CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

How to Synchronize Large-Scale Ultra-Fine-Grained
Processors in Optimum-Time

Hiroshi Umeo
School of Information Engineering
University of Osaka Electro-Communication
Neyagawa-shi, Hastu-cho, 18-8, Osaka
Email: umeo@cyt.osakac.ac.jp

Abstract—We introduce a new class of FSSP (firing squad syn-
chronization problem) algorithms based on recursive-halving and
construct a survey on recent developments in FSSP algorithms for
one-dimensional cellular arrays. We present herein a comparison
of the quantitative aspects of the optimum-time FSSP algorithms
developed so far. Several state-efficient new implementations
and new insights into synchronization algorithms and multi-
dimensional expansions are also given.

Keywords—cellular automata, synchronization

|. INTRODUCTION

Synchronization of large-scale networks is an important
and fundamental computing primitive in paralel and dis-
tributed systems. The synchronization in ultra-fine grained
paralel computational model of cellular automata, known
as firing squad synchronization problem (FSSP), has been
studied extensively for more than fifty years, and a rich
variety of synchronization algorithms has been proposed. In the
present paper, we introduce a new class of FSSP algorithms
based on recursive-halving and construct a survey on recent
developments in FSSP agorithms for one-dimensional cellular
arrays. The algorithms being compared are Balzer [1], Gerken
[2], Waksman [20], a number of revised versions thereof, and
their generalized versions such as Moore and Langdon [8],
Settle and Simon [10], Szwerinski [11], all included in the
proposed new class of FSSP algorithms. We present herein a
survey and a comparison of the quantitative aspects of the
optimum-time synchronization algorithms developed so far.
Several state-efficient new implementations, new insights into
synchronization agorithms and multi-dimensional expansions
are also given.

Specifically, we attempt to answer the following questions:

e First, are all previously presented transition rule sets
correct?

e Do these sets contain redundant rules? If so, what is
the exact rule set?

e How do the agorithms compare with each other?

e Can we expand those 1D FSSP agorithms proposed
so far to 2D, 3D arrays, or more generaly to multi-
dimensional arrays?

e How can we synchronize multi-dimensional arrays in
optimum-time?

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

In Section 2 we give a description of the FSSP and review
some basic results on the FSSP for 1D arrays. Section 3
introduces a new class of FSSP algorithms based on recursive-
halving and presents multi-dimensional generalizations of the
algorithms. In the last section we give a summary of the paper.

Il. FIRING SQUAD SYNCHRONIZATION PROBLEM

In this section, we define the FSSP and introduce some
basic results on FSSP.

A. Firing Squad Synchronization Problem

Figure 1 illustrates a finite one-dimensiona (1D) cellular
array consisting of n cells. Each cell is an identical finite-state
automaton. The array operates in lock-step mode in such a
way that the next state of each cell is determined by both its
own present state and the present states of its left and right
neighbors. All cells (soldiers), except one general, are initially
in the quiescent state at time ¢ = 0 with the property that the
next state of a quiescent cell with quiescent neighbors is the
quiescent state again. At time ¢ = 0, one general cell C; is
in the fire-when-ready state, which is the initiation signal for
the synchronization of the array. The FSSP is to determine
a description (state set and next-state function) for cells that
ensures all cells enter the fire state at exactly the same time and
for the first time. The set of states and the next-state function
must be independent of n.

C

(& Cs Cs C.
Genaral %f—/

Soldiers

Fig. 1. One-dimensional cellular automaton

A forma definition of the FSSP is as follows: A cellular
automaton M is a pair M = (Q,), where

1) Q is afinite set of states with three distinguished
states G, Q, and F. G is an initial genera state, Q is
a quiescent state, and F is a firing state, respectively.

2) Jisanext state function such that 6 : QU {x} x Q x
QU {*} — Q. The state * ¢ Q is a pseudo state of
the border of the array.

3) The quiescent state @ must satisfy the following
conditions: §(Q,Q,Q) = 4(x,Q,Q) = 4(Q,Q,*) = Q.

A cellular automaton of length n, M, consisting of n
copies of M is a 1D array of M, numbered from 1 to n.

81

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

Each M is referred to as a cell and denoted by C;, where
1 <i < n. Wedenote astate of C; at time (step) ¢ by s, where
t > 0,1 <i < n.A configuration of M,, at timet isafunction
C!:[1,n] — Q and denoted as S!S} st.. A computation of
M,, isasequence of configurations of M,,, C°, C!, C?,, C?,
..., where CY is a given initial configuration. The configuration
at time t + 1, C**!, is computed by synchronous applications
of the next transition function § to each cell of M,, in Ct such
that:

5 tsfi“ = 6()*,55,55), sttt =4(st_y,st,st,,), and sttt =
S,_155,,,%).

A synchronized configuration of M,, at time ¢ is a config-
uration C*, st =F, forany 1 <i < n.

The FSSP is to obtain an M such that, for any n > 2,

1) A synchronized configuration at time ¢ = T(n),

—
¢t =F, ... F can be computed from an initial
n—1
. . ——
configuration C° = GQ,--- , Q.
2) Foranyt,isuchthat 1 <t <T(n)—1,1<i<
n,St #F.

The generalized FSSP (GFSSP) is to obtain an M such
that, for any n > 2 and for any k such that 1 < k < n,

1) A synchronized configuration at time ¢ = T'(n),

¢t =F, ... F can be computed from an initial
k—1 n—k
. . 0 —N— ——
configuration ¢ =Q,--- ,QGQ,--- ,Q.
2) Forany t,i,suchthaal<t<T(n)—1,1<i<
n, St # F.

No cells fire before time t = T'(n). We say that M,, is
synchronized at time ¢ = T'(n) and the function T'(n) is a
time complexity for the synchronization.

B. A Brief History of the Developments of Optimum-Time
FSSP Algorithms

The problem known as the firing squad synchronization
problem was devised in 1957 by J. Myhill, and first appeared
in print in a paper by E. . Moore [7]. This problem has
been widely circulated, and has attracted much attention. The
firing squad synchronization problem first arose in connection
with the need to simultaneously turn on all parts of a sdlf-
reproducing machine. The problem was first solved by J.
McCarthy and M. Minsky who presented a 3n-step algo-
rithm. In 1962, the first optimum-time, i.e., (2n — 2)-step,
synchronization algorithm was presented by Goto [3], with
each cell having several thousands of states. Waksman [20]
presented a 16-state optimum-time synchronization algorithm.
Afterward, Balzer [1] and Gerken [2] developed an eight-
state algorithm and a seven-state synchronization algorithm,
respectively, thus decreasing the number of states required
for the synchronization. In 1987, Mazoyer [5] developed a
six-state synchronization agorithm which, at present, is the
algorithm having the fewest states.

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

C. Complexity Measures for FSSP Algorithms

Time

Any solution to the original FSSP with a general at
one end can be easily shown to require (2n — 2) steps
for synchronizing n cells, since signals on the array
can propagate no faster than one cell per one step, and
the time from the general’s instruction until the final
synchronization must be at least 2n — 2.

Theorem 1 The minimum time in which the firing
squad synchronization could occur is 2n — 2 steps,
where the general is located on the left end.

Theorem 2 There exists a cellular automaton that can
synchronize any 1D array of length n in optimum 2n—
2 steps, where the general is located on the left end.

Number of States

The following three distinct states: the quiescent state,
the general state, and the firing state, are required in
order to define any cellular automaton that can solve
the FSSP. Note that the boundary state for C, and
C,h+1 is not generally counted as an internal state.
Balzer [1] and Sanders [9] showed that no four-state
optimum-time solution exists. Umeo and Yanagihara
[17], Yunés [21], and Umeo, Kamikawa, and Yunés
[14] gave some 5- and 4-state partial solutions that
can solve the synchronization problem for infinitely
many sizes n, but not all, respectively. The solution
is referred to as partial solution, which is compared
with usual full solutions that can solve the problem for
all cells. Concerning the optimum-time full solutions,
Waksman [20] presented a 16-state optimum-time
synchronization algorithm. Afterward, Balzer [1] and
Gerken [2] developed an eight-state algorithm and
a seven-state synchronization algorithm, respectively,
thus decreasing the number of states required for the
synchronization. Mazoyer [5] developed a six-state
synchronization algorithm which, at present, is the
algorithm having the fewest states for 1D arrays.

Theorem 3 There exists a 6-state full solution to the
FSSP.

Theorem 4 There is no four-state full solution that
can synchronize n cells.

Yunes [21] and Umeo, Yunes, and Kamikawa [14]
developed 4-state partial solutions based on Wolfram's
rules 60 and 150. They can synchronize any array/ring
of length n = 2% for any positive integer k. Details
can be found in Yunes [21] and Umeo, Kamikawa,
and Yunes [14].

Theorem 5 There exist 4-state partial solutionsto the
FSSP.

Number of Transition Rules

Any k-state (excluding the boundary state) transition
table for the synchronization has at most (k — 1)k?
entries in (k — 1) matrices of size k x k. The number
of transition rules reflects a complexity of synchro-
nization algorithms.

82

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

e State-Change Complexity

Vollmar [18,19] introduced a state-change complexity
in order to measure the efficiency of cellular automata,
motivated by energy consumption in certain SRAM-
type memory systems. The state-change complexity
is defined as the sum of proper state changes of
the cellular space during the computations. A formal
definition is as follows: Consider an FSSP algorithm
operating on n cells. Let T'(n) be synchronization
steps of the FSSP agorithm. We define a matrix C
of size T'(n) x n (T'(n) rows, n columns) over {0, 1},
where each element ¢; ; on 4th row, jth column of the
matrix is defined:

1 s/ £g!
cm—{ : 75)

0 otherwise.

The state-change complexity SC(n) of the FSSP
algorithm is the sum of 1's elements in C' defined
as:

T(n) n

SC(n) = Z Zci,j- 2

j=1 i=1

Vollmar [19] showed that Q(nlog n) state-changes are
required for synchronizing n cellsin (2n — 2) steps.

Theorem 6 Q(nlogn) state-change is necessary for
synchronizing n cells in minimum-steps.

Gerken [2] presented a minimum-time, O(nlogn)
minimum-state-change FSSP algorithm with a general
at one end.

Theorem 7 ©(nlogn) state-change is sufficient for
synchronizing n cells in 2n — 2 steps.

I1l. A CLASS OF FSSP ALGORITHMS BASED ON
RECURSIVE-HALVING

Here we introduce a new class of FSSP algorithms based
on recursive halving.

A. Recursive-Halving Marking

In this section, we develop a marking schema for 1D arrays
referred to as recursive-halving marking. The marking schema
prints a special mark on cells in a cellular space defined by
the recursive-halving marking. It is based on a 1D FSSP syn-
chronization algorithm. The marking will be effectively used
for constructing multi-dimensional FSSP algorithms operating
in optimum-time.

Let S be a 1D cdlular space consisting of cells C;, Ciy1,
..., C;, denoted by [:...j], where j > 4. Let |S| denote the
number of cellsin S, that is |S| = j —i+ 1. A center cell(s)
C, of S is defined by

|S|: odd
|S]: even.

_J@+5)/2
x_{(i+j—1)/27(i+j+1)/2)

The recursive-halving marking for a given cellular space S
= [1...n] is defined as follows:

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

Recursive-Halving Marking: RHM

Algorithm RHM(S)

begin

if |S] > 2 then
If |.S| is odd then

mark center cell C, in S

Sr= [1...95}; Sr:= [xn;

RHML(SL); RHMg(SR);
e

els
mark center cellsC, and C,1 in S
Sr= [1...1‘}; Sr:= [z + 1..n]
q RHML(SL); RHMRg(SR);
en

Left-Side Recursive-Halving Marking: RHM,
Algorithm RHML(S)

egin
while |S| > 2 do
if |S| is odd then
mark center cell C, in S
| SL:: []....I]; RHML(SL);
else
mark center cellsC, and C,41 in S
SL:: []....I]; RHML(SL);

end

The marking RHMy, for the right-side space can be defined
in asimilar way. As an example, we consider a cellular space
S =[1...15] consisting of 15 cells. The first center cell is Cs,
then the second one is C4, C5 and C;1, Ci2, and the last one
is Cy, Cs, Cy3, Cy4, respectively. In case S = [1...17], we get
Cy, Cs, Ci3, C3, Cy5, and Co, Cis after four iterations.

Fig. 2. Recursive-halving marking

Figure 2 (left) shows a space-time diagram for the marking.
At time ¢t = 0, the leftmost cell C; generates a set of signals
w1, Wa, ..., Wk, .., €&Ch propagating in the right direction at
1/(2%—1) speed, where k = 1,2, 3, ..., . The 1/1-speed signa
wy arives at C, at time ¢ = n — 1. Then, the rightmost cell
C,, aso emits an infinite set of signas wy, wo, ..., wg, .., €ach
propagating in the left direction at 1/(2% — 1) speed, where
k =1,2,3,..., . The readers can find that each crossing of
two signals, shown in Figure 2 (left), enables the marking at
middle points defined by the recursive-halving. A finite state
realization for generating the infinite set of signals above is a
well-known technique employed in Balzer [1], Gerken [2], and
Waksman [20] for the implementations of the optimum-time
synchronization algorithms on 1D arrays.

We have developed a simple implementation of the
recursive-halving marking on a 13-state, 314-rule cdlular
automaton. In Figure 2 (middle and right) we present several

83

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

snapshots for the marking on 42 and 71 cells, respectively. We
have:

Lemma 8 There exists a 1D 13-state, 314-rule cellular au-
tomaton that can print the recursive-halving marking in any
cellular space of length n in 2n — 2 steps.

An optimum-time complexity 2n — 2 needed for synchro-
nizing cellular space of length n in the classical WBG-type
(Waksman [20], Balzer [1], and Gerken [2]) FSSP algorithms
can be interpreted as follows: Let S be a cellular space of
lengthn = 2n;+1, wheren, > 1. Thefirst center mark in S'is
printed on cell C,,, 1 at time t1p—_center = 3n1. Additional n;
steps are required for the markings thereafter, yielding a final
synchronization at time t1p_opt = 3n1 +n1 =4n; = 2n — 2.
In the case n = 2n1, where n; > 1, the first center mark
is printed simultaneously on cells C,, and C,,, 1 a time
t1D—center = 3M1 — 1. Additional n; — 1 steps are required
for the marking thereafter, yielding the final synchronization
aItimetlD_opt =3n1 —14n—1=4n; — 2 =2n — 2.

{3n1 |S| = 2n1 + 1,
t1D—center =

15| = 2ny. @)

3’111—1

Thus, additional tsy,. Steps are required for the synchro-
nization for a cellular space with the recursive-halving marks:

ni
tsync = {nl 1 (5)

7NN
N4

Fig. 3. Synchronization based on recursive-halving

In this way, it can be easily seen that any cellular space
of length n with the recursive-halving marking initially with
a general on a center cell or two generals on adjacent center
cells can be synchronized in [n/2] — 1 optimum-steps.

Lemma 9 Any 1D cellular space S of length n with the
recursive-halving marking initially with a general(s) on a
center cell(s) in S can be synchronized in [n/2] —1 optimum-
steps.

In Figure 3, we illustrate a space-time diagram for synchro-
nizing a cellular space with recursive-halving marking (left)
and some snapshots for the synchronization on 17 (middle)
and 32 (right) cells, respectively.

As was seen, the first marking of center cell(s) plays
an important role. In order to use the marking scheme for
the design of multi-dimensional FSSP agorithms, we print a
special mark only on the first center cell(s) of a given cellular
space, where the center cells thereafter will be marked with a
different symbol from the first one.

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

EEEEEEE

R
T T T

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEER

FEEEEEEEEE

Fig. 4. Waksman's FSSP

1001112 18 14 15 16 17 18 19 20
T

EEEED T

T
T
T
T
T
T
T
T
T
T
T
T
T

T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
0

Fig. 5. Balzer's FSSP

B. Waksman's 16-state Algorithm

Waksman [20] proposed a 16-state firing squad synchro-
nization algorithm. Umeo, Hisaoka, and Sogabe [13] corrected
all errors in Waksman's original transition table. In Figure 4,
we give a snapshot of the synchronization processes on 20 cell
and alist of transition rules for Waksman's algorithm. The list
is a revised version presented in Umeo, Hisaoka, and Sogabe
[13]. The state-change complexity of the algorithm is O(n?).

C. Balzer’s Eight-state Algorithm

Balzer [1] constructed an eight-state, 182-rule synchro-
nization algorithm and the structure of which is completely
identical to that of Waksman [20]. In Figure 5, we give

84

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

FF

Fig. 6. Gerken's FSSP

a snapshot of the algorithm and a list of transition rules
for Bazer's agorithm. The state-change complexity of the
agorithm is O(n?).

D. Gerken's Seven-state Algorithm

Gerken [2] reduced the number of states realizing Balzer's
algorithm and constructed a seven-state, 118-rule synchroniza-
tion algorithm. In Figure 6, we give alist of the transition rules
for Gerken's agorithm and its snapshots. The state-change
complexity of the algorithm is O(n?).

E. An Optimum-Time 2D FSSP Algorithm A

We assume that an initial general G is on the north-west
corner cell C; ; of agiven array of size m x n. The agorithm
consists of three phases: a marking start phase for 2D arrays,
pre-synchronization phase and a final synchronization phase.
An overview of the 2D synchronization algorithm A is as
follows:

Step 1. Start the recursive-halving marking for cells on each
row and column, find a center cell(s) of the 2D array, and
generate a new general(s) on the center cell(s). Note that a
crossing(s) of the center column(s) with the center row(s) is a
center cell(s) of the array.

Step 2. Pre-synchronize the center column(s) using Lemma
6, which is initiated by the general in step 1. Every cell(s) on
the center column(s) acts as a general at the next Step 3.

Step 3. Synchronize each row using Lemma 6, initiated
by the general generated in Step 2. This yields the final
synchronization of the array.

Thus, we have:

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

Theorem 10 The synchronization agorithm .4 can synchro-
nize any m x n rectangular array in optimum m + n +
max(m,n) — 3 steps.

Theorem 11 There exists an optimum-time synchronization
algorithm that can synchronize any three-dimensional array of
size m x n x ¢ with ageneral at C; ;1 in optimum m +n +
£+ max(m,n,£) — 4 steps.

Theorem 12 There exists an optimum-time synchronization
algorithm that can synchronize any kD array of size n; x
ng X ... x ni with a general at C;;,. 1 in optimum n; +
na+, ..., +ni + max(ni, na, ...,ng) — k — 1 steps.

F. A Comparison of Quantitative Aspects of Optimum-Time
Synchronization Algorithms

Here, we present atable based on a quantitative comparison
of optimum-time synchronization algorithms and their tran-
sition tables discussed above with respect to the number of
internal states of each finite state automaton, the number of
transition rules realizing the synchronization, and the number
of state-changes on the array.

TABLE I. COMPARISON OF FSSP ALGORITHMS
Algorithm # of states # of transition | State change
rules complexity
Goto [3] many thousands — O (nlogn)
Waksman [20] 16 202 0o(n?)
Balzer [1] 8 165 0o(n?)
Gerken | [2] 7 105 0o(n?)
Mazoyer [5 6 119 o(n?)
Gerken 11 [2] 155 2371 O(nlogn)

G. O(1)-hit vs. 1-bit Communication FSSP

In the study of cellular automata, the amount of bit-
information exchanged at one step between neighboring cells
has been assumed to be O(1)-bit data. An O(1)-bit CA is
a conventional CA in which the number of communication
bits exchanged at one step between neighboring cells is as-
sumed to be O(1)-hit, however, such inter-cell bit-information
exchange has been hidden behind the definition of conventional
automata-theoretic finite state description. On the other hand,
the 1-bit inter-cell communication model isanew CA in which
inter-cell communication is restricted to 1-bit data, referred
to as the 1-bit CA model. The number of internal states of
the 1-bit CA is assumed to be finite in the usual sense. The
next state of each cell is determined by the present state of
that cell and two binary 1-bit inputs from its left and right
neighbor cells. Thus, the 1-bit CA can be thought of as one
of the most powerless and the simplest models in a variety
of CA's. A precise definition of the 1-bit CA can be found
in Umeo and Yanagihara [17]. Umeo and Yanagihara [17]
constructed an optimum-time synchronization algorithm on a
1-bit CA model, based on Waksman's algorithm. In Figure 7,
we show a configuration of the 1-bit synchronization algorithm
on 15 cells. Each cell has 78 internal states and 208 transition
rules. The small black triangles » and « indicate a 1-bit signal
transfer in the right or left direction, respectively, between
neighboring cells. A symbol in a cell shows internal state of
the cell.

[Theorem 13] There exists a 1-bit CA that can synchronize n
cells in optimum 2n — 2 steps.

85

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

(@ nininininininininioniomnio)
g
FEEPOOIDODOOOOHOHE
g g e e
[el s i i i N)
FHEHIPOOOODOOMHE
EECHERHEROOO0OO0OE
FEESHIHJOIPOODHOMHE
FEOECDHEEHEROOOO0OE
FEHEHEHHEIRODOOMHE
EEROEEHHEHEPEEROOOE
FEAHEHHEHEEROOE
g
g 0 e
EEEHEHHEHEHEEHE2EE
CEECHEHEHEEEDEEEE
g s 0 e e
[gl i i o i s e
E EBa EHEHEEEHEE HEEE
EEED E EEE CE E EHE EE
FEHECEHEECECIEEE
E E Ed H O H S EEEd
g s e e
g o O s
R BE O BOE H BEUaEs
[O BEE 2R ES
EE O 0 BEOEE D O EES
EEOEOEEOE0R00000
0

Fig. 7. FSSP on 1-bit CA

IV. CONCLUSION AND FUTURE WORK

In the present paper, we have given a survey on recent

developments in FSSP algorithms for one-dimensional cellular
arrays. We focus our attention on a new class of FSSP
algorithms based on recursive-halving. It is shown that the
recursive-halving marking has been used in the design of many
optimum-time FSSP algorithms and can be generalized and ex-
panded to multi-dimensional arrays. Several multi-dimensional
generalizations of the algorithms are also given. As a future
work an FSSP for growing multi-dimensional arrays would be
interesting.

(1]
(2]

(3]

(4]

(9]

(6]

(8]
(9]

[10]

[11]

Copyright (c) IARIA, 2016.

REFERENCES

R. Balzer: An 8-state minimal time solution to the firing squad synchro-
nization problem. Information and Control, vol. 10, pp. 22-42, 1967.

Hans-D. Gerken: Uber Synchronisations - Probleme bei Zellularauto-
maten. Diplomarbeit, Institut fur Theoretische Informatik, Technische
Universitét Braunschweig, pp. 50, 1987.

E. Goto: A minimal time solution of the firing squad problem. Dittoed
course notes for Applied Mathematics 298, Harvard University, pp. 52-
59, with an illustration in color, 1962.

J. Mazoyer: An overview of the firing squad synchronization problem.
Lecture Notes on Computer Science, Springer-Verlag, vol. 316, pp. 82-
93, 1986.

J. Mazoyer: A six-state minimal time solution to the firing squad
synchronization problem. Theoretical Computer Science, vol. 50, pp.
183-238, 1987.

M. Minsky: Computation: Finite and infinite machines. Prentice Hall,
pp. 28-29, 1967.

E. F. Moore: The firing squad synchronization problem. in Sequential
Machines, Selected Papers (E. F. Moore, ed.), Addison-Wesley, Reading
MA., pp. 213-214, 1964.

F. R. Moore and G. G. Langdon: A generalized firing squad problem.
Information and Control, 12, pp. 212-220, 1968.

P. Sanders: Massively parallel search for transition-tables of polyau-
tomata. In Proc. of the VI International Workshop on Parallel Process-
ing by Cellular Automata and Arrays, (C. Jesshope, V. Jossifov and W.
Wilhelmi (editors)), Akademie, 99-108, 1994.

A. Settle and J. Simon: Smaller solutions for the firing squad. Theoret-
ical Computer Science, 276, 83-109, 2002.

H. Szwerinski: Time-optimum solution of the firing squad synchro-
nization problem for n-dimensional rectangles with the general at an

arbitrary position. Theoretical Computer Science, vol. 19, pp. 305-320,
1982.

ISBN: 978-1-61208-460-2

[12]

[13]

[14]

[19]

[16]

[17]

(18]

[19]

[20]

[21]

H. Umeo: Firing squad synchronization problem in cellular automata.
In Encyclopedia of Complexity and System Science, R. A. Meyers (Ed.),
Springer, Vol.4, pp.3537-3574, 2009.

H. Umeo, M. Hisaoka, and T. Sogabe: A survey on optimum-time
firing squad synchronization algorithms for one-dimensiona cellular
automata. Int. J. of Unconventional Computing, vol. 1, pp.403-426,
2005.

H. Umeo, N. Kamikawa, and J.-B. Yunes. A family of smallest
symmetrical four-state firing squad synchronization protocols for ring
arrays. Parallel Processing Letters, Vol.19, No.2, pp.299-313, 2009.

H. Umeo, N. Kamikawa, K. Nishioka, and S. Akiguchi: Generalized
Firing Squad Synchronization Protocols for One-Dimensional Cellular
Automata - A Survey. Acta Physica Polonica B, Proceedings Supple-
ment. Vol.3, pp.267-289, 2010.

H. Umeo, K. Kubo, and K. Nishide: A class of time-optimum FSSP
algorithms for multi-dimensional cellular arrays. Communications in
Nonlinear Science and Numerical Smulation, 21, pp.200-209, 2015.

H. Umeo and T. Yanagihara: Smallest implementations of optimum-
time firing squad synchronization algorithms for one-bit-communication
cellular automata. Proc. of the 2011 International Conference on
Parallel Computing and Technology, PaCT 2011, LNCS 6873, pp. 210-
223, 2011.

R. Vollmar: On Cellular Automata with a Finite Number of State
Change. Computing, Supplementum, vol. 3, pp. 181-191, 1981.

R. Vollmar: Some remarks about the “Efficiency” of polyautomata.
International Journal of Theoretical Physics, vol. 21, no. 12, pp. 1007-
1015, 1982.

A. Waksman: An optimum solution to the firing squad synchronization
problem. Information and Control, vol. 9, pp. 66-78, 1966.

J. B. Yunés: A 4-states algebraic solution to linear cellular automata
synchronization. Information Processing Letters, Vol. 19, Issue 2, pp.71-
75, 2008.

86

