stream

mediation; cloud implementation.

I. INTRODUCTION

CloudMediate is a multimedia stream sharing and
processing framework. Its conceptual approach and
architecture is described in [1]. CloudMediate allows users to
become members of a peer-to-peer (p2p) network where
streams can be posted, mediated and consumed, i.e. viewed.
This paper describes an implementation of CloudMediate
using a modern cloud implementation framework: Google
Firebase [2]. All aspects of the p2p content sharing network
are handled in the cloud and are accessible everywhere.

Mobile and wearable devices are common place today and
have allowed access to a multitude of disparate but often
related media streams, while scaling geographical barriers.
These multimedia streams are produced, stored on and
accessed from various kinds of heterogeneous devices.
CloudMediate allows to register and then select suitable input
streams, correlate and combine them into output streams. The
output streams are then made available to peers, again
rendered onto suitable mobile and wearable devices. The
correlation and combination of input streams into consumable
output streams is achieved by active intermediary compute
nodes. CloudMediate uses the term “mediator” to describe
these intermediaries. We chose this term in analogy to the
“Mediator” behavioral pattern that address the responsibilities
of objects in an application and how they communicate [3].

Since the streams are meant to be consumed from the
original source, which can be anywhere in the Internet, we
choose a cloud-based implementation of stream management.

We selected Google Firebase as the implementation vehicle,
since it offers all the services we needed: flexible
authentication, real-time database and a JavaScript based
computation engine. It provides an Angular compatible API
to access its features. Google Firebase also handles world-
wide hosting with exceptional scaling capabilities (if we ever
need them).

 The rest of this paper is organized as follows. Section II
gives background information on media streaming and media
mediation, plus describes the features of Google Firebase and
the Angular JavaScript framework. Section III describes the
CloudMediate multimedia stream sharing and mediation
framework. Section IV gives implementation detail and might
serve as a recipe for other cloud-based implementations of
similar nature. Section V summarizes our approach and effort
and closes with an outlook to our future work.

II. BACKGROUND

Devices that handle multimedia are commonplace. Every
smartphone has camera(s) and high-resolution screens. Every
major vendor of systems and hardware has introduced mobile
and wearable gadgets to support virtual and augmented
reality. From simple holders for smart phones, to optical head-
mounted displays from market leaders - such as Microsoft’s
Windows Mixed Reality headsets, Oculus Rift, HTC Vive or
even the older Google Glass - software to enable these devices
is becoming more commonplace. The application developer
kits are becoming ever more powerful to harness the dynamic
features of these devices.

Streaming of multimedia data requires significant
throughput and quality of service (QoS) factors, such as
latency, jitter, order of delivery, etc. Any architectures must
deal with buffering and the intermittent connection associated
with mobility. Connectivity capabilities are typically wireless
and include high-bandwidth cellular (4G, LTE) and WLAN
(IEEE 802.11) connections, plus lower-bandwidth near field
connections (Bluetooth, NFC, etc.). Transmission rates in the
multi megabits per second range and latency rates in the sub
millisecond range are currently quite standard.

In peer-sourced augmented reality systems, the
management of the multimedia source and establishment of
trust is essential [4]. In our prior work [5] [6], we investigated
the authentication of participants in peer-to-peer networks, the
establishment and management of trust, and the use of such

147Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1

CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

media sources in building content management systems. An
important lesson was that while modern mobile devices are
compute-capable, cloud-based components add additional
heft and authority to a seamless and smooth creation of a truly
immersing virtual and augmented reality experience [7][8][9].

Cloud platforms that offer integrated services are
becoming more widely available. The Heroku [10] platform is
probably most widely known. These platforms allow
developers to compose their applications locally and then
upload and deploy into cloud containers, which makes them
available Internet-wide. We choose Google Firebase for the
bundled services it provides, such as authentication, real-time
database and compute engine, plus its comprehensive
integration with the Angular [11] JavaScript web
programming interface. The Angular framework offers a
modern component- and object-based implementation which
does not rely on server-based functionality but rather focusses
on client-provided JavaScript execution. Features can be built
quickly with simple, declarative templates. New components
can extend a wide array of existing components.

III. CLOUDMEDIATE

A. General Framework

CloudMediate is a peer-to-peer (p2p) content sharing
network and aims to aggregate multimedia streams and make
them available to peers. Figure 1 shows the general approach
of how CloudMediate operates. The left side of the figure
symbolizes the multitude of potential input streams. While
audio and video streams are most common, our approach
allows arbitrary streams of data from any sensor. The right
side of the figure shows consumption of streams by mobile
devices. The common smartphone might be one example of
such a display device. Wearable devices, such as headsets and
virtual glasses are the target of our approach. Both sides are
connected by a cloud-hosted network of intermediaries that
normalize, correlate and combine input streams into
consumable output streams.

Figure 1. CloudMediate Structure

B. Mediators

CloudMediate uses the term “mediator” to describe these
intermediaries. Each mediator has an input and an output side
and transfers and negotiates on three kinds of information; the

schema of the data stream, the data stream itself, and some
QoS information specific to the stream. The nature of
mediation varies from a simple combination of input streams,
to correlation of virtual and augmented streams, and up to
reformatting of a stream based on attitude information.
Mediators can be categorized as “Combiner,” “Transformer”
and “Splitter.” A Combiner is able to correlate multiple input
streams into a single output stream; Transformer accepts one
input stream and transforms it into one output stream based on
a transformation schema which can be a set of static or
dynamic parameters; Splitter is able to correlate an input
stream into a number of output streams. Each mediator
follows a schema that defines the relationship between the
input and output streams. The schema can be parameterized
via static values or a dynamic stream of input values. These
general mediator categories are further specialized, examples
of “Transformer” are the “Scaler” mediator, which changes a
video streams resolution, or the “Securer” mediator, which
takes an unencrypted input stream and produces an encrypted
output stream. The “Securer” schema parameters determine
the encryption algorithm, mode, parameters, and key.

In addition to the actual data sensed, each stream must be
packaged with the exact time of recording. Multiple streams
of sensor data are combined into a multimedia stream which
interleaves its content streams plus provides meta-data to
ensure their proper sequencing and correlation. It is important
that the container format used to wrap the content streams is
flexible enough to accommodate not only the stream data but
also extensive amounts of reference information used to
combine the streams. We are using an extension of the WebM
project [12] format. The WebM container format is an open
standard and allows us to collate an unlimited number of
video, audio, pictures and subtitle tracks into one stream. We
add the capability of identifying reference elements at
identified points in time and at locations.

C. Peers

In a P2P communications model, peers participate on an
equal basis. Each peer must register and gets a unique identity,
which is made known to other peers. Limited information
about each peer is collected and maintained. Currently, the
only identifying information maintained is the peer’s email
address. Each peer must have a confirmed email address. The
most relevant information about a peer is detailed information
on a peer’s participation in the network. The peer’s history of
relevant transactions is maintained in a container we call “trust
nugget”. This nugget contains detailed information on a peer’s
participation, such as length and quality of stream
transmission, ratio of seed vs. leech behavior, judgments of
other stream participants, etc. It is a matter of trust whether
and to what degree the peer is allowed to partake in the shared
media content.

All peers have the same capabilities: any peer can
contribute a stream, any peer can consume a stream, and any
peer can offer a new mediator or even a new mediator
category. Peers can also preconfigure existing mediators with
existing input streams and parameters to create new mediated
output streams.

148Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1

CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

IV. IMPLEMENTATION

There are several components that make up our
CloudMediate implementation.

In this paper, we focus on the web-based peer access
portal. This portal is implemented using the Google Firebase
cloud service framework. The web application is constructed
from html, css, and JavaScript pieces. All processing is done
in the web client using the Angular JavaScript framework. All
back-end processing is provided by Firebase.

Other CloudMediate components, such as the Android and
iOS application for mobile devices are not subject of this
paper. They are currently under development and might be
discussed in a future paper.

A. Angular

Angular is an open-source front-end web application
platform. It combines declarative templates, dependency
injection with end to end tooling. Angular is a framework for
building client applications in HTML and either JavaScript or
a language like TypeScript that compiles to JavaScript. It
empowers developers to quickly and efficiently build
applications that live on the web, mobile, or the desktop.

Angular web applications are constructed from
components. Each component can be viewed as a class in the
object-oriented sense, with instance variables and methods,
even super classes. Each component has an html template and
a css style file which govern its appearance. Variables and
methods are accessible from within the html template.
Angular also enables 2-way data binding which reduces the
amount of JavaScript code necessary to keep screen data
updated. Angular components that only provide services, but
have no screen appearance are configured as providers.
Angular providers are made available to Angular components
via dependency injection.

For example, consider the Angular code in Figure 2. It
declares the “AddNewMediator” component.

Figure 2. Angular Component

The “AddNewMediator” component is declared with

selector “addnew-mediator”, which enables this component

to be inserted into html elsewhere with the <addnew-

mediator> tag. The component’s appearance is specified in

separate css and html files. The component also defines class

“AddNewMediator” as a subclass of “MediatorComponent”.

It inherits all instance variables and methods from its

superclass. It defines additional variables to hold the name,

URL, type and schema file information. These fields are

filled in the html portion of the component from within a html

form. The shown methods help process the input from the

form, as well govern what occurs when the form is submitted,

i.e., “onSubmit()”.

With Angular we use module “angularfire2”, which is the

official library for Firebase and Angular to directly access

Firebase features.

B. Firebase Hosting

The first feature of Firebase that we use has the purpose

to host our portal website within Google Firebase. Firebase

features a console that allows the creation of hosting space.

All that it required is user authentication with a Gmail

address. While Firebase provides a URL address for the

hosted website, it is also possible to redirect any domain to it.

Figure 3 shows the portal’s home screen at mediate.ege.com:

Figure 3. CloudMediate Home Screen

149Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1

CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

Firebase provides multiple levels of service. We used the

“Spark” level, which is free of charge. It has limits on use and

capacity. Additional levels are available at cost.

C. Firebase Authentication

Firebase allows websites to authenticate their users. Since
we needed to authenticate our peers, we opted to use this
feature. Among the multitude of options for authentication
providers and features we selected “Google authentication”
which allows Gmail users, and “Email authentication” which
requires a peer to provide an email address. The confirmation
of the email is handled automatically by Firebase. In both
modes of authentication, each peer will have a confirmed
email address. The management of user information is
completely handled by Firebase. Once a peer has logged in
CloudMediate’s operation become available (see Figure 4):

Figure 4. Peer Operations

Here, a peer can connect a stream from a device, list all
available media streams, manage the account, or use the
mediation features of CloudMediate.

Figure 5 shows the “Connect device” Angular component
which is pulled up via menu selection:

Figure 5. Stream Detail

A peer has several choices to register multimedia streams.
CloudMediate calls for Android or iOS apps that can be
downloaded from the presented screen. Another choice is to
provide all stream detail manually here: stream name, URL,
and type. Before the stream is submitted the peer can call up a
preview to check the availability and suitability of the
contribution. Once all fields as filled and verified, the
“CONNECT” button becomes available: it submits the stream
information.

D. Firebase Real-time Database

The central feature of Firebase is its database. Once it is
enabled in the Firebase console, it is available via the Angular
– Firebase interface. All database data is stored as JSON
objects. The database is not constructed using tables or
records. Simple JavaScript operations allow to manipulate the
data. The database is a “real-time” database in the sense that
any data modification done anywhere is immediately reflected
in all places the data is used or displayed. All streams that were
connected to CloudMediate are stored in the Firebase real-
time database.

Figure 6 shows “List streams” Angular component which
is pulled up via menu selection:

Figure 6. List streams with stream preview

All available streams are shown with their name, URL and
type information, as well which peer is contributing the
stream. Each stream can be viewed directly in a modal sub
dialog.

The “Mediation control” selection from the operations
menu opens up the central feature of CloudMediate where

150Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1

CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

peers can select and configure mediators. Figure 7 shows the
initial screen:

Figure 7. CloudMediate Mediation Control Component

Three steps are necessary to configure a mediator:

• Select an existing mediator: the “MEDIATOR
TYPE” dropdown shows which types of mediators
are currently available (the dropdown also allows to
add new mediators); upon selection of the type, all
available mediators are shown; the peer can select a
specific mediator, which pulls up the mediator
configuration component (see Figure 8).

• Configure the mediator: depending on the type it will
require the specification of one or more input streams.
The “Overlap” mediator shown in Figure 8 requires 2
input streams: each can be selected from the list of
available streams. The parameters and the exact URL
for the out stream also need to be specified.

• Confirm the submission of the configured mediator
into the list of available streams in CloudMediate. The
mediator’s output streams are stored alongside other
multimedia streams in the Firebase real-time database
and appear immediately in the list of available
streams for all peers connected to CloudMediate.

The dropdown menu also featured the “add new mediator”

choice. It allows a peer to register a brand-new mediator type.
The new mediator is configured via the “AddNewMediator”
Angular component.

Figure 8. Configure Mediator

A new mediator is specified by giving it an expressive
name, specifying the URL of the host and port where the
mediation service is provided. Each new mediator needs to
fall into one of the top-level mediator categories: “Combiner,”
“Transformer” or “Splitter.” The mediation capabilities of the
new mediator type are given via a mediator schema file.

Figure 2 showed the Angular component
“AddNewMediator.” Figure 9 shows the screen appearance of
the component:

Figure 9. Add New Mediator Component

The new mediator that is configured via this component is
again added to the Firebase JSON database stream list, and is
instantly available to other peers.

151Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1

CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

V. CONCLUSION

CloudMediate is a peer-to-peer content sharing
framework. In addition to sharing multimedia streams, it also
allows to modify streams via mediators. Streams can be
combined, split and transformed. Peers log in to
CloudMediate add or select streams, configure mediators and
add them to the sharing network, or just consume, i.e., view
streams on their wearable devices.

In this paper, we highlighted our implementation of the
CloudMediate framework using the Google Firebase cloud
service. Firebase hosting, authentication and real-time
database were used and allowed an efficient and scalable web
portal that is available everywhere. The current CloudMediate
incarnation is available at htttp//mediate.ege.com

One feature of Google Firebase that we did not use is the
ability to program webservices that run within the Firebase
back end. We plan to investigate the “Firebase Functions”
feature (which is currently in beta status) to provide basic
stream handling that would enable easier provision of more
sophisticated mediator types.

REFERENCES

[1] R. Ege, “CloudMediate: Peer-to-peer Media Aggregation for

Augmented Reality,” The Eighth International Conference on
Cloud Computing, GRIDs, and Virtualization (CLOUD
COMPUTING 2017), Athens, Greece, pp. 88-92, 2017.

[2] Google Firebase: Mobile and Web Application development
Platform, https://firebase.google.com. [retrieved October 20,
2017]

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley Professional, 1994.

[4] S. Aukstakalnis, Practical Augmented Reality, Addison-
Wesley Professional, 2017.

[5] R. Ege, “Secure Trust Management for the Android Platform,”
International Conference on Systems (ICONS 2013), Seville,
Spain, pp. 98-103, 2013.

[6] R. Ege, “Peer to Peer Media Management for Augmented
Reality,” International Conference on Networking and
Services (ICNS 2015), Rome, Italy, pp. 95-100, 2015.

[7] R. Azuma et al., “Recent Advances in Augmented Reality,”
IEEE Computer Graphics and Applications (CGA) 21(6), pp.
34-47, 2001.

[8] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, and D.
Schmalstieg, “Real-Time Detection and Tracking for
Augmented Reality on Mobile Phones,” IEEE Transactions on
Visualization and Computer Graphics, 16(3), pp. 355-368,
2010.

[9] A. Morrison et al., “Collaborative use of mobile augmented
reality with paper maps,” Journal on Computers & Graphics
(Elsevier), 35(4), pp. 789-799, 2011.

[10] Heroku: Platform as a Service, https://www.heroku.com.
[retrieved October 20, 2017]

[11] Angular: Web Application Framework, http://angular.io/.
[retrieved October 20, 2017]

[12] WebM: an open web media project,
http://www.webmproject.org. [retrieved October 20, 2017]

152Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1

CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

