
Comparing Replication Strategies for Financial Data on Openstack
based Private Cloud

Deepak Bajpai, Ruppa K. Thulasiram
Computer Science department

University of Manitoba
Winnipeg, Canada

Email: {bajpaid, tulsi}@cs.umanitoba.ca

Abstract—Private Cloud has substituted the traditional in-
frastructure due to its flexible model and privacy in the form
of administration control and supervision. In this study, we
have built a private Cloud using openstack Cloud based open-
source software solution. We deployed financial application on
VMs and generated a disaster recovery solution using openstack
component Cinder and Swift. We presented an experimental
analysis of two strategies, block storage and object storage, to
derive the best solution for an organization using private Cloud.
From the set of experiments considered Cinder proved preferable
over Swift.

Keywords- Cloud Computing, Private Cloud, Replication, Disas-
ter Recovery, Block Storage, Object Storage

I. INTRODUCTION

With the exponential growth of Information Technology (IT)
Infrastructure and increasing cost of IT from small scale to
high end enterprise sectors, a workaround to effectively reduce
the cost associated with infrastructure has become essential.
Also, as the uncontrolled data growth raised concerns for the
enterprise environment, storage moved outside the servers to
individual identity that provided a significant solution [1].
Integration of Virtual Machines (VM) in the virtualization
layer to the operating system environment added a robust
and effective measure to share the CPU load and processing
time [2]. With more advancement in technology, more cost
effective solutions were required. It was this time when Cloud
computing came into emergence.

Cloud computing is a major shift on how the information
is stored and shared on the distributed platform to provide
services to customer as per customer demand. Cloud has been
defined as ”pay-as-you-go” architecture where customer pays
for the resources when used. Introduction of Cloud service by
Amazon, Microsoft and other Cloud service providers induced
leading technology hubs like Oracle, HP, IBM, Adobe, etc.,
to expand their service areas for Cloud technology. When
it comes to financial, health and defense services, public
Clouds have several vulnerabilities, including security and
privacy issues, and this is where private Cloud comes into
the picture. Private Cloud has shown reliable solutions for
these components of business and hence many organizations
have jumped into private Cloud [3]. A private Cloud is more
independent as the organisation build their own infrastructure,
use their own data storage blocks and servers, and at times

private Cloud owners may also outsource their requirement to
the third party.

In public Clouds, the service provider has control of the IT
infrastructure and, eventually, they control customers sensitive
data which reside in their datacenter. Even though there could
be regulatory procedures (such as Service Level Agreement)
in place that ensures fair management and supervision of the
customers privacy, this condition can still be perceived as
a threat or as an unacceptable risk that some organizations
are not willing to take. In particular, institutions such as
government and military agencies will not consider public
Clouds as an option for processing or storing their sensitive
data [4]. When we put financial application and operations in
public Cloud then there is severe threat of vulnerability as all
the data is stored with third party Cloud vendor. To address this
issue we built private Cloud and deployed financial application
to provide security and privacy.

The main problem in the market of Cloud services is im-
plementation and performance evaluation for the critical data.
IT infrastructure organization has a central data repository
that contains all the important data required for the proper
functioning of the organization. This data can be classified
as critical on the basis of usage by the users. In a Cloud
environment, data remains at different geo-locations; VMs at
different geo-locations hold that data which can be migrated
from one host to another host as per the requirement of load
balancing [5].

Some of the replication techniques which are used by
market leaders are object storage or block storage replication.
A cost effective dynamic replication management (CDRM)
scheme has been introduced for storage clusters in Cloud [6]
which has used Hadoop data filesystem. However, in CDRM,
filesystem should be in a mounted state for initiating the
replication. Various object storage replication techniques have
been in market [7] and they are efficient, but for block storage
replication in Cloud storage cluster, there is still demand for
cutting edge strategy.

In this paper, we have proposed a new replication strategy
for the duplication of data in openstack based private Cloud.
In this strategy, we created the VM using the block storage
component of openstack called Cinder. After the testing of
VM on a financial application, we created snapshots and used
them for later recovery process. This strategy is new, and we

139Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

show that this is 53% better in time than object storage based
replication technique. Rest of the paper describes the attributes
of openstack, the deployment of private Cloud and the empir-
ical analysis of the replication strategy all in the related work
section. Implementation and disaster recovery mechanism are
described in Section III. We did experimental comparison with
object based replication using Swift component of openstack
as described in Section IV. After comparing these action
plans, we have analyzed the results on the basis of best
strategy available in Section V. We present our conclusions
in Section VI. One of the financial applications we have
considered is option pricing. Note that due to space limitation
we are not describing the financial option pricing application
and the data related to this application, brief description on
which are available in [2].

II. RELATED WORK

There are multiple software sources available to build a
Cloud. CloudStack is an open source software that allows
for a Private Cloud and Hybrid Cloud deployment [8]. The
main functionality of CloudStack is to operate a large scale
deployment of a virtual infrastructure by managing a large
number of virtual machines. Eucalyptus is an open source
software used to build Private Clouds and Hybrid Clouds that
are compatible with Amazon Web Services [9]. Eucalyptus
manages resources that allow for some dynamic allocation of
resources. OpenNebula is an open source software that allows
for the deployment of Public Clouds, Private Clouds, and
Hybrid Clouds [10]. The main functionality of OpenNebula
is to manage data that is distributed among datacenters and to
ensure that these datacenters are able to exchange information
with each other regardless of their infrastructure. OpenStack is
an open source software that is primarily used to manage a vir-
tual infrastructure using the Dashboard or the OpenStack API.
What makes OpenStack advantageous compared to the other
options is that OpenStack supports small scale deployment.
OpenStack supports deployment onto a single, local machine
for rapid application development and testing with minimal
setup required. For this reason, OpenStack was selected in
this study as the Cloud computing software to develop the
disaster recovery application.

A. Openstack

Originally OpenStack was a project which was developed
by Rackspace and NASA [11]. In 2010, OpenStack was
released under the name Austin. Austin initially had very
limited features. At the time Austin had support for object
storage only. Companies started to contribute to OpenStack
because they began to see its potential in the virtualization
market. As contributors added more features to OpenStack,
eventually in 2012 support for Cinder was integrated [3].
OpenStack provides a means for small companies to provide
their customers with services without the need of a significant
investment initially. It became easier for new service providers
to start out who did not have a lot of investors. At the same

time, OpenStack provided a means for big organizations to
implement private clouds within their corporation without the
need of big investments into physical hardware. OpenStack
is currently an open source project and has hundreds of
contributors. What makes OpenStack so advantageous is that if
there is a need for a feature there are contributors constantly
available to implement them and fix them if any bugs are
discovered. Another reason OpenStack is advantageous is that
it is an open source project and it does not require any
subscription or an annual fee to use.

All of the modules contribute various components to Open-
Stack. Of the nine modules listed in Figure.1, only three of
those modules provide storage mechanisms for OpenStack.
Each of these three modules provide a different storage
mechanism. The three modules are, Swift, Cinder, and Glance.
Swift provides an object storage capability, Cinder provides
a block storage capability, and Glance provides a repository
to store the virtual machines a user creates in OpenStack or
downloads them from the internet.

1) Cinder: Block storage was a fundamental milestone for
Cloud computing because it provides the capability to store
virtual machines along with the data those virtual machines
use. Before block storage was integrated into OpenStack vir-
tual machines used something called ephemeral storage [11].
Virtual machines using ephemeral storage have a significant,
fundamental flaw. The flaw is that when the virtual machine
powers down, all of the data and contents of the virtual
machine are lost. This is a problem because a virtual machine
may contain important data required to provide services to
customers. Say the service being provided is banking transac-
tions. If the virtual machine powers down, all of the customers
banking information is lost. The organization wont know
what the last balance on the customers account was if that
information wasnt backed up. Simply powering on the virtual
machine wouldnt solve the problem because even though we
have the environment to provide the service, we need the data
of past transactions. Finding a solution to ensure a virtual
machine never powers down is not a realistic answer to the
problem.

There was a need to provide a mechanism that allows
data to persist in the event a virtual machine powers down.
Block storage provides one possible solution to this problem.
The data persists within the volume even though the virtual
machine may power down and the data is available the next
time the virtual machine powers up. Cinder was developed and
integrated into OpenStack to provide access to and manage-
ment of a block storage created by a user.

2) Swift: In OpenStack, the module named Swift provides
the object storage component in the application. Swift is used
to implement something called an OpenStack cluster. The
OpenStack cluster is used to provide a distributed object store.
The object store uses HTTP protocols PUT to update an object
or GET to retrieve the most recent version of the object. Swift
implements something called an OpenStack ring. This ring
consists of a proxy server and a storage node. These two

140Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

components are used to store and retrieve objects upon a
users request. The main functionality of the proxy server is
to track the location of the most recent version of the object
and to determine which storage server it should send the most
recent version of the object. These OpenStack rings can be
divided in various ways. The reason for the division is if in the
event a request for an object fails, then there is another entity
available who can fulfill this request. Four common divisions
of OpenStack rings are by disk drive, server, zone, or region.

Within each of these divisions the data is replicated in the
event one of the providers has a failure so another entity can
fulfill the request. Through various testing it was determined
maintaining three replicas was sufficient for reliability so by
default OpenStack maintains three replicas of the data [3].
Swift implements eventual consistency. This means that when
an object is updated not all of the storage servers are updated
immediately to contain the most recent version of the object.
Only one of the storage servers receives the most recent
version of the object from the proxy server and then the
storage server propagates that object to the rest of the storage
servers as a background task. A risk with eventual consistency
is that a storage server may receive an updated object but
then may fail before it has a chance to propagate that updated
object to another storage server. In a future updated versions
of OpenStack, code named Grizzly, allowed users to maintain
as many replicas as they wanted within the OpenStack ring.
Another feature implemented was time based sorting where the
proxy server would request the most recently updated object
from the fastest responding storage server. The main reason
time based sorting was implemented was because storage
servers were beginning to be distributed over larger areas, for
example, the other side of the country. A major advantage
Swift provided was that it allows the capability to store objects
on different platforms for example, Cleversafe, Scality, and
Amazon S3[5].

Figure. 1. Internal component connection in openstack.

III. DISASTER RECOVERY AND IMPLEMENTATION

”Disaster recovery (DR) is defined as the use of alternative
network circuits to re-establish communications channels in

the event that the primary channels are disconnected or mal-
functioning, and The methods and procedures for returning a
data center to full operation after a catastrophic interruption
(e.g., including recovery of lost data). Disaster recovery in-
volves in restoring the technology aspect of a service. In 1978,
Sun Information Systems was the first American company to
provide a hot site to organizations [12]. A hot site is a facility
that an organization can relocate to in the event of a system
failure due to a natural disaster or a human induced disaster
to resume the operation of a service.

As businesses became more reliant on their IT infrastructure
during the late 20th century, there was pressure for organiza-
tions to have a disaster recovery plan in place in the event a
service becomes unavailable. As a result different mechanisms
were being provided as solutions. Data centers were being built
because on site recovery was no longer necessary due to the
development of the internet. It has been statistically proven
that spending one dollar on disaster recovery planning will
save you four dollars in the long run when trying to recovery
from a disaster[12]. An important step in disaster recovery
planning is to identify which services are considered vital for
an organization, how long can they afford to keep the service
unavailable and identify which systems are associated with
providing the service [12].

There are multiple strategies in designing an efficient disas-
ter recovery plan, here are a few strategies. Backups of systems
can be made and transported to an offsite location. A second
alternative is to only forward data to an offsite location instead
of copying the entire system. A third alternative is to use a
Private Cloud to replicate virtual machines, disks, templates
and store them in the Private Cloud. A fourth alternative is
to use a Hybrid Cloud to back up the data stored onsite and
offsite and in the event of a disaster launch the system from
within the Cloud. A fifth alternative is to backup both the
system and the data at an offsite location. For the purposes of
this current study, a backup will be made of both the state of
the system and the data it contains.

Implementation of private Cloud is a complex and
cumbersome process. Its architecture is same as distributed
system but the association of various components to make
it service oriented architecture brings the complexity in
design. After the implementation it is important to test
the performance on the basis of various performance
parameters such as response time, replication status, data
integrity, accessibility on the data critical and time constraint
application. The most suitable application are financial
application where data is critical and time is also a big
constraint. We built Openstack private cloud on three node
architecture as shown in Figure 2. Below are the description
of each nodes.

1) Controller node- Controller node is responsible for run-
ning the basic openstack services required for private Cloud
environment to function. These nodes: (a) Access to API
which is accessible by user for various functionality. It is also

141Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

entry point for the accessibility; (b) Run numerous services
in high availability, utilizing components such as Pacemaker
and HAProxy to provide a load-balancing and virtual server
allocation functions so the controller node is being used;
(c) Provide highly available ”infrastructure” services, such
as MySQL and RabbitMQ that combine all the services; (d)
Provide what is known as ”persistent storage” through services
runs on the host as well. This persistent storage is backed onto
the storage nodes for reliability.
2) Compute Node- Compute nodes host the virtual machine
instances in OpenStack environment. They: (a) Run the min-
imum of services required to run these instances; (b) Use
local defined storage on the nodes for the VM so that disaster
recovery in case of node failure is possible.
3) Network Node- Network nodes provide communication
channel and the virtual networking needed for users to create
public or private networks. It also provide uplink to their
virtual machines into external networks. (a) Form the only
ingress and egress point for access and security feature of
the Openstack running instance; (b) Run the environment’s
networking services other than networking API service. Virtual

Figure. 2. Architecture of Openstack based Cloud.

machine provisioning is an important step for the private
Cloud. Following are the basic components required for the
VM provisioning:1) Block Storage (Cinder)- Provides persis-
tence block storage for running VMs and create VMs as well
using images, 2) Object Storage (Swift)-Stores and retrieve
arbitrary unstructured data objects via a RESTful, Http based
API, 3) Network (Neutron)-Provide communication channel as
a service for Openstack services, such as Openstack compute,
4) Authorization(Keystone)-Provides an authorization and au-
thentication service for all Openstack services, 5) VM Image
(Glance)-Stores and retrieve VM disk images, 6) Provisioning
(Nova-Compute, KVM hypervisor integrated), 7) Controller
provisioning (Nova-Controller). Openstack provide all these as
separate components as shown in Figure 1. These components
help to establish services within the framework. The VMs
on the compute nodes are working on arbitrary computation
algorithms which is be memory intensive. After that, we used
snapshot based technology to capture the state of VM image
and these snapshots are scheduled to be triggered in a timely

manner [13]. Along with the snapshots, block replication is
initiated on the VMs, which captures the raw data on the
data blocks and store them on other passive systems. These
data blocks can be retrieved in case of disaster and which
will provide same data as an active node. With snapshot and
synchronous replication, data will be more secure.

IV. EXPERIMENTS

To build a private Cloud, we used Dell R420 servers with
multiple Ethernet ports. All servers have 4GB RAM and 8
Intel Xeon processors on each of them. Ubuntu 14.04 server
was used as the operating system running on each of them.
After the setup of virtual machines, IP association is done and
testing for the connection is done using Address resolution
protocol (ARP). Java runtime environment and MYSQL are
deployed on all the nodes for multiple operations. After the
setup of all three nodes using Openstack with VMs, we run the
arbitrary computation tasks on the multiple VMs hosted on the
compute node. The snapshots are captured as per pre-defined
schedule using scripts. After that extensive testing is performed
on financial application, where one of the VMs are triggered
with configuration errors that is followed by powering off that
VM. At that point, snapshot are retrieved for that VM and
passive data block are activated. This produce a replicated
system of powered off VM. By using this method, we are able
to test the reliability of time constraint data and data critical
application.

In our disaster recovery experiments, we checked if the data
can be retrieved by using snapshot and volume replication
technique then it will generate the model for disaster recovery
within the Cloud. On the basis of data retrieval following the
VM failures, we also analysed the best replication strategy that
can be used in Cloud environment. A typical comparison of
snapshot and volume replication will be part of the evaluation
process that will yield best disaster recovery solution. The
baseline used to check the best replication strategy would be
synchronous data recovery.

There were four VMs deployed in the Cloud. Three of
them were virtual machines instances and the fourth system
was an instance being launched using a volume block created
containing the Ubuntu image. Of the three virtual machine
instances deployed, two of them were clients and the third was
a server. The fourth instance was used as a server as well, but
deployed using a volume block. Cinder would be used to take
a snapshot of the instance deployed from the volume block and
Swift would be used to take a snapshot of the server virtual
machine instance. After the systems were deployed, a simple
RMI application was developed and deployed on the instances
to ensure they could communicate and transfer data between
each other.

We created multiple shell scripts for automation of snapshot
and recovery process. These scripts were helpful to generate
timely triggers to create and delete snapshots. We also created
script for meaningful data generation on Linux system. Scripts
that take snapshots of each instance at timed intervals and

142Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

maintain a specified number of backups were needed to
perform the experiment. For object storage, there were three
scripts created for taking a snapshot of the instance. The first
script would maintain the iterations, decide which instance to
target for the snapshot, and finally launch the other two scripts
over every iteration which performed the actual snapshot. The
second script would first delete any old snapshots exceeding
their lifespan and then create a new snapshot. The third script
was used to force the data to be written into memory and
prevent the instance from accepting input while the snapshot
is taken to prevent any data inconsistencies as this was
documented as best practice in the OpenStack documentation
[14]. For taking a snapshot using block storage, there were
two scripts associated with the process.

Again, one script was used to maintain the iterations,
which volume to target, and to launch the other script at
timed intervals. The second script would delete old snapshots
exceeding their lifespan and then create a new snapshot of
the volume. Generating data for the experiment manually
would have been a time consuming process. For this reason a
script was developed in order to create text files with readable
information within in order to have sample data during each
iteration. Due to the time it took to create the script for
generating the data, a snapshot was taken every two hours
instead of every three hours. Here is a tabular form of the
data collected during the experiment.

TABLE I
VM ACCESS AND PREPARATION

Iteration Test-Mem Mem-G ST VT SD VD
I-1 100 MB 105.4 MB 108 1 143 13
I-2 200 MB 207.6 MB 128 2 147 13
I-3 300 MB 309.8 MB 151 2 150 13
I-4 400 MB 411.0 MB 170 3 153 13
I-5 500 MB 513.2 MB 193 3 155 13

Table-1 is used to determine which methodology, object
storage or block storage, is faster in terms of the time it takes
to create a snapshot, the time it takes to deploy a snapshot and
the amount of data associated with each iteration. Here Test-
Mem denotes Test memory used as financial data block size,
Mem-G denotes memory generated after taking snapshot, ST
refers to time taken to create VM snaphsot(in seconds), VT
is time taken to create Volume snapshot(in seconds), SD and
VT are the time taken to deploy Vm and volume snapshot
respectively.

TABLE II
VM RECOVERY DATA

Iteration Tot-Bytes V-Snap Lost-Vm V-vm Lost-vol
I-1 10538598 10538598 0 10538598 0
I-2 20762214 20762214 0 20762214 0
I-3 25480806 25480806 0 25480806 0
I-4 15257190 15257190 0 15257190 0
I-5 26929875 26929875 0 26929875 0

Table-2 is used to determine which methodology, object
storage or block storage, is better at preserving consistent

data by measuring how many bytes of data are lost at each
iteration.In this table, V-snap refers to bytes in Vm snapshot,
Lost-Vm denotes bytes lost in Vm snapshot after deploying as
new Vm, V-Vm refers to bytes in volume snapshot and Lost-
V as bytes lost after deployment of new Vm using volume
snapshot.

V. RESULTS

Analyzing the results from Figure 3. we can see that in
terms of creating a backup, and deploying the backup, block
storage (Cinder) is much faster than object storage (Swift). For
an organization, this is a significant factor to consider when
creating a disaster recovery plan because we want to make
backups quickly to minimize overhead on the system so there
is minimal interference with service quality. The system can
be recovered a lot quicker using Cinder instead of Swift which
means the system will be down for shorter periods of time.
After some statistical calculations it was determined that using
Cinder to deploy a backup is approximately 53 times faster
than deploying a backup using Swift. As more data is stored
on these systems we can expect the time to create a backup
and backup deployment to increase. Let us assume the ratio
calculated holds for various sizes of data. If it takes one minute
to deploy a backup using block storage, then we can expect
a deployment using object storage to take approximately 53
minutes. This is a significant difference and having a service
down for approximately an hour may not be acceptable to an
organization who relies heavily on their IT infrastructure. In
terms of recovering a system from a disaster, it appears using
block storage is the better option.

Figure. 3. VM preparation analysis

Analyzing the results in Figure 4. we can observe that both
components, Cinder and Swift, experienced no data loss. As
the amount of data increases on each system, it would be
expected Swift and Cinder would begin to experience some
data loss. Therefore we can conclude, based on the results, that
both Cinder and Swift are effective in preserving small sets of
data. In future experiments, bigger sizes of data would be used
to test how much data we can have before we experience loss
from using Cinder and Swift. We would expect to lose data
when more data is stored on the system when using Swift or

143Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

Cinder but the goal would be to determine which component
provides more consistent data when it gets large. In terms of
providing consistent data, for this experiment, both Swift and
Cinder performed equally well.

Figure. 4. VM data recovery analysis

Based on the results from Table 1 and 2, we can conclude
that if our main objective of a disaster recovery plan is to
restore service as quickly as possible then Cinder would be
the correct path to go down. We can also conclude that both
components function with equal reliability if our system is
small. At the beginning all systems begin relatively small
therefore if we have 2 options with both providing equal
reliability and Cinder being 53 times faster than Swift, then
Cinder would be the optimal choice at that particular point
in time. As the system grows, more experiments could be
performed to help determine which provides more consistent
data as the size of the data grows and determine the trade-offs
if any.

VI. CONCLUSION

This paper shows how private cloud built on Openstack
platform was used to identify new unique strategy of vol-
ume replication. It provides efficient storage mechanism in
comparison to object based replication. In consideration with
strategies used in recent times, this study can help derive
an effective replication solution for openstack private cloud.
Given the following mechanism, we can implement simi-
lar strategies in different private Cloud platforms such as
Cloudstack, OpenNebula and Eucalyptus. We can see some
limitations in public clouds as datacenters can be situated in
different geo-locations which can add to hop count wait time
and produce delay in replication.

In conclusion, the experiment was a success for the reason
being that we wanted to find which method, block storage
or object storage, provided the best disaster recovery plan.
In this particular environment with a relatively small dataset
Cinder was proven to be the preferable choice as it held no
additional advantage over Swift in terms of data consistency
but it had a significant advantage in terms of the time it takes to
create a backup and deploy it. Overall, we have achieved both
goals for this study. We were able to build an environment

for the purposes of deploying a Private Cloud, deploying a
financial application utilizing RMI, and creating scripts for
the purpose of managing backups of systems deployed in the
Private Cloud. This work can be explored in future for the
other private Clouds and Inter-Clouds. This strategy can also
be used on Bigdata, which can produce interesting result.

ACKNOWLEDGMENT

The first author acknowledges graduate enhancement of tri-
council stipends (GETS) from the Faculty of Graduate Studies,
University of Manitoba. The second author acknowledges
Natural Sciences and Engineering Research Council (NSERC)
Canada and University of Manitoba for partial financial sup-
port for this research through Discovery Grant and University
Research Grant Programs.

REFERENCES

[1] M. Mesnier, G. R. Ganger, and E. Riedel, “Object-based storage,”
Communications Magazine, IEEE, vol. 41, no. 8, pp. 84–90, 2003.

[2] A. N. Toosi, R. K. Thulasiram, and R. Buyya, “Financial option
market model for federated cloud environments,” in Proceedings of the
2012 IEEE/ACM Fifth International Conference on Utility and Cloud
Computing. IEEE Computer Society, 2012, pp. 3–12.

[3] G. Suciu, E. G. Ularu, and R. Craciunescu, “Public versus private
cloud adoptiona case study based on open source cloud platforms,” in
Telecommunications Forum (TELFOR), 2012 20th. IEEE, 2012, pp.
494–497.

[4] S. Srirama, O. Batrashev, and E. Vainikko, “Scicloud: scientific com-
puting on the cloud,” in Proceedings of the 2010 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing. IEEE
Computer Society, 2010, pp. 579–580.

[5] J. Hu, J. Gu, G. Sun, and T. Zhao, “A scheduling strategy on load bal-
ancing of virtual machine resources in cloud computing environment,”
in Parallel Architectures, Algorithms and Programming (PAAP), 2010
Third International Symposium on. IEEE, 2010, pp. 89–96.

[6] Q. Wei, B. Veeravalli, B. Gong, L. Zeng, and D. Feng, “Cdrm: A cost-
effective dynamic replication management scheme for cloud storage
cluster,” in Cluster Computing (CLUSTER), 2010 IEEE International
Conference on. IEEE, 2010, pp. 188–196.

[7] M. J. Brim, D. A. Dillow, S. Oral, B. W. Settlemyer, and F. Wang,
“Asynchronous object storage with qos for scientific and commercial
big data,” in Proceedings of the 8th Parallel Data Storage Workshop.
ACM, 2013, pp. 7–13.

[8] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster, “Virtual
infrastructure management in private and hybrid clouds,” Internet com-
puting, IEEE, vol. 13, no. 5, pp. 14–22, 2009.

[9] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Yous-
eff, and D. Zagorodnov, “The eucalyptus open-source cloud-computing
system,” in Cluster Computing and the Grid, 2009. CCGRID’09. 9th
IEEE/ACM International Symposium on. IEEE, 2009, pp. 124–131.

[10] D. Milojičić, I. M. Llorente, and R. S. Montero, “Opennebula: A cloud
management tool,” IEEE Internet Computing, no. 2, pp. 11–14, 2011.

[11] O. Sefraoui, M. Aissaoui, and M. Eleuldj, “Openstack: toward an open-
source solution for cloud computing,” International Journal of Computer
Applications, vol. 55, no. 3, pp. 38–42, 2012.

[12] V. Chang, “Towards a big data system disaster recovery in a private
cloud,” Ad Hoc Networks, vol. 35, pp. 65–82, 2015.

[13] V. Padhye and A. Tripathi, “Scalable transaction management with snap-
shot isolation on cloud data management systems,” in Cloud computing
(CLOUD), 2012 IEEE 5th International Conference on. IEEE, 2012,
pp. 542–549.

[14] K. Pepple, Deploying openstack. ” O’Reilly Media, Inc.”, 2011.

144Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

