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Abstract—In this paper, we propose a new traffic classification
method which constructs hierarchical clusters using the features
of uncompleted flows. By constructing the hierarchical groups,
we can identify the similarity of the groups. If flows of a
new application construct a new group in the lower layer, but
they are classified in an existing group in the upper layer, the
manager can estimate the characteristic of the new application
from the characteristic of the existing group. In our method,
the hierarchical groups are constructed based on the clustering
method called AntTree; the each flow moves over the tree and find
the nodes whose similarity to the nodes exceeds the threshold. By
setting the threshold based on the number of monitored packets
of the flow, we classify the flow if the features of the flow become
sufficiently accurate. Otherwise we wait another packets that
improve the accuracy of the features.

Keywords—Traffic Classification; Hierarchical Clustering;
Swarm Intelligence

I. INTRODUCTION

As the Internet has become playing an important role in our
society, the number of types of services provided through the
Internet increases. The requirements to the network depend
on the type of the service. The video streaming application
requires enough bandwidth according to the bit rate of the
video. On the other hand, the interactive application such as
online game requires the communication with low latency
instead of the large bandwidth.

The network managers should manage their network so as to
provide sufficient network performance required by each ser-
vice. For example, Miyamura et al. [1] proposed a method that
constructs a virtual network for each service. In this method,
each virtual network is dynamically reconfigured so as to
provide a performance required by the service corresponding
to the network. To manage the network based on the types
of the service, we need to classify the traffic based on the
application.

The traditional classification of the traffic uses the port
numbers [2]. However, in recent years, a large number of types
of the applications, such as YouTube and network game, have
become provided through HTTP [3]. All of these applications
uses 80 or 443 port. As a result, the traffic classification using
the port numbers is no longer applicable in the Internet.

Therefore, the traffic classification methods based on the
features of the traffic have been proposed [2], [4]–[6]. The
packet sizes and packet arrival intervals depend on the types of
the application, and the protocol used by the application. The
traffic classification methods based on the features monitors
the packet size or packet arrival intervals for each flow. Then,
they classify the flows based on the monitored features by

using the clustering methods, in which the flows are grouped
so that the flows with the similar features belongs to the same
group.

The traffic classification should be performed as soon as
possible after the flow arrives. Even if the network manager
sets the rule to relay the flow according to the types of the
application, the rule cannot work before the classification of
the flow is completed. The existing method, however, cannot
classify the flow before monitoring the flow is completed. One
approach is to classify the flow after the predefined number
of packets are monitored. By setting the required number of
packets to the small value, we can classify the flow soon after
the flow arrives. However, the features of the flow obtained by
monitoring the small number of packets may be inaccurate,
and some application may be difficult to classify based on
such inaccurate information.

Another problem in the existing traffic classification is that
the group constructed by the classification methods does not
imply the characteristic of the group. When flows of a new
application comes, the flows are classified into a new group.
However, the existing classification methods do not provide
the information whether the newly constructed group has the
similar characteristic to the existing other groups. As a result, it
is difficult to estimate the characteristic of the new application.

In this paper, we propose a new traffic classification method
to solve the above problems. Our method is based on the
hierarchical clustering [7]. In the hierarchical clustering, the
groups of the flows are hierarchically constructed; the flows
are clustered into a small number of groups in the upper
layer, and the flows belonging to the same group in the upper
layers are clustered into several groups in the lower layer.
By constructing the hierarchical groups, we can identify the
similarity of the groups. If flows of a new application construct
a new group in the lower layer, but they are classified in an
existing group in the upper layer, the manager can estimate the
characteristic of the new application from the characteristic of
the existing group.

In our method, the hierarchical groups are constructed
based on the clustering method called AntTree [8]. AntTree
is inspired by the behavior of ants constructing the tree. In
the AntTree, an ant, which corresponds to an item required
to be classified, walks on the tree constructed by the other
ants. Then, if the ant find the ant whose similarity exceeds the
threshold, the ant is connected to the similar ant. If the nearby
ants do not have the similarity exceeding the threshold, the ant
updates the threshold and goes to another place on the tree.
By continuing this process, the hierarchical tree, where similar

131Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization



ants are connected, is constructed.
In our method, we extend AntTree to consider the accuracy

of the features. The features of the flow become accurate as
the number of monitored packets increases. We classify the
flow if the features of the flow become sufficiently accurate.
Otherwise we wait another packets that improve the accuracy
of the features. To achieve this, we extend the AntTree by
setting the threshold of the similarity to connect the ants
considering the number of monitored packets. By doing so,
if the quite similar group to the newly arrived flow exists,
the flow is classified soon after the flow starts. Otherwise, our
method waits another packet to improve the accuracy, and the
flow is classified after the sufficient packets are monitored.

The rest of this paper is organized as follows. Section II
explains the related work. Section III explains our online
hierarchical traffic classification method. In Section IV , we
conduct an experiment with real traffic data. The conclusion
and future work are mentioned in Section V.

II. RELATED WORK

This section explains the related work.

A. Traffic Classification

There are several papers proposing a method to classify the
traffic using the features of the monitored traffic.

Roughan et al. proposed a method to classify the traffic
through the supervised machine learning [4]. In this method,
the newly obtained data is classified as the class of its nearest
neighbor from the training data set. Zhang et al. improved the
accuracy of the nearest neighbor approach when the number of
the training data set is small by incorporating the correlation
information of the flows [9]. Moore et al. also proposed a
method to classify the traffic based on the supervised machine
learning [5]. In this method, the traffic is classified by using
the Naı̈ve Bayes classifier. Nguyen et al. also used the Naı̈ve
Bayes to classify the traffic [10]. This method uses the features
of a small number of most recent packets to obtain the
features. Then, applying the Naı̈ve Bayes, this method classify
the current flows. Zhang et al. also used the Naı̈ve Bayes
classifier [11]. In this method, flow correlation information
is modeled by bag-of-flow. Then, the features are extracted
for the represent traffic flows. The traffic is classified by
aggregating the output of the Naı̈ve Bayes classifiers using the
extracted features. Li et al. proposed a method to construct the
decision tree from the training data set [12]. Then the traffic
is classified based on the constructed decision tree. Jin et al.
proposed a traffic classification method using multiple simple
linear binary classifiers [13]. In this method, each classifier
can be easily trained. Then, combining the multiple classifiers,
we can accurately classify the traffic.

The supervised machine learning methods described above
require the training data set. However, as we discussed in
Section I, it is difficult to prepare the training data set including
the suitable labels for the traffic, because the new applications,
which are unknown when the system to classify the traffic
starts, emerge.

The methods to classify the traffic based on the clustering
have also been proposed.

Erman et al. applied the clustering method to the traffic clas-
sification [14]. They used the K-means method, DBSCAN, and
AutoClass, and demonstrated that these clustering algorithms
can classify the traffic accurately. Bernaille et al. proposed
a method to classify the traffic online using the K-means
method [6]. In this method, the clusters are constructed offline
by using the training data set. Then, flows are classified online
by searching the cluster corresponding to the flow. However,
this approach cannot classify the traffic which corresponds to
the application, which was not included in the training data
set. The clustering method can be used to solve this problem.
Zhang et al used the K-means method to detect the unknown
flows [15].

Recently, Wang et al. extended the K-means method to
improve the accuracy of the traffic classification [16]. In
this method, the accuracy is improved by considering the
information of the flow inferred from the packet headers as
the constraint on the clustering.

However, the existing traffic classification methods based
on the clustering have the following two problems. (1) These
methods do not consider the case that the new applications
emerges. Though the method proposed by Zhang et al [15] can
detect the unknown flows, it cannot estimate the characteristic
of the new flow. (2) These methods assume that the accurate
features of the flow are obtained before classifying the traffic.
However, the accurate features may not be able to be obtained
before the flow is completed.

In this paper, we propose a clustering method which solves
the above problems. Our clustering method can be applicable
to the existing traffic classification method based on the
clustering; our clustering method can be run by using any
features of the flows.

B. Clustering

There are many algorithms to construct the clusters.
K-means is one of the most popular clustering algorithms.

In the K-means method, the number of clusters k is given
as a parameter. Then, the k clusters are constructed so as to
minimize the distance from each data point to the center of
the cluster the data point belongs to, which is defined by the
mean of the data points within the cluster. However, the result
of the K-means only indicates the cluster which each data
point belongs to. Thus, we cannot understand the similarity of
the data points belonging to different clusters.

The hierarchical clustering methods can solve the above
problem. In the hierarchical clustering methods, the data points
are clustered into a small number of groups in the upper layer,
and the data points belonging to the same group in the upper
layers are clustered into several groups in the lower layer.
By constructing the hierarchical groups, we can identify the
similarity of the groups.

The ClusTree is one of the hierarchical clustering methods,
which allow to update the clusters online [7]. This method
constructs the tree, including two kinds of nodes, inner node
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and leaf node. The leaf node indicates a fine-grained cluster,
and has the pointer to the feature values of the corresponding
data points. The inner node corresponds to the coarse-grained
cluster, which includes the data points included in its children
nodes. The inner node has the pointer to the aggregated
features of the data points included in its children nodes. In
the ClusTree, the clusters can be updated by (1) searching the
leaf node corresponding to the new data point from the root
node, and (2) updating the features on the path from the root
node to the leaf node.

The ClusTree can be updated online, but does not consider
the case that the features are inaccurate. Therefore, in this
paper, we propose a new clustering method based on the
ClusTree, considering the case that the features are inaccurate.

AntTree [8] is another hierarchical clustering method.
AntTree is a method inspired by the behavior of the ants
constructing a tree. In this process, each data point acts as an
ant; each data point walks around the tree to find the node
similar to the flow, and connects it to the found node. In
the AntTree, the nodes in the constructed tree are the data
points. Therefore, it is difficult to interpret the constructed
tree hierarchically; we need to determine the data points
corresponding to the inner nodes when constructing the fine-
grained flow. However, the idea of the AntTree is useful to
handle the inaccuracy of the features. In the AntTree, each
data point has a threshold to determine whether the other data
points are similar to it. Then, each data point walks around
the tree based on the threshold. Though the original AntTree
updates the threshold based on the number of nodes the data
points visited, we can consider the inaccuracy of the features
by setting the threshold based on the accuracy of the features.
Therefore, in this paper, we introduce the method based on
the AntTree to search the cluster each data point belongs to.

III. ONLINE HIERARCHICAL TRAFFIC CLASSIFICATION
METHOD

This section explains our online hierarchical traffic classifi-
cation method.

A. Overview

In this paper, we develop the traffic classifier, which clas-
sifies the flow passing the classifier. The flow is defined by
the set of packets between the same IP address pairs using
the same server port. We regard the well-known ports as the
server ports, and the other ports as the client ports. In this
paper, the packets using the same server port is regarded as
the packets belonging to the same flow even if the packets
have the different client port, because some application such
as Web browser uses the multiple TCP connections for the
same transaction.

The traffic classifier monitors the flows. When the traffic
classifier receive a packet, it identifies the flow the packet
belongs to. Then, it stores the information of the packet. The
traffic classifier updates the features of the flow each time a
packet of the flow are monitored.

The traffic classifier classifies the flow based on its features.
To classify the flow, we use the hierarchical clustering meth-
ods. In the hierarchical clustering, the groups of the flows are
hierarchically constructed; the flows are clustered into a small
number of groups in the upper layer, and the flows belonging
to the same group in the upper layers are clustered into several
groups in the lower layer. By constructing the hierarchical
groups, we can identify the similarity of the groups.

Each time the features of the flow is updated, the traffic
classifier runs the clustering method. That is, the clustering is
performed before the flow completed by using the inaccurate
features, which leads to wrong classification. Therefore, we
use the clustering method considering the accuracy of the
features. The accuracy of the features of the flow increases
as the number of monitored packets becomes large. Thus, we
classify the flow if the features of the flow become sufficiently
accurate. Otherwise we wait another packets that improve the
accuracy of the features.

To achieve this, we extend the AntTree. In the AntTree, an
ant, which corresponds to an item required to be classified,
walks on the tree constructed by the other ants. Then, if the
ant find the ant whose similarity exceeds the threshold, the ant
is connected to the similar ant.

If the nearby ants do not have the similarity exceeding the
threshold, the ant updates the threshold and goes to another
place on the tree. By continuing this process, the hierarchical
tree, where similar ants are connected, is constructed.

In this paper, we set the threshold of the AntTree based on
the number of received packets; the flow with a small number
of monitored packets is connected to the node only if the very
similar node exists. On the other hand, the flow with a large
number of monitored packets is easier to be connected.

B. Data structure

In this paper, we construct the hierarchical cluster based
on ClusTree [7]. Figure 1 shows the data structure of the
constructed cluster.

In this data structure, the feature values of the flows are
stored in a table, and updated each time a packet corresponding
the flow arrives. We denote the feature value of the flow f as
the vector Ff .

This cluster has two kinds of nodes, inner node and leaf
node. The leaf node indicates a fine-grained cluster, and
includes l toL flows. Each leaf node has the pointer to the
feature values of the corresponding flows.

The inner node corresponds to the coarse-grained cluster,
which includes the flows included in its children nodes.
That is, by constructing the tree of inner nodes, we can
hierarchically construct clusters; the inner node near root node
corresponds to the coarser-grained cluster, and the node near
leaf corresponds to the finer grained node.

The inner node construct the tree structure by connecting
it tom to M children. Each inner node has the entries
corresponding to its children. Each entry has the abstracted
clustering features and the pointer to the corresponding child.
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The abstracted clustering features corresponding to the child
node c have the following values.

• The number of flows included in the abstracted features
nc

• The sum of the features Slinear, which is calculated by

Slinear
c =

∑
f∈Fc

Ff

where Fc is the set of flows included in cluster of the
node c.

In our method, there are flows that have not been classified
into any clusters. We maintain such flows in a list called
unclassified flows.

A flow	  feature

Clustering	  feature

Figure 1. Data structure of the hierarchical cluster

C. Process to update the tree

When the traffic classifier receives a packet, it identifies the
flow of the packet, and stores the packets. Each time a packet
of the flow arrive, the features of the flow are updated. At the
same time, the data structure of the tree is updated.

The process to update the tree depends on whether the flow
is already classified into one of the clusters or included in the
unclassified flows.

1) Update the data of the flows that is included in the
unclassified flows: We denote the flow finding the cluster by
fnew, the location of fnew by pfnew , the node whose feature
is the most similar to fnew among the children of pfnew by
cpfnew . T sim

f and T dissim
f are the thresholds for the flow f .

Sim(f, c) indicates the similarity between the flow f and the
node c, which is calculated by

Sim(f, c) = 1− distance(f, c)− distancemin

distancemax − distancemin
(1)

where distance(f, c) is defined by

distance(f, c) =

∣∣∣∣Ff +
Slinear
n

nc

∣∣∣∣ .
In this paper, the flow fnew moves over the tree by per-

forming the following rule once per one arrival packet.
• If pfnew is the root node

1) if the root node has no children, make a leaf node
and insert the pointer to fnew to the newly added
node

2) Otherwise, go to cpfnew

• If pfnew is not the root node
1) If Sim(fnew, cpfnew ) ≥ T sim

fnew ,
a) Go to cpfnew

b) If cpfnew is a leaf node,
i) Insert the pointer to fnew to cpfnew

ii) Update the abstracted clustering features of
the ancestors a of cpfnew by adding Ff to
Slinear
a and 1 to na

iii) If there exists a node whose number of
children exceeds the upper limit (L or M ),
add new a node

2) If Sim(fnew, cpfnew ) < T sim
fnew

a) Sim(fnew, cpfnew ) < T dissim
fnew , go back to the

parent node of cpfnew

b) Otherwise, stay at cpfnew

In the above steps, T sim
fnew and T dissim

fnew is updated by

Tsim(ai) = Tsim(ai)× α1, (2)

and
Tdissim(ai) = Tdissim(ai)× α2, (3)

where α1 and α2 are the parameters.
Addition of the new node in the above steps is done by the

following steps. First, we calculate
∑

c∈Ca

Slinear
n

nc
where a is a

node whose number of entries exceeds the upper limit, and Ca

is a set of the children of a. Then, we select the cmax whose
Slinear
n

ncmax
is the most different from

∑
c∈Ca

Slinear
n

nc
. Finally, we

remove the entry for cmax from a and add the node including
the entry for cmax. The parent of the newly added node is set
to the parent of a. If the parent of a also has more entries than
the upper limit after the above process, we perform the same
process for the parent again.

IV. EXPERIMENT

In this paper, we used our traffic classifier to classify the
flows from one computer in our laboratory, where 43 flows are
monitored. The computer accessed Web servers, an Exchange
server, and so on through the 80 or 443 port. To classify the
flows, we use the features shown in Table I. In this features, we
define the downstream packets as the packets from the servers
whose port number is a well-known port, and the upstream
packets as the packets to the servers.

In this experiment, we set the initial values of Tsim(ai)
and Tdissim(ai) to 1.0. We set α1 and α2 to 0.7. We started
the classification after 5 packets per flow were received. The
features of each flow were updated until more than 100 packets
of the flow were received. We stopped updating the features
after 100 packets were received, because the features do not
change significantly after a sufficient number of packets are
monitored.

Figure 2 shows the tree constructed by our classification.
Table II shows the features of the flow grouped by the cluster
in the lowest layer. Tables III and IV show the abstracted
clustering features divided by the number of flows included in
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TABLE I
FEATURES USED IN OUR EXPERIMENT

Name Description

E(sdown) Average of the size of the downstream packets
E(sup) Average of the size of the upstream packets
σ(sdown) Standard deviation of the size of the downstream packets
σ(sup) Standard deviation of the size of the upstream packets
E(idown) Average of the interval of the arrival of the downstream packets
E(iup) Average of the interval of the arrival of the upstream packets
σ(idown) Standard deviation of the interval of the arrival

of the downstream packets
σ(idown) Standard deviation of the interval of the arrival

of the upstream packets

the abstracted clustering features. To illustrate the result of the
clustering, we plot the scatter graph of the clustering features
of each flow. In Figures 3 and 4, we colored the flows based
on the group constructed in the 2nd layer and the 3rd layer of
the tree, respectively.

These figures show that our clustering method can group
flows into clusters so that the flows with the similar feature are
included in the same cluster, in any layers. That is, our method
can classify the flows even before the flow is completed.

These figure also indicates that the constructed clusters are
mainly based on the packet sizes, and packet arrival interval
does not have a large impact on the cluster.

Node 0	Node 1	Node 2	 Node 3	Node 4	Node 5	 Node 10	Node 9	Node 7	Node 8	Node 6	 Node 11	Node 12	Node 13	Node 14	Node 15	Node 16	

Depth 4	

Depth 3	

Depth 2	

Depth 1	

Node 3	

Node 1	 Node 2	
Node 4	

Node 0	

Node 5	

Node 6	

Node 0	 Node 1	 Node 2	

Root	

Figure 2. Tree constructed by our classification

V. CONCLUSION

In this paper, we proposed a new traffic classification
method that construct hierarchical groups of the similar flows.
Through the experiment, we demonstrated that our classifi-
cation method enables grouping similar flows into the same
clusters. That is, our method can classify the flows even
before the flow is completed. Results also indicates that the
constructed clusters are mainly based on the packet sizes, and
packet arrival interval does not have a large impact on the
cluster.

Our future work includes further verification of our method
using larger traffic data and discussion on more appropriate
features calculated from packet information.
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TABLE II
FEATURES OF THE FLOWS: DEPTH 4

flow number E(sdown) E(sup) σ(sdown) σ(sup) E(idown) E(iup) σ(idown) σ(iup)
Node 0
1 0.72084 0.0982946 0.42354 0.114737 1.01073e-005 1.51213e-005 3.37173e-005 3.97892e-005
2 0.627727 0.106697 0.426203 0.126686 5.652e-005 0.000123704 9.43008e-005 0.000106826
3 0.713851 0.0930637 0.381509 0.123607 0.000609879 0.000972389 0.00136518 0.00154726
4 0.804338 0.0884975 0.378517 0.112426 2.81074e-005 6.92139e-005 6.58568e-005 8.45793e-005
5 0.763775 0.116724 0.386436 0.159844 0.0123994 0.0198522 0.0582105 0.072384
Node 1
6 0.546043 0.101218 0.4561 0.115731 5.26767e-005 0.000108162 8.91574e-005 8.57252e-005
7 0.547945 0.104547 0.454592 0.128433 0.000902717 0.00128282 0.00165487 0.00184167
Node 2
8 0.715821 0.144243 0.396433 0.246516 2.88237e-005 3.63364e-005 8.34268e-005 9.56236e-005
Node 3
9 0.427973 0.293015 0.349902 0.284289 3.13866e-005 3.08145e-005 5.17207e-005 4.05901e-005
10 0.541256 0.504292 0.431807 0.441602 0.0011992 0.000964186 0.00186101 0.00159072
Node 4
11 0.361422 0.248002 0.384193 0.309865 0.000404118 0.000285903 0.000602977 0.000354651
12 0.335109 0.277778 0.378048 0.320403 0.000174889 0.000145212 0.000162109 0.000161237
Node 5
13 0.463263 0.20624 0.429613 0.281791 0.00074491 0.000975223 0.00158266 0.0018436
14 0.463263 0.226884 0.429613 0.292398 0.000326853 0.000513898 0.000358468 0.000505234
Node 6
15 0.378691 0.0986175 0.412466 0.0966242 9.41781e-005 7.83116e-005 0.000343073 0.000214059
16 0.384721 0.0927376 0.397592 0.0789838 1.71589e-005 1.75337e-005 5.07459e-005 4.32654e-005
17 0.32715 0.165906 0.398255 0.151882 0.00278449 0.00313977 0.00231127 0.00203568
18 0.406562 0.102182 0.422961 0.0993938 0.000132655 0.000113818 0.000257254 0.000232465
19 0.402588 0.143075 0.437178 0.194868 6.77042e-005 0.00115388 0.00010484 0.0017407
Node 7
20 0.274734 0.109589 0.369642 0.132467 0.000220875 0.000434846 0.000330604 0.00039426
Node 8
21 0.479959 0.10624 0.441488 0.125773 0.0506274 0.0633271 0.101089 0.109396
Node 9
22 0.0570776 0.0593607 0.0114155 0 0.0222335 0.0500198 0.0248326 6.13253e-006
23 0.105784 0.0410959 0 0 0.250259 0.250248 3.545e-006 6.00934e-005
24 0.105784 0.0410959 0 0 0.250257 0.250257 7.90377e-006 0.000219129
25 0.167047 0.328767 0.121385 0 0.323694 0.727734 0.36831 0.121438
Node 10
26 0.0456621 0.0410959 0 0 0.0105705 0.00906027 0.022708 0.0213338
Node 11
27 0.1207 0.0628615 0.0339138 0.0021309 0.00817775 0.00833702 0.00765219 0.00837687
Node 12
28 0.293715 0.10136 0.342828 0.0946878 0.000162252 0.000128599 0.000429047 0.000293705
29 0.3431 0.128742 0.420671 0.191927 0.000136547 0.00013721 0.000158327 8.46613e-005
30 0.256722 0.0967783 0.350721 0.120472 0.00795401 0.00795477 0.00984362 0.0097643
31 0.222 0.107827 0.309717 0.0900621 0.000672249 0.000859237 0.00212733 0.00252721
Node 13
32 0.153349 0.174458 0.190907 0.148768 2.02533e-005 2.86792e-005 5.66575e-005 6.71647e-005
33 0.102055 0.181602 0.0811775 0.176932 9.99759e-005 7.07622e-005 0.000182625 0.000142923
34 0.140665 0.171487 0.131139 0.178177 2.1e-005 1.51033e-005 2.84602e-005 1.38837e-005
35 0.150158 0.132479 0.151779 0.146517 8.32722e-005 8.31819e-005 0.000175796 0.000215069
36 0.100761 0.199391 0.107929 0.277773 0.0292866 0.023471 0.0504462 0.0461822
Node 14
37 0.122273 0.129427 0.0958468 0.102736 0.044121 0.0536464 0.127781 0.138994
Node 15
38 0.226636 0.0888128 0.170655 0.0909378 0.0431425 0.0196648 0.0638903 0.0455347
Node 16
39 0.946356 0.0748792 0.208481 0.156522 3.45042e-005 0.000112505 6.80385e-005 0.000201225
40 0.756059 0.0831219 0.380303 0.112472 0.000272307 0.000536175 0.000593526 0.000963796
41 0.895826 0.0653595 0.278181 0.0857372 7.59293e-005 0.000120305 0.000233297 0.000279578
42 0.862609 0.0769847 0.324408 0.0999886 6.9086e-006 1.35787e-005 1.75598e-005 2.69238e-005
43 0.899784 0.088946 0.292179 0.123184 3.14463e-005 7.06452e-005 5.85814e-005 6.59837e-005
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TABLE III
FEATURES OF THE FLOWS: DEPTH 3

flow number E(sdown) E(sup) σ(sdown) σ(sup) E(idown) E(iup) σ(idown) σ(iup)
Node 0
1-5 0.726106 0.100655 0.399241 0.12746 0.0026208 0.00420653 0.0119539 0.0148325
6-7 0.546994 0.102882 0.455346 0.122082 0.000477697 0.00069549 0.000872014 0.000963698
8 0.715821 0.144243 0.396433 0.246516 2.88237e-005 3.63364e-005 8.34268e-005 9.56236e-005
Node 1
9-10 0.484614 0.398653 0.390854 0.362946 0.000615291 0.0004975 0.000956365 0.000815653
11-12 0.348266 0.26289 0.38112 0.315134 0.000289504 0.000215557 0.000382543 0.000257944
13-14 0.463263 0.216562 0.429613 0.287094 0.000535882 0.00074456 0.000970564 0.00117442
Node 2
15-19 0.379942 0.120503 0.41369 0.12435 0.000619237 0.000900662 0.000613436 0.000853234
20 0.274734 0.109589 0.369642 0.132467 0.000220875 0.000434846 0.000330604 0.00039426
21 0.479959 0.10624 0.441488 0.125773 0.0506274 0.0633271 0.101089 0.109396
Node 3
22-25 0.108923 0.11758 0.0332002 0 0.211611 0.319565 0.0982885 0.0304309
26 0.0456621 0.0410959 0 0 0.0105705 0.00906027 0.022708 0.0213338
27 0.1207 0.0628615 0.0339138 0.0021309 0.00817775 0.00833702 0.00765219 0.00837687
Node 4
28-31 0.278884 0.108677 0.355984 0.124287 0.00223127 0.00226995 0.00313958 0.00316747
Node 5
32-36 0.129397 0.171883 0.132586 0.185633 0.00590221 0.00473374 0.0101779 0.00932424
37 0.122273 0.129427 0.0958468 0.102736 0.044121 0.0536464 0.127781 0.138994
38 0.226636 0.0888128 0.170655 0.0909378 0.0431425 0.0196648 0.0638903 0.0455347
Node 6
39-43 0.872127 0.0778583 0.29671 0.115581 8.42191e-005 0.000170642 0.0001942 0.000307501

TABLE IV
FEATURES OF THE FLOWS: DEPTH 2

flow number E(sdown) E(sup) σ(sdown) σ(sup) E(idown) E(iup) σ(idown) σ(iup)
Node 0
1-8 0.680042 0.106661 0.412916 0.140997 0.00176102 0.0028075 0.00769962 0.00952319
9-14 0.432048 0.292702 0.400529 0.321725 0.000480226 0.000485873 0.000769824 0.000749338
15-21 0.379201 0.116907 0.411369 0.125713 0.00770635 0.00975218 0.0149268 0.0162938
Node 1
22-27 0.100342 0.0957128 0.0277857 0.00035515 0.144199 0.215943 0.0705857 0.025239
28-31 0.278884 0.108677 0.355984 0.124287 0.00223127 0.00226995 0.00313958 0.00316747
32-38 0.142271 0.153951 0.132776 0.160263 0.0166821 0.0138543 0.0346516 0.0330214
Node 2
39-43 0.872127 0.0778583 0.29671 0.115581 8.42191e-005 0.000170642 0.0001942 0.000307501
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Figure 3. Features distribution: depth 3
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