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Abstract—This work presents a lightweight framework for per-
forming automated experiments with the execution time and
performance variations of parallel workflows. The executio time
variation of tasks due to consolidation is a barrier to efficently
scheduling them onVirtual Machines (VMs). In data centers, VMs
are usually consolidated to increase resource utilizatiorHowever,
this causes resource contention and performance degradati
among the VMs. To address this issue, it is necessary to perfo
experiments with large numbers of tasks and schedules. Ther
exists no framework particularly designed for this type of
experiment. The proposed framework makes it easy to conduct
experiments with large numbers of task execution patterns.
Moreover, it is capable of profiling the execution time varidgion of
each task of a workflow. The design principles, implementatin
issues and trade-offs of the framework are discussed in deata
here. The effectiveness of the framework is demonstrated i
a data-intensive scientific workflow, which processes th&alactic
Arecibo L-band Feed Array HI (GALFA-HI) survey data with
the Montage toolkit. With this framework, experiments have
been simultaneously run on three different hypervisors and
the execution time variation of each task retrieved. The thee
hypervisors are the VMware ESXi 5.5, XenServer 6.5 and Xen
4.6. This framework will enable researchers to perform larg
scale experiments with the execution time variations of paallel
tasks on multiple hypervisors and the Cloud.

Keywords-Cloud; virtualization; consolidation; performance;
scheduling framework.

I. INTRODUCTION

and run large numbers of experiments with complex schedules
and resource usage patterns on the Cloud

There are many large scale Cloud management and main-
tenance software stacks available for modern data cer@iprs |
[17]. Although they are well-equipped for performing compl
maintenance, fault tolerance, and data backup servicasatie
not adequate for performing experiments with task schaduli
and resource usages patterns of VMs for several reasons:

i) These software stacks are mainly designed for providing
the Cloud services, not for performing sophisticated exper
ments with workloads. For example, they have special featur
for providing fault tolerance, VM replication, migratioma
high availability of VMs to a data center. The software stack
do not offer any built-in features for performing complex
experiments with application scheduling patterns on tlou @)

i) They have many modules, and they require a lot of
time and effort to master. System administrators requireta |
of experience to manage these systems efficiently. On thex oth
hand, most researchers are concerned with a quick and easy
setup of experiments. It takes a lot of time to modify a large
piece of software even though they do not provide friendly
interfaces to conduct scientific experiments easily;

iii) Experiments with scheduling of parallel workflow on
VMs often require modification the software stack of the
maintenance software. Making such changes to a massive
software stack with many modules is a cumbersome process.

Virtualization plays an important part for both the data Th€ proposed framework is designed to bypass the interactio
centers and Cloud. Among other advantages, it allows censolVith management software and run complex task scheduling
idation of Virtual Machines(VMs) in data centers. To put it ©€XPeriments easily on the Cloud.

simply, consolidated means running multiple VMs simultane

Recently, the understanding interactions among the VMs

ously on the same server through virtualization. It is a camm and improving the performance of tasks has received a signif

technique to increase resource utilization, reducing atpmral

icant amount of attention [1]-[5][18][19]. A simple constt

cost and energy consumption of data centers. However, thef a framework, which can execute the parallel workflow on
main drawback of consolidation is performance variatiare d VMs residing on multiple servers can make such experimental

to resource contention and interferences among the VMs.

processes much easier. Some features of the framework and

More and more applications and workflows are beingcontribution of this paper are briefly stated below:

deployed on the Cloud. However, scheduling of scientific

i) A lightweight framework for profiling execution time

applications and workflows on the Cloud is still problematicvariations of parallel workflow on the Cloud has been intro-
because of the task execution time variation. On conseitiat duced. It provides a simple interface for conducting comple
servers, the task execution finish time may very unexpegted|€xperiments on VMs and scheduling parallel applications

thus it is difficult to determine which applications are abie

across on multiple hypervisors. The primary objective is to

to be consolidated for better performance. Recently, manprovide an accessible platform to carry out complex experi-

works have focused on this issue [1]-[5].

These works rely on experimental results with consolidated

ments on the Cloud.
It can be used independent of any data center management

applications, to estimate how they would react to resourcgoftware, thus making the general experimental procesesreas
contention in general. Thus, they require the running of alhere are many open source management software options.
large number of experiments, involving scheduling variougiowever, they have too many components and modules.

applications and workflows on VMs. However, there exists no

i) They are difficult to setup for complex experiments. This

standard framework to manage and run such large scale ekamework is lightweight and easy to handle, making it easie
periments. This work proposes a framework to easily manag® perform experiments with complex workload patterns.
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iii) The framework allows researchers to specify an exachypervisors. Section VII provides a brief overview and $hor
sequence of execution of workload pattern on VMs. A humarcomings of complementary works. A discussion about future
readableworkload descriptorfile stores all the task patterns. work and conclusion are in Section VIII.

The exact sequence of tasks that is to be executed on VMs
is defined in this file. Cloud management software has many [I. PROBLEM DESCRIPTION

layers and hides many complexities from the users. It can be The task execution time variation due to VM consolidation
convenient for system administrators, who are only coremrn s one of the major problems for the Cloud. It can be even more
with the outcome. On the other hand, during experimentgroblematic for parallel applications and scientific wookfs,
measuring the impact of execution of each task may b§ecause of having task dependencies. Fig. 1 shows an example
necessary. Extensive experiments will help to understhad t of workflow, which processes thBALFA-HI surveydata [20]
VM's behavior under consolidation and identify any anomalyysing theMontagetoolkit [21]. It is a data-intensive workflow
of the schedule more quickly; that creates a mosaic image of a part of the Milky Way galaxy
iv) Another feature of the framework is theommand from some data cubes. The data cubes are released at regular
descriptorfile. Parallel applications usually consist of severalintervals, as a part of an ongoing survey. Therefore, thi is
smaller tasks, and various command sets are required to ruwmidely used workflow in the field of astronomy. It has 16 tasks
them. The command descriptor file contains the actual com{; to ¢;6) on 8 levels [; to lg). Fig. 2 shows one possible
mands, and one mnemonic is issued against each set of cosechedule of these tasks on a set of co-located VMs.
mands. Thus, the workload descriptor file remains small and
workload patterns are easy to create or modify. The command
descriptor file also allows for running complex applicaton
like web servers or database servers. The framework scans
the workload file twice. During the first scan, all mnemonics
are replaced, and in the second scan actual commands are
executed. Thus, adding or modifying real command sets is
much easier as they are stored only in one place, in the
command descriptor file;

v) The framework can run experimental schedules and re-
source usage patterns on multiple hypervisors simultasigou
It uses theSecure Shell[SSH) to connect to virtualized servers,
instead of the API set. The use of SSH ensures flexibility, and
any hypervisors can be connected. On the other hand, using
multiple API for various hypervisors is a cumbersome preces
The SSH gives the ability to connect to any Cloud,;

vi) The framework is implemented entirely in Java and
can be run on angperating systenfOS). It can be used as a
stand-alone application or plugged-in with any other Jag t
scheduling program. It is lightweight, completely por@abhd

requires no installation on the system. @ mShrinkCube @ mimgtbl A mMakeHd
To the best of our knowledge, there is no other lightweight

framework written in any language, specifically to do experi % mProjectCube mAddCube @ mGetHdr

ments with execution time variation of parallel workflows on

VMs. This framework is independent of and complementary to mViewer

Cloud management software. While the management software

can be used for providing Cloud services, this framework cafig,re 1. A workflow: GALFA-HI data processing with the Mogeatoolkit.

be used to run experiments with workload patterns on the

Cloud. In Fig. 2, the tasks of the GALFA-HI workflow (Fig. 1)
The effectiveness of the framework is demonstrated withare scheduled on the VMs of a single server. Here, the server

a real data-intensive workflow, which processes @aactic  has eight simultaneously running VMs. As the tasks of the

Arecibo L-band Feed Array H(GALFA-HI) [20] survey data  workflow have internal dependencies, they need to be sched-

with the Montage toolkit [21]. Théncremental Consolidation uled hierarchically. The tasks that can be run simultangous

Benchmarking MethodCBM) [22] has been used to analyze are grouped together in one level. The tasks of the levelbelo

the tasks of the workflow. Originally, the ICBM was introddce are dependent on tasks of the immediate upper level.

to analyze the execution time variations of individual task Fig. 2 depicts that the tasks are being executed level by
on VMs. In this work, it is extended to analyze the tasks oflevel on the VMs of a single server. There are VMs of three
scientific workflow which has not been done previously. colors on the server. Light blue VMs are where the tasks of
The rest of the paper is organized as follows. Section IIGALFA-HI are being executed. In a consolidated server,dask
describes the problem with an example. Design goals arfrom other applications are also being executed they anrsho
discussed in Section lll, followed by the framework design i in red. Finally, white VMs represent empty VMs, where no
Section IV. Section V discusses the workflow and benchmarktasks are being run at present. The tasks on additional VMs
used, along with experimental setup. Section VI gives thgshown in red) are responsible for resource contention and
results of experiments with task execution patterns onethreperformance degradation of tasks of GALFA-HI workflow.
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Figure 2. Scheduling GALFA-HI workflow on VMs.

In this case, performance deterioration of a task can have p (b) CPU resource usages pattern: Stage 2.
cascading effect on the other tasks of the workflow, becafise ¢
the task dependencies. Furthermore, the performancel tas
of the critical path would directly affect the makespan. v

To efficiently schedule workflows on the Cloud it is
necessary to take the execution time variations into adcoun
Presently, there is no theoretical solution for this isSitteere-
fore, most recent works rely on various heuristics [1]-[5].
To design such heuristic solutions, a significant amount of
experimental data may be required. This framework makes it
easier to carry out large-scale experiments with VM schesiul
and retrieves data. The obtained data can help to desiger bett
heuristics algorithms for the system. One method to obtairn
such critical task execution time variation data is preseént
in [22], called the ICBM. This work further shows that the
ICBM can be extended to scientific workflows on the Cloud.
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(c) CPU resource usages pattern: Stage 3.

A. ICBM for workflow vm

Originally, the ICBM was introduced to retrieve the exe- | I;
cution time variations of VMs on consolidated servers [22].
However, the ICBM has not been used with workflows before.
This work shows that the concept of ICBM can be applied
to parallel workflows, too. The concept of ICBM involves
increasing resource usage of a virtualized server, To ®yste
atically cause execution time variations on VMs. This means
that for a parallel application the same resource usagerpatt
has to be applied to each task. It is described next.

Fig. 3 shows the steps of ICBM for applying a CPU-
intensive resource usages pattern on the GALFA-HI workflow.
Initially, only tasks of the workflow are being run on the sarv
It is shown on Fig. 3a, at this stage tasks from no other appli- Figure 3. Applying CPU-intensive resource usages pattarGALFA-HI
cation are run on the server. Thus, the execution finish tohes workflow.
tasks of the workflow are obtained, without interferencesnfr
VMs belonging to other tasks. Afterward, the workflow is run
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(d) CPU resource usages pattern: final stage.

again. However, in this stage, two additional CPU-inteasiv
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tasks are executed at each level of execution. This is eeferr memory (Fig. 4a) and 1/O (Fig. 4b). Afterward, the steps are
to as stage 2 and shown in Fig. 3b. repeated for combinations of resources, too. One example of

At stage 3, four additional CPU-intensive VMs are being€omPpination of resources is shown in Fig. 4c, it is for CPU-
run along with the workflow (Fig. 3c). Thus, the workflow is M€mory. Here, the process is repeated as described above.

repeatedly run and CPU-intensive VMs are increased systen'r\']lowe‘éer' ong dCdPU—intenr?ive and one ?eTory—irgSr&si_ve VM
atically. This process is repeated until all VMs of the sease ~ "ave been added at each stage, instead of two -Intensive

utilized, and that is the final stage of the experiment. Fig. 3 ones. Other combinational resource contentions, like @PU-

shows the final stage for this particular server configuratio 2"d Memory-I/O, are created in the same process.
This server can accommodate a maximum of 13 VMs, and all From the above discussion, it is clear that experimental
of them have been used. Tasks of the workflow are occupyingrocedures like the ICBM require handling large numbers of

five VMs, while the remaining eight are CPU-intensive VMs. task schedules. Furthermore, the exact sequence of task exe
cutions on VMs and their mutual performance inferences due

to consolidation, have to be known precisely. Although, ynan
tasks and resource scheduling software exist, none of them a
designed to do experiments with task execution time variati

on VMs. They use high-level interfaces and hide almost all
scheduling complexities from the user. That may be convénie
for average Cloud users, however it is not too beneficial for
researchers conducting experiments with resource coatent
and consolidation. The primary objective of this work is to
present a low-level, lightweight framework for experimagt
with complex workload patterns automatically. This franoekv
needs to act as both a scheduler and profiler of task execution
times and be able to connect to any Cloud. In this work, the
design goals, implantation issues and experimental sesdlt
the framework are discussed in detail.
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IIl. M OTIVATION AND DESIGN GOALS

ol This section discusses the primary goals and trade-offs
considered while designing and implementing the framework

Easy to perform experiments with workflow: The first
priority is to provide an easy interface to perform complex
experiments with the workflows on virtualized servers. Eher
exist many complex Cloud management systems and program-
ming paradigms. However, they are not designed for carrying
out experiments with VM consolidation. The new framework
should be able to perform complex experiments on the Cloud,
independent of any management software. This work aims to
provide an easy interface to design and carry out expergnent
(b) 1/O resource usages pattern: final stage. with workflows on virtualized servers so that, the perforo®n
variation of each task can be profiled independently. Thexmai
application of the framework would be to discover the rela-
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Vg Vg vy VTS Vg Yy Mg VMg Vo Vi Yz VM3 tionship among the execution time variations of consodidat
L = = ver en VMs and resource utilization of the server.

Resource usages patternsExperiments with consolida-
tion are sensitive to VM placements on the server. To capture
the effect of consolidation on VMs, it is necessary to create
complex workload patterns and execute the tasks accowdingl
on VMs. Therefore, the proposed framework should provide
an easy way to run the tasks according to resource usages
patterns, described previously. A human readable file shoul
contain all the workload patterns so that they are easy ttere
and modify. Researchers would create those files, exactly
(c) CPU-Mem. resource usages pattern: final stage. the way they want the tasks to be executed on the system.
Thus, the reaction of the system to resource contentions and
consolidation can be examined carefully.

The ICBM divides experiments into stages so that the tasks Easy to check the workload patterns:Executing a task of
of a workflow suffer the least amount of interference at stagehe workflow usually requires several command sets. Maigagin
1 (Fig. 3a) while they face the most CPU-intensive resourca lot of commands in one workload pattern file is often
usage contention at the final stage (Fig. 3d). Then, theeentiproblematic. There should be an easy way to rectify any
procedure is repeated for another resource intensive Mkés, | potential error in the workload pattern. One way to achieve
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Figure 4. Various resource usages pattern applied on GAHForkflow.
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Figure 5. Modules of the framework.

this is not to inscribe full commands in the workload file, the workload file. This pitfall can be avoided by storing &kt
rather they are stored in a particular file, separately. Ttren  actual commands in a separaiemmand descriptofile.
workload file is created only with a short set of mnemonics  Thjs file stores a mnemonic against a full set of real com-

During runtime, the mnemonics are mapped to actual largefands, then the workload pattern files are created only with
command sets. The process is described in more detail in these mnemonics. During runtime, first the command mapping
implementation section (Section IV). module loads all the actual commands to memory, then all

Connection to any Cloud technology:Modern data cen- mnemonics are replaced with their actual command sets in
ters have a countless number of servers, and various hypenthe workload file. This design choice makes the workload file
sors are deployed on them. It is necessary for the framewonkanageable in size and easier to verify.

to be able to connect to a large number of VMs running  The workload loader module: All the experimental re-
on multiple hypervisors. Therefore, the framework needs &gyrce usage patterns are stored imcakload descriptofiile,
method with small connection overhe_ad, and_ the ab|I|t_y t ru which is a human readable file containing only mnemonics.
tasks on any Cloud. The implementation section describes hoThjs file describes, line by line, the dependencies and exact
this is achieved. execution sequence of the tasks. Tasks that would be running
Easy to deploy: The framework should be easily deploy- simultaneously are stored in one line while, the tasks depen
able on a wide variety of systems. There are many operatingent on them are written in the line below. The workload lgade
systems today; therefore the framework should be as umiversmodule scans the tasks line by line so that they can be exkcute
as possible. It should not be dependent on any Cloud maren the VMs exactly in the order intended on the workload file.
agement system or OS, thus, making it possible to initiat&his makes it easier to identify how a virtualized systenttea
experiments from any machine, regardless of the underlyingp a particular pattern of resource usages.
OS. Use of a common framework to perform experiments The hardware configuration loader module: To exe-

would give researchers the opportunity to share and caldeo cyte the sequence of workload patterns correctly, some basi
with experimental results more widely. hardware information is required. The necessary hardware
In this section, motivations and design goals of the frameconfiguration of all the VMs and physical host are stored in
work are described. The next section describes, how thoste hardware configuratiordile. The arrangements of VMs on
goals are achieved during implementation. physical hosts along with their MAC addresses are stored in
this file. Thehardware configuration loademodule fetches
IV. |MPLEMENTATION OF THE FRAMEWORK this data from the file, so that the framework can utilize it to

This section describes the implementation process of theonnect and execute workloads on the VMs.
framework to achieve the design goals of the previous sectio = The scheduler module: The scheduler modulesollects
The framework is divided into seven modules, and eachnformation from the above three data loading modules, and
module performs a particular job. All modules are shown inallows the tasks to be executed on VMs. At first, memory
Fig. 5 and described below. Solid lines represent datafeans mapped commands and hardware configuration file are used,
paths, while dashed lines represent command transfer.pathso check the consistency of the workload descriptor file hi t

The command mapping module: A workflow consists —case of any inconsistency, the process h_as to be terminated.
of many tasks, and each task requires a set of command\ter consistency checking, the scheduler issues the sapes
to execute properly. Inscribing all commands to a workloadc@mmands to VMs through the connecting module, which is
file is counter-productive for several reasons. It makes thélescribed next. It is designed as a separate module, so that
workload file large, and it becomes difficult to inspect theit can be modified to implement any custom task scheduling
workload patterns. Furthermore, if an error is found in onedlgorithm for VMs if it is required.
of the commands, it has to be corrected in all occurrences of The connecting module:Another design goal is to make
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the framework as universally usable as possible. The frame-1: Loacdo ?}Uﬁ&mmz?gsip and mnemonics, from the Command Déscfife
\Svork mallrej ?1” (f]OSI’lnheCZtlé)nﬁ_;]hrouﬂh an SSIf—I |mpIemEr_1tat|qn n 2: Load workloads from the Workload Descriptor file W6 L — LIST.
Java, called the JSch [23]. Thus, the entire framework i@ | 3. | 55 the VMs configuration from file M — LIST.

in Java and can be run on any OS. It is completely portable anda: for Each lines; € WL — LIST do

requires no installation. The SSH is chosen over API, to keep 5  for Each task¢; € £; do

the framework lightweight. It allows the framework to conhe gf tgzv Comzjfﬂgogx{;éﬁz Siﬂthﬁh(;?gﬁtn;armf%-
i ; R : . ; : , UM — , i
to multiple hype_rwsors simultaneously, without havingniate 8 Check the consistency of againstcormy on vy, j
codes for multiple API. Furthermore, support for any new| o. if ¢; is consistenthen
hypervisor can be easily added, without code modification. | 10: Putt;, comm; andvm; on RUN — LIST.
The data formatting module: Raw data is sent back |12 elseExit
through the SSH channels; these data need to be formattagﬁ; end if

to use them with other applications. This module formats an@l14:  end for
stores the experimental results in output files. The data isl5:  Replace all mnemonics d@UN — LIST with actual commands.
analyzed later to discover the relation among resourceessag| 18:  Simultaneously send commands towah; of RUN — LIST.

. . e 17: Wait for their execution to finish and collect executiome data.
patterns and task execution time variations. 18: end for

The profile manager module: This is responsible for co- Figure 6. Algorithm for the framework.
ordination among all the modules so that they can work seam-
lessly. The profiler is modular in design so that a module camonsolidation. The second type is a set of benchmarks suites
be customized easily if required. Also, adding new modulesised to create resource contention patterns on servers.
for future functionality is much easier in this way.
The next section describes the algorithm for the framework,  siantific workflow: GALFA-HI
to demonstrate how those modules work together.

The GALFA-HI survey continuously scans the sky for
A. Algorithm for the framework naturally occurring hydrogen atoms [20], and several data
Fig. 6 shows the algorithm for the framework. First, all cubes have been released so far. Five of those cubes have been

commands are loaded on tB®MM-LIST from the command processed with the Montage toolkit [21], to create a mogaic
descriptor file. The command loader module does this, byM29€ of a part of the Milky Way galaxy. The workflow is
mapping all commands to their corresponding mnemonics in'0WN in Fig. 1 it has 16 tasks and eight levels. It is a data-
memory (lines 1-2). Then, the workload loader module parsdténsive workflow, which processes about 2 GB of raw data
the workload descriptor file, and loads workload pattern orfuPes: Experiments measure the execution time variation of
the WL-LIST (lines 3-4). The WL-LIST contains a detailed @Sk in this workflow due to consolidation.

execution plan, for both the parallel application and reseu

contention patterns. Examples of such patterns are shown B. Set of benchmark suites

Figs. 3 and 4. Afterward, the hardware configuration data is

loaded from the file tVM-LIST (lines 5-6). The VM-LIST Three sets of benchmark suites have been used to create

: . : . __resource contention patterns on the tasks of the above work-

contains all the data required for connecting to VMs durlngﬂOW They are the sets of CPU, memory and I/O-intensive

experiments. ) ~ benchmark suites. Each benchmark suite, in turn, consists o
Next, afor loop (lines 7-21) processes the WL-LIST, line seyeral similar types of tests. Due to space limitatiors dt

by line. Recall that the tasks that are to be run simultarigous possible to describe each benchmark suite separately, Next
are written in a single line. Then, an innér loop (lines  each set is described in brief.

8-17) removes one task at a time from the line and checks CPU-intensive benchmarks:Three CPU-intensive bench-
for consistency against hardware data and commands. The ks h b d th . bench CPUkst Nbench
consistent tasks are then stored in a linked list, calledRthN- m%r ST %Ve ﬁenhuse ’b eysreﬂys ench b st _derllc d
LIST. On the other hand, if a task is not compatible then the!) Unixbench The Sysbench CPU test has been widely use
application exits. Once all the tasks of a line are processed'!t! multi-core server [24] and VM workload consolidation
the innerfor loop exits. Then, all the mnemonics of RUN- experiments [25]. The Nbench is a CPU-intensive bench-

LIST are replaced with the actual command set, with the hel;g'a.rk sutte, _havmg ten dlffer_ent CPU-intensive tests _[2‘6]e .

of COMM-LIST (line 15). Once this is done, commands are. nixbench is anqther CPU-intensive benchmark suite, which
simultaneously sent to execute all tasks of the RUN-LISTe(li is used for experiments on Amazon EC2 [27].

16). The framework then waits for the tasks to finish, and Memory-intensive benchmarks: Three memory-intensive
collect the execution time data (line 17). Afterward, thenea benchmarks have been used for creating resource contention
process is repeated for the next line of WL-LIST, on nextpatterns. The first is th€achebenchwhich consists of eight
iteration of the outefor loop. The outefor loop exit when all ~ different memory tests [28]. The second is theeam a syn-

the lines of WL-LIST (entire pattern) have been processed. Ttactic benchmark program for measuring sustainable memory
experiment with another resource usage pattern, the puoged bandwidth [29]. The final one is th®ysbench memotgst.

needs to be restarted from the beginning. I/O-intensive benchmarks: Five I/O-intensive tests have
been used to create resource contention patterng-ildinch
V. WORKLOADS USED is an important I/O benchmark suite [30], which can be

Two types of workload have been used in the experimentsonfigured to perform various 1/0O-intensive tests. Fiveha
The first type is a data-intensive scientific workflow, whish i are used, they are tliée-server web-serverweb-proxyvideo-
used to observe the execution time variations of tasks undeserverandonline transaction processin@OLTP) test.
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Figure 7. Task execution time variation (TETV) of the mPet§&ube and mShrinkCube functions due to the CPU-intensimklaad patterns on VMs.

TABLE I. MEAN EXECUTION TIMES OF TASKS OF GALFA-HI

C. Experimental setu
P P WORKFLOW ON VMS WITHOUT INTERFERENCES (AS SHOWN IN

Three Dell XPS-8500 servers of identical hardware config- FIG. 3a).
uration had been set up for the experiments. Each server has Cevel Task Time (m)
one Intel i7-3770 processor and 32 GB memory. The i7-3770 1 mShrinkCube| 3.878
has four cores and eight hardware threads, each is clocked 2&5 mimgtbl 0.02
at 3.4 GHz. Three different hypervisors are installed oeghr 3 mMakeHdr 0.02
servers; they ara/Mware ESXB.5, Citrix XenServer6.5 and g mﬂ':;‘gggﬁg‘:e 3’1%73724
Xen4.6 onCentos?. - GetHdr 002

Each hypervisor has 14 VMs of identical configuration. 8 mViewer 0.04

Each VM has one processor, 2 GB of Ram and 50 GB
virtual disk. During eXperimentS, the framework connedads t how many CPU-intensive VMs were running on the server,
all 42 (14x3) VMs on three hypervisors and execute workloadpesides the workflow. The first point of the X-axis is zero,
patterns simultaneously. The framework itself runs on aotem meaning no other VMs were running when the execution
Dell OptiPlex 9010 machine and connects to hypervisorgime of the function was measured. This execution schedule
through the LAN. The results of experiments are given next.is shown in Fig. 3a. The next point on X-axis is 2; here
two additional CPU-intensive VMs were running at every step
VI. RESULTS of the workflow execution (schedule shown in Fig. 3b). In
Recall that the GALFA-HI workflow (Fig. 1) has 16 this way, the workflow is repeatedly executed with incregsin
tasks, comprised of seven functions. Average executioasim number of CPU-intensive VMs. The final point is 8, indicating
of those seven functions without interferences are shown igight additional CPU-intensive VMs were used, at each step
Table I. In this case, the tasks are scheduled exactly lik@f workflow execution as shown in Fig. 3d.
that of Fig. 3a. Due to space constraints, it is not possible |n Fig. 7, from left to right on the X-axis the inter-
to discuss execution time variations of all seven fUnCtionSference from the number of CPU-intensive VMs increases.
Results are shown for only two functions, theProjectCube  The leftmost point is the execution time of a task without
and mShrinkCubeThe rest of the functions also show varia- any interference from other VMs. The rightmost point is the
tions similar that of these functions. The results are gesup execution time of the same task with maximum interference.
according to the resources loads for convenience of digmuss Fig. 7 shows that both the mProjectCube and mShrinkCube
for all three hypervisors. tasks show relatively less execution time variation beeafs
Variations due to CPU-intensive workload: The graphs CPU-intensive VMs. It applies to all three hypervisors. On
in Fig. 7 show execution time variations of both the mPro-ESXi hypervisor, the execution time of mProjectCube fuorcti
jectCube and mShrinkCube functions for CPU-intensive work goes from 38.52 minute (the leftmost point on the graph)
loads, on three hypervisors. In each graph, the Y-axis repio 48.13 minute (rightmost point) due to the addition of 8
resents the execution time variation. The X-axis reprasentVMs, each running a Unixbench benchmark suite (Fig. 7c).
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Therefore, consolidation with eight additional CPU-irdie  the mShrinkCube function, on all three hypervisors (Fig. 9e
VMs (in this case the Unixbench) causes 24.94% increase ifthe execution time increase of the mShrinkCube function
execution time of the mProjectCube function. It is the higthe for ESXi, XenServer, and Xen are 901.92%, 774.10%, and
among three hypervisors. For other hypervisors, the etiect 595.34%, respectively. For other I/O-intensive benchmark
CPU-intensive VMs is minimal. For XenServer, the maximumsimilar results can be obtained, too. For example, Fig. 8ash
execution time variation among the tasks is suffered by théhe execution time variation of the mProjectCube function
mProjectCube function again. It is 13.49% and caused whedue to file-servers on all three hypervisors. Here, exeoutio
consolidated with eight VMs running Sysbench CPU testdime increases for ESXi, XenServer, and Xen are 154.39%,
(Fig. 7b). For Xen, the mProjectCube function also showsl14.78%, and 92.95%, respectively. The file-servers sityila
the maximum variation among the tasks; it is 6.15%. In thiscause execution time variation for the mShrinkCube fumgtio
case, eight VMs with Unixbench were consolidated with thetoo. Execution time increases for ESXi, XenServer, and Xen
function (Fig. 7c). are 411.13%, 347.96%, and 343.15%, respectively.

Variations due to memory-intensive workload: Fig. 8 From the presented execution time variation data, it isrclea
shows the execution time variations of two previous fumio  that combination of benchmarks can be used to create resourc

due to the memory-intensive workload on VMs. For all threecontention patterns for tasks on VMs. The significance of the
hypervisors, the maximum execution time variations arevsho ghove findings is discussed next.

by the mProjectCube function. In all three cases, it is cbnso . . .

idated with VMs running the Stream benchmark (Fig. 8b).  Discussion:The experimental results show that resources
The execution time increase of ESXi, XenServer, and Xe ike CPU, memory, and 1/O, all have dissimilar effects on the

hypervisors are 24.24%, 11.02%, and 11.56%, respectively. task execution time. It is observed for all three hypendsor
. . . _ From the results, it is clear that execution time variation
Variations due to 1/O-intensive workload: During VM

o ) . ) directly depends on the cumulative resource requirement of
consolidation experiments, the 1/O-intensive tasks tergshbw  ho VM of a server. It has been shown previously that

a greater degree of resource contention. That is why morgy hrofiling the execution times of co-located VMs, it is
I/O-intensive benchmarks have been used in the experiments,ssiple to predict the task execution time variations [22]
compared to other types. Fig. 9 shows the execution time varfrpe resource requirement of the VMs, play a huge part on
ations of the mProjectCube and mShrinkCube functions, dugyecytion time variations. For example, both the mProjebtC
to consolidation with five different I/O-intensive benchtk& 5,4 mShrinkCube functions are 1/O-intensive tasks, anyl the
The VMs with video servers cause huge execution timenave the maximum variation for I/O-intensive benchmarks.
variation for both functions, on all three hypervisors (Fp). The objective of experiments is to show that the proposed
Consolidation with eight VMs with video servers, increasesframework can profile the tasks of a scientific workflow for
the execution times of mProjectCube function for ESXi, any workload and hypervisor. Thus, it can help to design and
XenServer, and Xen by 683.30%, 705.83%, and 588.96%garry out experiments, with VM placement and consolidation
respectively. The video servers also have similar effects ofor scientific workflows.
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Figure 9. Task execution time variation (TETV) of the mPet§gube and mShrinkCube functions due to the I/O-intensieeklwad patterns on VMs.

VII. RELATED WORK The second category of works are the Cloud management,

Related works can be divided into two broad categoriesm"j‘imen‘"mce and scheduling software [6]-{17]. They can pro

The first category of works deals with application perforgen V/d€ many high-level functionalities for the Cloud, likenning

efficiency on the Cloud and VM consolidation [1][5]. How- S€lécted jobs periodically. Many complex operations can be
ever, the works do not provide any general framework to dooerformed with a feV.V commands. However, they hide a lot of
experiments with tasks of parallel applications. In costirthis operational complexity from the users, and do not allow low-

work provides a simple and effective framework that can bd€Vel control over the task execution process. On the other
used for such purposes on the Cloud and, this framework offers an easy interface for executing

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6 24



CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

tasks according to the requirement of the experiment. 7

Although the works outlined above provide some high-level
support for running tasks on the Cloud, none of them combinesg;
all the low-level functionality to carry out experimentstiwi
VM consolidation. To the best knowledge of the authors, no
other previous work has proposed any such framework tol®]
perform experiments with workloads on the Cloud. 0]

VIIl. FUTURE WORK AND CONCLUSION

There are a lot of issues related to the Cloud that depend Ry
consolidation, like application performance, energy &ficy,
and resource utilization. There are no theoretical sahstio [12]
available for these problems. Further experiments areinedju
to obtain practical solutions. In future, the framework \ebioe
used to setup larger scale of experiments with various sfieen
workflows and diverse sets of resource usage patterns. [14]

This work presents the design and implementation of a
framework for performing experiments with execution time
variation of scientific workflows on the Cloud. Profiling of
task execution time is required for better understandingdf
consolidation. The framework can apply any resource usage
patterns to the tasks of a workflow. It does not compile the16]
input files, rather it behaves like an interpreter. Thereas n
well-accepted theocratical model for task execution vViama
due to consolidation. Therefore such a framework would helpis]
to set up large-scale experiments for achieving a practical
solution. [19]

To show the capability of the framework to perform experi-
ments a real life data-intensive workflow and three hypergis
have been used. Resource contention patterns for VMs ha#]
been created by combining various types of benchmarks. The
framework is lightweight and implemented in Java. It can be
run on any OS and can connect to any hypervisor or the
Cloud. An extensive set of experiments has been done on thrég!]
well-known hypervisors, and results are successfullyieetr
demonstrating that the framework is capable of executing an
workflow schedule and resource usage pattern on multipl&2]
hypervisors. This framework can be a powerful tool for ex-
perimenting with VM consolidation and task execution time 3
variation of workflows.
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