CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

Creating an Immutable Database for Secure Cloud
Audit Trail and System Logging

Bob Duncan
Computing Science
University of Aberdeen
Aberdeen, UK
Email: bobduncan@abdn.ac.uk

Abstract—Conventional web based systems present a multiplic-
ity of attack vectors. One of the main components, the database,
is frequently configured incorrectly, often using default settings,
which leave the system wide open to attack. Once a system
has been attacked, valuable audit trail and system log data is
usually deleted to cover the trail of the perpetrator. Given the
average industry time between breach and discovery, there is
often little forensic trail left to follow. Of equal importance is that
in cloud settings, where new instances are automatically spooled
and shut down to follow the demand curve, any data stored on
the running instance before shut down is lost. We demonstrate
how the configuration of a simple immutable database, running
on a separate private system can go a long way to resolving this
problem.

Index Terms—Cloud
database; forensic trail.

security and privacy; immutable

I. INTRODUCTION

Achieving information security is not a trivial process, and
in the context of cloud computing, it becomes increasingly
more difficult. Because cloud technology is enabled by the
Internet, one of the key weaknesses comes from web services,
which invariably are structured with a database back-end.
There are a host of well understood vulnerabilities surrounding
the use of modern databases, and while there are a number of
mitigating strategies that can be deployed, often they are not,
as evidenced by their continual recurrence on annual security
breach reports.

Duncan and Whittington [1] have written about the diffi-
culties surrounding proper audit of cloud based systems. They
have talked about the need for enterprises to maintain a proper
audit trail in their systems, and about the weaknesses arising as
a result of poor configuration of database systems, particularly
in the context of cloud systems [2]. They have proposed
addressing this problem through the use of an immutable
database for the purpose of secure audit trail and system
logging for cloud applications [3].

Some five years ago in 2012, Trustwave [4], were reporting
an average time taken by enterprises of 6 months between
breach and discovery. Discovery was often made by third
parties external to the enterprise, rather than by the enterprise
themselves. This time lag between breach and discovery has
been significantly reduced, but nevertheless is a great concern,
particularly in the light of forthcoming legislation, such as

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

Mark Whittington
Business School
University of Aberdeen
Aberdeen, UK
Email: mark.whittington@abdn.ac.uk

the ED General Data Protection Regulation (GDPR). Looking
at the latest security breach reports, it is clear that many
enterprises will be unable to comply with the requirement to
report any breach within 72 hours. This would suggest that
many firms are not monitoring their systems properly, do not
maintain proper audit trails, thus leading to inadequacy in
retaining a proper forensic trail to understand exactly what
information has been accessed, modified or deleted.

In this paper, we outline how we might approach developing
a solution to satisfy these issues and concerns. In Section II,
we provide some background and discuss the motivation for
this work, and in Section III, we discuss what an immutable
database needs to be. In Section IV, where we outline how
we can create and configure an immutable database using
existing software, in this case we have chosen MySQL for
illustrative purposes. In Section V, we discuss typical attack
vectors against database systems. In Section VI, we discuss
our conclusions.

II. BACKGROUND AND MOTIVATION

In this paper, we use the MySQL database language to
illustrate what is currently possible. While not all databases
are exactly similar, most exhibit the same weaknesses, often
arising through improper configuration. Equally, the software
environment chosen to integrate with the database is often
subject to the same poor configuration, thus leading to the on-
going success of attackers. These weaknesses in configuration
are frequently exploited by attackers, and there is often a poor
understanding of how proper use of the audit trail can help to
improve security significantly. Thus, we shall first discuss the
purpose of audit and the significance of the audit trail.

A. Audit and the Audit Trail

There are many areas of business activity that merit diligent
checking and verification by an objective person or organi-
zation from outside the organization itself. Some of these
may be undertaken voluntarily by the firm, others such as the
audit of financial systems and results are mandated. Clearly
cloud computing audit is a new, immature field and it would
be surprising if there were not lessons to learn from the
experiences — and failures — of audit processes and practices
that have been honed over decades if not centuries [5].

54

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

Whenever a new technical area emerges it will be difficult
to find people with the appropriate skillset — a technical
knowledge of the area and competency in carrying out an
audit. As commercial organisations, audit companies may seek
to extend their audit competence into new technical areas, not
just cloud audit, but perhaps environmental audit as another
example. Over a century of experience in the development of
audit tools and practices then needs to be applied to a new
technical domain. Alternatively, computing specialists might
pick up an audit skillset. A logical outcome would be for
audit firms to recruit computer cloud experts and seek to
harmonise their skills with those of audit already embedded
in the firm. The culture clash between accountants and cloud
experts would be a potential side effect from such a strategy.

One tool the accountants have used for decades is the audit
trail and this is a phrase already in the cloud computing lit-
erature by the National Institute of Standards and Technology
(NIST) [6], for example. However, the same phrase may not
carry the same meaning in both settings. Quoting from the
Oxford English Dictionary (OED) [7]: “(a) Accounting: a
means of verifying the detailed transactions underlying any
item in an accounting record; (b) Computing: a record of the
computing processes that have been applied to a particular
set of source data, showing each stage of processing and
allowing the original data to be reconstituted; a record of the
transactions to which a database or a file has been subjected”.
So, disparity of definition is recognized by the OED.

Accountants are members of professional bodies (some
national, some global) that limit membership to those who
have passed exams and achieved sufficient breadth and length
of experience that they are deemed worthy to represent the
profession. Audit is a key feature of these exam syllabi and
the tracing back to the source each accounting activity (the
trail) is a foundational aspect of audit.

Whilst NIST [6], gave a clear explanation of an audit
trail in a computing security setting and in keeping with
the OED definition (b), the use of the term in research in
cloud audit seems less precise and consistent. For example,
Bernstein [8], sees the trail including: events, logs, and the
analysis of these, whilst Chaula [9], gives a longer, more
detailed list: raw data, analysis notes, preliminary development
and analysis information, processes notes, and so on. Indeed,
Pearson and Benameuer [10] accept that the attaining of
consistent, meaningful audit trails in the cloud is a goal rather
than reality. More worryingly Ko et al. [11], point out that it
is quite possible for an audit trail to be deleted along with
a cloud instance, meaning no record then remains to trace
back, understand and hold users to account for their actions
and Ko [12], then details the requirements for accountability.
Indeed, the EU Article 29 Working Party [13], highlights poor
audit trail processes as one of the security issues inadequately
covered by existing principles.

Whilst the audit trail might seem a long and tedious list
of activities and interventions, it can be of enormous value in
chasing down the root of a cyber-attack, in much the same
way as an accountant might use it to trace the steps and

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

individuals involved in enabling an inappropriately authorised
payment. At root, the concept should be implemented in a way
that it ought even enable the reconstruction of a system were
it to have been completely deleted, not just trace an errant
one transaction. The audit trail may be duplication, but it is
necessary given the risk of manipulation, compromise or loss.
Our discussions with IT professionals, who have asserted their
confident reliance on data backups, show a level of unmerited
trust as an inappropriate intervention will be repeated in every
backup until it is discovered. Backups of a corrupted system
will not achieve a rebuild to an uncorrupted one the audit
trail gives this opportunity. Referring back to Ko et al. [11],
establishing an excellent audit trail is worthless if it is only to
be deleted along with a cloud instance. The establishment of
an adequate audit trail often needs to be explicit as software
can allow audit trails to be switched off in its settings.

Once an audit trail has been established, it contents need to
be protected from any adjustment. As Anderson [14], points
out, even system administrators must not have the power to
modify it. Not only is this good practice even with well trained
and ethical individuals, but it is always possible that a hacker
might be able to attain administrator status. Therefore, the
audit trail needs the establishment of an immutable database
(i.e., one that only records new activities but never allows
adjustment of previous ones). This is the primary goal of this
first test for the successful development of a system to preserve
both the audit trail and system logs. In the next section, we
discuss the motivation for this work.

B. Motivation

Given how easily many enterprises unwittingly make life
much easier for attackers, we are motivated to do something
about it that should neither be expensive to implement, nor
technically challenging. It is obvious from analysis of past
successful attacks, that one of the key goals of the attacker is
to attack both the audit trail and the system logs, in order to
obfuscate, or delete all trace of their visit, and everything that
they have done whilst inside the compromised system.

The lack of proper monitoring by enterprises, and the ease
with which attackers can carry out this, important for them,
exercise also makes it much harder for the enterprise to
even know they have been breached, let alone understand
what exactly has been read, modified, deleted, or ex-filtrated
from their systems. Since this will form a cornerstone of
forthcoming legislation, this requirement must be addressed.

We strongly believe that enterprises must make provision to
ensure the maintenance of both a proper audit trail, and the
preservation of as much forensic evidence as possible. For the
reasons already discussed above, they must also take particular
note of the need to preserve both audit trail data and systems
log data when using the cloud. Thus we now take a look at
one of the weakest links in this chain, the database.

The cloud paradigm is essentially web based technology,
facilitated by a database back end. There are many well known
web based vulnerabilities, yet it is clear from analysis of

55

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

security breach reports, that many enterprises are continu-
ally failing to implement even the simplest of preventative
measures to mitigate these weaknesses. In addition, it is also
clear that many enterprises are failing to monitor their systems
properly to detect breaches, given the disparity in time between
breach and discovery. As far back as 2012, Verizon [15]
highlighted the fact that discovery of security breaches often
took weeks, months or even years before discovery, with most
discovery being advised by external bodies, such as customers,
financial institutions or fraud agencies. While improvements
have been made in the intervening years, the situation is far
from perfect.

Thus it is appropriate to consider the work done by the
Open Web Application Security Project (OWASP) carry out
a survey every 3 years in which they collate the number of
vulnerabilities which have the greatest impact on enterprises.
In TABLE I, we can see the top ten list from 2013, 2010 and
2007:

TABLE I. OWASP TOP TEN WEB VULNERABILITIES — 2013 -
2007 [16]

Threat

Injection Attacks

Broken Authentication and Session
Management

1 Cross Site Scripting (XSS)

Insecure Direct Object References
Security Misconfiguration

- Sensitive Data Exposure

Missing Function Level Access Control
5 Cross Site Request Forgery (CSRF)
Using Components with Known
Vulnerabilities

Unvalidated Redirects and Forwards

2013 2010 2007
1 1 2
2 3 7

[N)
~

Sitting at the top of the table for 2013, again for 2010,
and in second place in 2007, we have injection attacks. It is
very clear that enterprises are consistently failing to configure
their database systems properly. Injection attacks rely on mis-
configured databases used in dynamic web service applica-
tions, which allow SQL, OS, or LDAP injection to occur when
untrusted data is sent to an interpreter as part of a command
or query. The attacker’s hostile data can trick the interpreter
into executing unintended commands or accessing data without
proper authorization. This can lead to compromise, or deletion
of data held in enterprise databases.

But injection attacks are not the only attacks which involve
databases, numbers 3 and 8 also are directly related to ei-
ther missing input validation or output sanitation. Equally,
databases might also be use in most of the other top ten
vulnerabilities, which means database mis-configuration, or
failure to configure systems which use database systems
properly account one way or another for most of the successful
attacks.

Attackers continue to use methods which continue to work,
which is clear to see from the continued success of the same
attacks, year after year. Thus, we consider this area to be of
vital importance for ensuring that any enterprise may achieve
a high level of security. And given the importance of the audit

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

trail and system log data, we believe the best approach would
be to use an immutable database to record this data properly,
which we shall discuss in the next Section.

IIT. WHAT IS AN IMMUTABLE DATABASE?

We can describe an immutable database as a secure database
implementation capable of meeting the criteria for a proper
audit trail, namely, that it should only be capable of being
read by a restricted number of authorised users. It must not
permit the editing of any transactions, and must not allow any
transaction to be deleted. Only new records can be added, no
modifications are permitted, and no deletions may take place,
thus preserving the original input for subsequent examination.

Looking at the fundamental requirements of the audit trail
in Section II-A, it is clear that a conventional database struc-
ture fails to deliver on a number of these requirements. A
conventional database structure allows any records to be seen,
by anyone authorised, or an attacker able to gain adequate
credentials to do so. Worse, there is nothing to prevent modi-
fication, or deletion of these records. Thus a conventionally set
up database is totally unsuitable for an audit trail. The same
argument holds for system logs, which should have the same
characteristics as an audit trail.

Thus, an audit trail and system log database must have the
same characteristics as the manual system, namely restricted
access to view the audit trail, with NO option to add, modify
or delete records [2]. Naturally, in a cloud setting, as there
may be anything from a single instance up to many thousands
of instances running at any given time, it would be sensible
to host the logging systems on a completely different server
or servers at a location remote from the cloud instances, such
that all the instances will have their audit trail and system
logging data stored in the remote system. This can reduce the
probability that a successful attack on the cloud instance can be
leveraged to attack the logging database. Ideally, the logging
server or servers should be dedicated entirely to running a
secure immutable database, with preferably no direct means
of public access.

We accept that this means that the logging database is likely
to become a prime target for attack. Thus the logging database
should be protected with the highest level of security settings,
and should be subject to special monitoring to provide instant
warning of any attack.

We made the decision that there would be insufficient time
to consider writing bespoke software for our purposes. Thus
we would restrict ourselves in this work to evaluating what
we could do with an existing system. In [2], we observed that
short of writing new bespoke database software, or making
serious modifications to existing database software, we would
be left with three options we could use to meet our objective:

1) Remove all user access for all users to modifying or
deleting records and the database itself;

2) Remove the Modify Record and Delete Record command
from the software;

3) Use an Archive Database.

56

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

In the next section, we examine the pros and cons of each
option, in order to come up with the best practical solution to
this problem.

IV. CREATING AN IMMUTABLE DATABASE

Having decided that we would not consider writing some
bespoke software, but instead would see how we could con-
figure something utilising existing software, we then evaluated
the three options listed in Subsection III.

1) On the positive side, this option is the simplest to
configure, does not involve any software modification,
and will not impact on software updates. On the negative
side, should an attacker gain access to the database and
be able to escalate privileges, there would be nothing to
prevent them from reversing the restrictions;

2) On the positive side, this option would take away the
ability of an attacker, should they get in to the database
and be able to escalate privileges, to reverse the restric-
tions. On the negative side, this could complicate software
updates;

3) On the positive side, this presents an extremely simple
solution, no software needs modifying, and there is noth-
ing for the attacker to reverse. On the negative side, the
Archive Database does not support key searching. This
is likely to make searches cumbersome. However. in the
short term, we could resolve this issue by extracting a
copy of all the data into a conventional database with
full key search capabilities for rapid examination.

Thus, we took the view that for the purposes of this
work, we would use option 3, using the Archive Database
option, in order to create the system logging and audit trail
databases. We assume the application database will run using
conventional settings, although it is important to take account
of the following four weaknesses in conventional systems.

First, default logging options can result in insufficient data
being collected for the audit trail. Second, since there is
often a lack of recognition that the audit trail data can be
accessed by a malicious user gaining root privileges, we
recommend the audit trail and system logs should be sent
to the external immutable database, set up using the Archive
Database configuration, for this purpose. Third, failure to
ensure log data is properly collected and moved to permanent
storage can lead to loss of audit trail data, either when an
instance is shut down, or when it is compromised. Sending
all audit trail and system log data to the external immutable
database/s will ensure that the data will not be lost when the
instance is closed down. Fourth, the recommended mitigation
techniques suggested by OWASP should be implemented in
the main web application software.

Now, we consider the minimum audit trail data we would
wish to collect. MySQL offers the following audit trail options:

o Error log — Problems encountered starting, running, or

stopping mysqld;

o General query log — Established client connections and

statements received from clients;

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

« Binary log — Statements that change data (also used for
replication);

« Relay log — Data changes received from a replication
master server,

e Slow query log — Queries that took more than
long_query_time seconds to execute;

« DDL log (metadata log) — Metadata operations per-
formed by Data Definition Language (DDL) statements.

By default, no logs are enabled, except the error log on
Windows. Some versions of Linux send the Error log to syslog.
Thus for a straightforward implementation, we would wish to
collect the Error Log, the General query log, the Binary log
and the Slow query log. Where replication is in use, adding
the Relay log is recommended. Where DDL statements are
used, then the DDL log should also be activated.

While Oracle offer an audit plugin for Enterprise (paid)
editions of MySQL, which allows a range of events to be
logged, by default most are not enabled. The MariaDB com-
pany, whose author originally wrote MySQL, have their own
open source audit plug-in, and offer a version suitable for
MySQL. It has the following functionality:

« CONNECTION — Logs connects, disconnects and failed

connects (including the error code);

e QUERY — Queries issued and their results (in plain
text), including failed queries due to syntax or permission
erTors;

« TABLE — Which tables were affected by query execu-
tion;

e QUERY_DDL — Works as the ‘QUERY’ value, but
filters only DDL-type queries (CREATE, ALTER, etc);

e QUERY_DML — Works as the ‘QUERY’ value, but
filters only Data Manipulation Language (DML) DML-
type queries (INSERT, UPDATE, etc.).

Where a company falls under the provisions of the new
EU GDPR regulations, using the MariaDB audit trail plug-in
and turning on ALL 5 logging options would be a prudent
move. Admittedly this would require a considerable increase
in storage requirements for the log output. However, since they
would then be in a position to provide full disclosure to the
regulator of all records accessed, tampered with or deleted,
this would go a very long way to mitigate the amount of fine
they might be subject to, which could be as high as 4% of
their global turnover.

Thus, this approach will address the first problem, that of
insufficient audit trail and system logging data being collected.
If the data is sent to a well protected external database, an
attacker who has compromised the running instance will not be
able to cover their trail. The system logs could be retained on
the instance to make the attacker think that they have covered
their tracks. Thus, the second point is addressed. By sending
a copy of all log data to the secure immutable database, we
can address the third point, thus ensuring no data is lost on
shut down of the instance. Finally, if the OWASP mitigation
techniques are used to harden the web application, there will
be less likelihood of a successful breach taking place. Plus the
immutable database on the secure external server satisfies the

57

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

requirements of a proper audit trail [14].

There is also no doubt that adding an Intrusion Detection
system (IDS) is also a useful additional precaution to take,
and again, this should be run on an independent secure server
under the control of the cloud user.

Equally, where the MySQL instance forms part of a LAMP
server, then it would also be prudent to make some elementary
security changes to the setup of the Linux operating system,
the Apache web server, and to harden the PHP installation.

There is one additional task that would be very worthwhile.
That is to set up an additional control instance to monitor every
new instance added to the application, which regularly checks
whether the instance is still functioning as expected. This
would allow this system to warn of instances unexpectedly
being closed down, which might be a sign of an attack.
In addition, the log files in the immutable database could
be monitored for specific patterns, which might indicate the
possibility of an attack.

One of the biggest issues is the fact that there is such a
lag between breach and discovery, and this approach could
provide much earlier warning of such an event. However, of
greater interest, is the fact that a full forensic trail would be
instantly available for immediate investigation. And it would
be possible to disclose the extent of the breach well within the
required disclosure time of 72 hours from the time of breach
to disclosure.

As we see from [17], see Figure 1, that in 2015, 75% of
breaches happened within days, yet only 25% of discoveries
are actually made within the same time-frame. This still leaves
a large gap where compromised systems may still be under the
control of malicious users. Our proposed approach would go
some way to reducing this problem.

100%

75%

50%

5% Time to Discover

0%

2004 2006 2008 2010 2012 2014
Fig. 1. The Lag Between Breach and Discovery (©) 2015 Verizon

This presents a clear indication that very few firms are
actually scrutinising their server logs. We take a quick look

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

at some typical database attacks and possible mitigation for
these attacks in the next Section.

V. TYPICAL DATABASE ATTACK METHODOLOGIES

SQL injection attacks are relatively straightforward to de-
fend against. OWASP provide an SQL injection prevention
cheat sheet [18], in which they suggest a number of defences:

o Use of Prepared Statements (Parameterized Queries);

e Use of Stored Procedures;

o Escaping all User Supplied Input;

They also suggest that companies should enforce least
privilege and perform white list input validation as useful
additional precautions to take.

For operating system injection flaws, they also have a
cheat sheet [19], which suggests that LDAP injection attacks
are common due to two factors, namely the lack of safer,
parameterized LDAP query interfaces, and the widespread use
of LDAP to authenticate users to systems. Their recommen-
dations for suitable defences are:

o Rule 1 Perform proper input validation;

e Rule 2 Use a safe API;

« Rule 3 Contextually escape user data.

And for LDAP system injection flaws, their cheat sheet [20],
recommends the following injection prevention rules:

o Defence Option 1: Escape all variables using the right

LDAP encoding function;
o Defence Option 2: Use Frameworks that Automatically
Protect from LDAP Injection.

None of these preventative measures suggested by OWASP
are particularly difficult to implement, yet judging by the re-
curring success of these simple attacks, companies are clearly
failing to take even simple actions to protect against them.

Thus, in addition to making the simple suggestions we
propose above, cloud users should also make sure they actually
review the audit trail logs. It is vital to be able to understand
when a security breach has occurred, and exactly which
records have been accessed, compromised or stolen. While
recognising that this is not a foolproof method of achieving
cloud security, it is likely to present a far higher level of
affordable, achievable security than many companies currently
achieve.

Implementing these suggestions will not guarantee security,
but will make life so much more difficult for the attacker that
they are more likely to move on to easier ‘low hanging fruit’
elsewhere. There is currently an abundance of other options
for them to choose from.

However, the company must remain vigilant at all times. It
would be prudent to subscribe to security feeds, and follow
leaders in the field to ensure they remain aware of all the latest
security vulnerabilities and exploits. Of course, companies
must realise that the threat environment is not restricted to
outside parties alone. A greater concern is the threat posed
by malicious internal actors, which can be even more serious
where they act in concert with outside parties. This presents
one of the most serious weaknesses to the security of a
company. Equally, laziness on the part of staff or lack of

58

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

knowledge, particularly where they have not been regularly
trained to provide them with full awareness of all the latest
threats, including social engineering attacks, and the conse-
quence of falling victim to them, can also pose an extremely
serious risk to company security.

In the event of a security breach, not if, but rather when
it happens, it may be necessary to conduct a forensic exami-
nation to establish how the company defences were breached.
With traditional distributed systems, there is usually something
for the forensic computer scientists to find, somewhere in the
system. They are completely accustomed to dealing with being
able to find only partial traces of events, from which they
can build a forensic picture of the breach. This becomes more
problematic the longer the time between breach and discovery.

However, once a company adopts cloud use, this becomes
far more problematic. While forensic computer scientists can
work wonders with a range of partial discoveries, deleted
or otherwise, once a cloud instance is shut down, there is
virtually zero chance of regaining access to the shut down
system. The disk space used by that system could be re-used,
literally within seconds, and where the time interval between
breach and discovery is considerably longer, as is generally the
norm, then this opportunity becomes a physical impossibility.
Thus, for forensic purposes, companies need to pay far more
attention to what is actually going on in the cloud.

The suggestions we make can go a long way to providing
a greater level of security, and perhaps more importantly, can
ensure there is actually a forensic trail to follow in the event
of a breach.

VI. CONCLUSION

We have considered a wide range of security issues in
cloud based systems, with a view to highlighting that the
attack surface of any cloud based system extends well beyond
technical issues. We have identified that databases present a
considerable weakness in cloud based systems, in addition to
the unintended potential loss of forensic data caused by the
manner in which scalability is handled in large cloud systems.

We have suggested a simple approach that could be easily
implemented, with minimal technical knowledge, which would
offer a considerable improvement on cloud security, with the
additional benefit of maintaining a vastly improved forensic
trail to explore in the event of a breach. Equally, our proposal
also offers the benefit of being able to discover precisely
which records have been viewed, compromised, or deleted.
This presents a significant mitigation in the event that any
regulator proposes a significant fine, since the company will be
in a position to comply fully with the reporting requirements.

We plan to test this proposal to identify any loss in perfor-
mance resulting from not being able to use key searching in
the immutable databases, and to identify how it will stand up

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

to attack. In the longer term, it would be useful to develop a
software solution that might add the key search capability to
the immutable database.

REFERENCES

[1] B. Duncan and M. Whittington, “Enhancing cloud security and privacy:
The cloud audit problem,” in Cloud Comput. 2016 Seventh Int. Conf.
Cloud Comput. GRIDs, Virtualization. Rome: IEEE, 2016, pp. 119-124.

[2] B. Duncan and M. Whittington, “Enhancing cloud security and privacy:
The Power and the weakness of the audit trail,” in Cloud Comput. 2016
Seventh Int. Conf. Cloud Comput. GRIDs, Virtualization. Rome: 1EEE,
2016, pp. 125-130.

[3] B. Duncan and M. Whittington, “Cloud cyber-security: Empowering the
audit trail,” Forthcom. Int. J. Adv. Secur., vol. v9, no. 3&4, p. 15, 2016.

[4] Trustwave, “2012 Global Security Report,” Tech. Rep., 2012.

[5] B. Duncan and M. Whittington, “Compliance with standards, assurance
and audit: Does this equal security?” in Proc. 7th Int. Conf. Secur. Inf.
Networks. Glasgow: ACM, 2014, pp. 77-84.

[6] B. Guttman and E. A. Roback, “NIST special publication 800-12. An
introduction to computer security: The NIST Handbook,” NIST, Tech.
Rep. 800, 2011. [Online]. Available: csrc.nist.gov/publications/nistpubs/
800- 12/handbook.pdf Last Accessed: Jan 2017

[7] OED, “Oxford English Dictionary,” 1989. [Online]. Available: www.oed.
com

[8] D. Bernstein, E. Ludvigson, K. Sankar, S. Diamond, and M. Morrow,
“Blueprint for the intercloud - Protocols and formats for cloud computing
interoperability,” in Proc. 2009 4th Int. Conf. Internet Web Appl. Serv.
ICIW 2009, 2009, pp. 328-336.

[9]1 J. A. Chaula, “A socio-technical analysis of information
systems security assurance: A case study for effective
assurance,” Ph.D. dissertation, 2006. [Online]. Available:

http://scholar.google.com/scholar?hl=en{\ & }btnG=Search{\ &}
g=intitle:A+Socio-Technical+Analysis+of+Information+Systems+
Security+Assurance+A-+Case+Study+for+Effective+Assurance{ \#} 1
Last Accessed: Jan 2017

[10] S. Pearson and A. Benameur, “Privacy, security and trust issues arising
from cloud computing,” in 2010 IEEE Second Int. Conf. Cloud Comput.
Technol. Sci., no. December. Ieee, nov 2010, pp. 693-702.

[11] R. K. L. Ko et al., “TrustCloud: A framework for accountability and
trust in cloud computing,” Proc. - 2011 IEEE World Congr. Serv. Serv.
2011, pp. 584-588, 2011.

[12] L. E B. Soares, D. a. B. Fernandes, J. V. Gomes, M. M. Freire, and
P. R. M. Indcio, “Security, privacy and trust in cloud systems,” in Secur.
Priv. Trust Cloud Syst. Springer, 2014, ch. Data Accou, pp. 3-44.

[13] EU, “Unleashing the potential of cloud computing in europe,” 2012.
[Online]. Available: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?
uri=SWD:2012:0271:FIN:EN:PDF Last Accessed: Jan 2017

[14] R. J. Anderson, Security engineering: A guide to building dependable
distributed systems, C. A. Long, Ed. Wiley, 2008, vol. 50, no. 5.

[15] Verizon, N. High, T. Crime, 1. Reporting, and I. S. Service, “2012 data
breach investigations report,” Verizon, Tech. Rep., 2012.

[16] OWASP, “OWASP top ten vulnerabilities 2013,” 2013. [Online]. Avail-
able: https://www.owasp.org/index.php/Category:OWASP\ _Top_Ten\ _
Project Last Accessed: Jan 2017

[17] Verizon, “Verizon 2015 data breach investigation report,” Tech. Rep.,
2015.

[18] OWASP, “OWASP SQL injection cheat sheet,” 2016. [Online].
Available: https://www.owasp.org/index.php/SQL\ _Injection _
Prevention_Cheat_Sheet Last Accessed: Jan 2017

[19] OWASP, “OWASP injection prevention cheat sheet,” 2016. [Online].
Available: https://www.owasp.org/index.php/Injection_Prevention\ _
Cheat_Sheet Last Accessed: Jan 2017

[20] OWASP, “OWASP LDAP injection prevention cheat sheet,” 2016.
[Online]. Available: https://www.owasp.org/index.php/LDAP\ _Injection
_Prevention_Cheat_Sheet Last Accessed: Jan 2017

59

