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Abstract-Many composite computational activities are
modeled as directed acyclic graphs called workflows in which
each vertex is a task and each directed edge represents both
precedence and possible communication from its originating
vertex to its ending vertex. When the execution of a task is
completed, the communication with its successor(s) starts and
anticipated data are transferred. Only after all parents of a
task are completed and their results (if any) are received by
the task its execution can start. These constraints restrict a
more general case in which some tasks could communicate
during their executions. In this paper, a task-model composed
of both interaction and precedence of tasks is introduced. It is
shown that this kind of graph can be transformed into an
extended directed acyclic graphs, called hybrid directed
acyclic graph, composed of tasks and super-tasks. Super-
tasks need not be recognized manually and the proposed
method automatically finds them. This can simplify the design
of complex workflows. Validity conditions of hybrid directed
acyclic graphs are investigated and a verification algorithm is
developed. Also, scheduling aspects of hybrid workflows on
the cloud is highlighted and some results are reported. This
inventive idea can open a whole new area of research and
practice in the field of workflow modeling and scheduling.

Keywords-Task interaction-precedence graph; hybrid DAG;
hybrid workflow; Cloud computing.

I. INTRODUCTION

Activities of many composite processes such as
likelihood propagation using Bayesian network, family trees
(actually graphs) in genealogy, and scientific and industrial
workflows, are modeled as Directed Acyclic Graphs
(DAGs) in which many vertices are connected via directed
edges [1]. As the name suggests, an important property of
such graphs is that there is no cycle in a DAG. This model is
applicable where there is control and data dependencies and
a partial precedence relation between tasks and if a task has
to transfer data to one (or more) of its successors it can do
so at the end of its execution, i.e., in the middle of execution
it is not possible for two or more tasks to interact. This
resembles an assembly line in which one station has to
complete its job and then pass the object to the next station.
In any case, a DAG represents a partial ordering of tasks
that must be obeyed for their executions. Figure 1 shows a
DAG composed of 11 vertices and 15 edges. The number
next to a vertex shows its required execution time averaged
on all applicable resource types. The real resource type for
the execution of each task will be determined during the
actual scheduling of the workflow, before the execution of
the workflow starts. Consequently, the exact execution time
of each task will be computed using the average execution

time given on the workflow and the relative processing
power of the resource to be used to the average processing
power of the resource types. Likewise, the number on an
edge shows the average data transfer time from the
originating vertex of the edge to the ending vertex of the
edge. The exact transfer time will be computed during the
scheduling time when the actual resources for source and
destination tasks are determined, hence, the communication
link and its baud rate is known. The transfer takes place at
the end of the execution of the originating task of the edge.

Figure 1. A DAG of precedence-communicating tasks

On the other hand, a Task Interaction Graph (TIG) is
used to show which tasks of an application interact during
their executions [2]. All tasks of a TIG can start
simultaneously and each task can continue its execution so
far as it does not need to synchronize or communicate with
any other task. Only two directly connected tasks, i.e.,
neighbors, could interact and it is possible that they may not
do so depending on the logic of the corresponding programs
and the current values of data objects. Also, even the
interaction may be one sided, in some circumstances. The
nature of interaction depends on the parallel problem being
solved; it may be an actual information transfer or an
indirect communication to use a shared data object. For
example, suppose a parallel program is designed to multiply
a sparse Matrix M with m rows and n columns by vector V
with n rows. Suppose Task i’s responsibility is pairwise
multiplication of elements of Row i, i=1,2,…m of Matrix M
and corresponding elements of Vector V and computing
their sum, Formula (1),

ܶ ݏܽ݇ : ܯ [ ,݅ ]݆ ∗ ܸ[ ]݆
ଵஸஸ, ெ [,]ஷ

(1)

T9

24

T2 T3 T8

36

T1

25

T4 T11

15
8 12

4

5

16

15

T6

16 31

T5 T10T7

1014
7

9 6

1230 48

28

13

24

8

18



CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2 70

Here, Task k, k=1,2,..n and Task l, l=1,2,…n, lk
conflict on elements of Vector V for which both M[k,j] and
M[l,j] are nonzero [3]. These two tasks cannot
simultaneously access the same memory location. The
nature of task interaction in this example is indirect. In the
context of scheduling DAGs and TIGs, and now the Task
Interaction-Precedence Graph, a task is a piece of work that
is completely assigned to one processor to do.

The cloud, provides wide varieties of resources and
software in the forms of Infrastructure as a Service (IaaS),
Platform as a Service (PaaS), and Software as a Service
(SaaS) for public use [4]. Users can lease these services for
the needed periods of time and pay as they are used. This is
a great opportunity for many users who are short of required
resources to run their computational jobs. Scheduling
scientific workflows on the cloud is an ongoing research
activity with continuous improvements on their quality of
services such as make-span, price to be paid, energy
efficiency, and fairness. Fairness is related to workloads of
workflows belonging to one enterprise where it wants to be
nondiscriminatory in assigning resources to different
workflows [5]. A workflow, if modeled as a DAG, is
unable to handle task interactions that can happen any time
during their executions. In this paper, a new task modeling
approach called Task Interaction-Precedence Graph
(TIPG) is introduced in which all types of task precedence,
dependency, and interaction is possible, subject to passing
validity tests. Difficulties involved in the scheduling of
applications which can be modeled using TIPG is studied.
Some scheduling results are presented which shows the
success rate of scheduling is improved. However, the
originality of this work is on the introduction of a new task
model which allows tasks of a workflow to directly or
indirectly interact during their execution.

The remainder of the paper is organized as follows.
Section 2 reviews related work. Section 3 formulates the
problem being studied. Section 4 discusses the validity
verification of a given TIPG and its scheduling on the
cloud, including the designed algorithms for both
verification and scheduling. Section 5 concludes.

II. RELATED WORK

In scheduling workflows on the cloud, we are faced
with different quality of services needed by users. Optimal
scheduling of a workflow represented by a general DAG is
an NP-hard problem [6]. Therefore, different approaches
such as integer linear programming [7], genetic algorithms
[8], and heuristic algorithms [9], are proposed to produce
close to optimal solutions. The objective is often meeting a
user-defined deadline, minimizing the computational cost
of the workflow, minimizing the make-span, and/or
maximizing the success rate of the proposed algorithm. Of
course, some algorithms are multi-objective which means
that they are designed to optimize more than one objective,
such as minimizing timespan and cost at the same time
[10]. Here, make-span is defined to be the time length from
when the workflow is submitted to the cloud to the time
when its execution is completed. Success rate is the ratio of
the number of workflows successfully scheduled to the

total number of workflows examined. There are many other
aspects to scheduling workflows such as data and
computation privacy [11] and simultaneous scheduling of
many workflows belonging to one organization [12].

Scheduling TIGs is another field which makes the
foundation of this paper’s scheduling extended workflows.
In a connected TIG, it is not possible to complete one (or
many but not all) task at a time but the whole TIG must
complete at one time. For example, the whole sparse matrix
and vector multiplication is one super-task and computing
each element of the resulting vector can be organized as
one task. Tasks of such a super-task can simultaneously run
on different hardware resources of the cloud. However, it is
possible to assign more than one task to one processor to be
executed in some specified order. Figure 2 shows a TIG
graph for accomplishment of the parallel multiplication of a
small-size sparse matrix and a vector. A TIG may represent
a complete independent application or it may be part of a
larger application. For example, it can be matrix
multiplication using matrix-vector product to reduce the
number of operations as part of solving a system of linear
equations. The latter is widely used in many applications.

Figure 2. The TIG of matrix-vector multiplication

TIGs are traditionally scheduled on multiprocessors and
computer clusters. Nowadays, distributed systems and the
clouds provide favorable platforms for solving parallel
applications [13]. A TIPG is neither a simple DAG nor a
TIG but a new graph model in which both interaction and
precedence is allowed. The closest model to this could be a
DAG (or workflow) of simple (sequential) tasks and
parallel tasks. Nevertheless, there are many differences
between the two. (1) Before the production of a DAG of
tasks and parallel tasks (which will be called TPDAG for
short) parallel tasks of the application being modeled have
to be recognized and to be considered as indivisible units,
similar to simple tasks within the model. However, a TIPG
model starts with (simple) tasks only and there is no
composite task in the beginning. Two different types of
relations are allowed between each pair of tasks, interaction
and communication. Interaction resembles concurrency of
tasks and information exchange during execution, while
communication resembles precedence and data transfer
from one task to the other at the end of execution of the
former. The recognition of super-tasks in the TIPG is
automatic and without the interference of users. This
increases ease of workflow design and at the same time the
possibility to recognize parallel tasks in their smallest
possible size. (2) Parallel tasks of a TPDAG are co-
scheduled to run in parallel, i.e., all subtasks of a parallel
task start simultaneously and the whole parallel task
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completes at one time. This means, a child of a parallel task
cannot start until the whole parallel task is completed and
its data (if any) is received [8]. On the other hand, tasks of
a super-task within a TIPG can run concurrently, i.e., they
can start at different times and complete at different times
as long as interactions are possible. Besides, any child of a
super-task can start its execution as soon as its parent tasks
(not the whole super-task) are completed. This can have a
great impact on the time span of the TIPG and as a result
on the price to be paid for running the TIPG on the Cloud.
(3) Inputs to a parallel task are receive by the parallel task
itself and outputs are also sent by the parallel task. For a
super-task of a TIPG, any input from external tasks of a
super-task is independently received by the receiving task
within the super-task and any output from a task within the
super-task is sent directly by the sending task within the
super-task. As a result, parallel communication from/to
tasks of a super-task is the norm. This is another flexibility,
which can have a great impact on the quality of scheduling
services. Our work could be considered as an extension of
workflows of tasks and parallel tasks which have been used
by many applications. A well-known such application is
Proteomics workflow [14]. Many workflow management
software such as Pegasus have the capability to handle
parallel tasks.

III. PROBLEM FORMULATION

A directed acyclic graph, when used to model
workflows, prohibits tasks to directly or indirectly interact
during their executions. We propose an extended model
called TIPG which allows interaction, communication, and
precedence capabilities, simultaneously.

A TIPG, G(V, U, D), consists of a set of vertices, V, a
set of undirected edges, U, and a set of directed edges, D.
Each edge, directed or undirected, connects one vertex to
another and there could be at the most one edge between
any pair of vertices. Note that, the transfer of information
between two interacting tasks could occur any time during
their executions or even, at the end of the execution of one
task it could send information to another task (which is not
completed yet) for the last chance. Because we want TIPGs
to be extensions of DAGs, considering directed edges only,
a TIPG must be acyclic, i.e., it should not be possible to
start from some vertex and follow a sequence of directed
edges and reach back to the same vertex. For undirected
edges only, cycles are not forbidden. For a TIPG graph to
be valid it must be acyclic with respect to directed edges
and also conflict-free.

Definition 1: A TIPG is conflict-free if there is no directed
path between any pairs of vertices of any connected
component of the TIPG where only undirected edges are
considered to obtain these connected components.
Definition 2: In the rest of this paper, wherever we talk
about connected components of a TIPG graph G(V, U, D)
we mean, a sub-graph G(V, U)  G(V, U, D), V  V,
and UU, i.e., U is composed of only undirected edges of
the TIPG.

Definition 2 complies with the classical definition of
connected components for undirected graphs when all
directed edges of the TIPG are ignored. Recall that, in
computer science, for a directed graph, the concept of
strongly connected components is used rather than
connected components.

If there is any conflict in a TIPG graph it means that
there is at least one pair of vertices that one vertex precedes
the other and at the same time they can interact during their
executions. This is definitely impossible because parallel
and precedence constraints may not intermix, hence the
design of such a system is incorrect and it should be fixed
before going about running it. Therefore, conflict detection,
which will be discussed later, could be thought of one type
of design verification.

For example, sparse matrix and vector multiplication is
seldom a complete application and it can be part of solving
a greater problem such as matrix multiplication using
matrix-vector product to reduce the number of operations
and solving a system of linear equations. Although, in some
workflows, cycles composed of two or more tasks are
possible, whenever the control flow reaches one of these
tasks it should start executing from the beginning. This is
not the case for a TIG which is part of a workflow. If an
undirected edge connects two vertices vi and vj it is
represented by either (vi, vj) or (vj, vi), with no distinction.
However, if a directed edge connects two vertices vk and vl

it is represented by <vk, vl>, where vk is the starting vertex
and vl is the ending vertex of the edge. A directed edge
between a pair of tasks, <vk, vl>, means that the execution
of task vk must precede the execution of task vl and that vk

can transfer information to vl once at the end of vk’s
execution.

Suppose for the DAG of Figure 1, tasks T3 and T4, T4

and T5, and T9 and T10 have to interact during their
executions. The resulting TIPG is shown in Figure 3. In this
figure, all execution and communication times are removed
only to increase clarity of the graphical representation of
the TIPG, but they are implicitly in place.

Figure 3. A sample task interaction-precedence graph

Later it will be shown that this TIPG is conflict-free,
which means it could be a valid model for tasks of a real
application. Such an application cannot be modeled by
neither a DAG nor a TIG graph and nor a workflow of
tasks and parallel tasks. To represent a TIPG graph an NN
matrix, M, where N is the number of vertices, is used. In
this matrix, which is usually very sparse, if there is no edge
between vi and vj, i, j =1,2,3,…N then M[i,j] =Null; if there

T9

T2 T3 T8

T1 T4 T11T6

T5 T10T7



CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2 72

is an undirected edge from vertex vi to vertex vj then M[i,
j]=0; otherwise M[i, j] is set to the average data transfer
time from vi to vj, i.e.,

ܯ [ ,݅ ]݆ = ቐ

,݈݈ݑ݊ ݂݅ ݀݁݊ ܾ݃݁݁ ݁݁ݓݐ ݊ ܸܽ݊ ݀ ܸ

0, ݂݅ ݀݊ݑ ݎ݅݁ ݐܿ݁ ݀ ݁݀ ܾ݃݁݁ ݁݁ݓݐ ݊ ܸܽ݊݀ ܸ

ݐܽܽ݀ ݎܽݐ ݏ݂݊ ݉ݐ݅ݎ݁ ݁ ݉ݎ݂ ܸݐ ܸ, ℎݐ ݓݎ݁ ݏ݅݁

IV. VALIDITY VERIFICATION AND
SCHEDULING

In the context of this research a TIPG must pass three
test to become a valid Hybrid Directed Acyclic Graph
(HDAG), i.e., A DAG of tasks and super-tasks. (1) The
original TIPG must be acyclic with respect to directed
edges, i.e., ignoring all undirected edges. (2) The TIPG
must be conflict-free. (3) Considering each connected
component as being an indivisible super-task with one
entry and one exit, such a graph must be acyclic. Condition
2 is an absolute must satisfy statement, otherwise the model
is not valid. Condition 1 is the restriction of our research
meaning that, this research aims at eventually scheduling
workflows which can be modeled as DAGs and no other
models of workflows such as iteration structure. Condition
3 is a complementary to Condition 1.

An algorithm has to be designed to systematically
perform these tests. After the first test is successful, it has
to find all connected components of the graph considering
only undirected edges. A connected component should
include at least two vertices. For every pair of vertices of
every connected component we have to make sure there is
no directed path from one to the other, i.e., considering
only directed edges of the TIPG in this stage. This is called
conflict-freeness of the TIPG. Using notations of Definition
2, if for any two vertices (vi, vj)U there is at least one
path, PU, from vi to vj the TIPG is not conflict-free and
hence the model is not valid. Then the whole TIPG is
restructured in the form of a directed graph by considering
each whole connected component as one indivisible super-
task. For this phase, communications to all tasks of a super-
task are received by the super-task itself and all
communications from the tasks of a super-task are from the
super-task itself. The final check is to make sure that the
new directed graph of tasks and super-tasks is acyclic. It is
worth mentioning that restructuring action is only for the
purpose of making sure that there is no cycle in the model.
After this checking action is completed, the
communications to/from a task within a super-task would
directly go to/from the task itself. Algorithm 1 shows the
steps to be taken for transformation of a TIPG to a directed
graph and verifying its validity as a hybrid DAG. At the
start of the algorithm, Matrix M is the representation of the
TIPG as it is explained earlier. This matrix will be
augmented with new rows and columns corresponding to
the connected components found. The number of elements
in vector V is equal to the number of vertices on the
original TIPG. At the end, Vector V represents which
vertex belongs to which component, i.e.,

ܸ= ൜
0, ݂݅ ݒ݁ ݐ݁ݎ ݅ݔ ݊݅ݐ݊ݏ݅ ݕ݊ܽ ݊ܿ ݊݁ܿ ݐ݁ ݀ ݉ܿ ݊ ݁݊ ݐ
݅݀ ݂ ݊ܿ ݊݁ܿ ݐ݁ ݀ ݉ܿ ݊ ݁݊ ℎݐ,ݐ ݓݎ݁ ݏ݅݁

Since algorithms for finding cycles (if any) in a directed
graph (Test 1) is not a new topic, we will assume that the
given TIPG graph is already acyclic. Algorithm 1 first
produces all connected components and then proceeds with
the validity tests. See Figure 4.

-------------------------------------------------------------------------
1:Boolean procedure HDAG_Production&Validity(M, V)
2: while (exists new connected component, C)
3: Update vector V to represent this component
4: end while /*from here on components are connected*/
5: for every (pair of vertices (vi,vj) of every component) do
6: if (exists a directed path from vi to vj or vj to vi)
7: return false
8: end if
9: end for
10: for every (component, C) do
11: add a new row and column to M and

fill its entries using Rules 2 to 5
12: end for
13: for every (vertex v of every component) do
14: replace all positive values of row v by null
15: replace all positive values of column v by null
16: end for
17: if (cycle (M, V)) return false
18: else return true
19: end procedure
-------------------------------------------------------------------------

Figure 4. Algorithm 1- producing a potential Hybrid DAG (HDAG) from
a TIPG and checking its validity

In Lines 2 to 4 all connected components of the given
TIPG are found, one by one. From Line 4 on any reference
to component means connected component. Vector V is set
to represent which tasks of the original TIPG are parts of
which component, if any. The conflict-freeness of each
connected component is then checked in Lines 5 to 9 and if
there is at least one conflict in any connected component
there is a design error and the original TIPG must be
redesigned. Conflict-freeness of all connected components
implies conflict-freeness of the whole TIPG. Each
component is called a super-task, in its entirety, is now a
new object in the model. To represent connections of each
of these new objects with other objects, for every
component a new row and a new column is amended to the
Matrix M, i.e., super-tasks are represented in the same
structure where tasks are represented. The values of
elements of these rows and columns are filled with respect
to communication times between tasks and super-tasks to
this super-task (and vice versa) using Rules 2 to 5 that are
discussed later. Lines 10 to 12 of the algorithm have this
responsibility. There should not be any edge from a task or
a super-task outside a given super-task to a task inside this
super-task and vice versa. Such edges have to be changed
to/from the super-task itself. Lines 13 to 16 are intended to
serve this purpose. What remains is that we have to make
sure the resulting graph of tasks and super-tasks, where
each super-task, as a whole, is considered an indivisible
unit of work in this stage, is acyclic. Line 17 will take care
of this job and if a violation is diagnosed the graph is not
acyclic. Otherwise, the hybrid DAG is valid. In the body of
Algorithm 1 the following rules are used.

Rule 1: All vertices and undirected edges of every
connected component are separately grouped and
encapsulated as a super-task, before going about checking
the correctness of the model.
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Rule 2: Any data sent from an external task or super-task to
a task within a super-task is sent to the super-task itself.
Rule 3: Any data to be sent from a task within a super-task
to an external task or super-task is sent by the super-task.
Rule 4: If an external task or super-task wants to send data
to more than one task within a super-task the average of the
data volumes over all receiving tasks is sent to the super-
task. It is assumed that there are independent
communication links between each pair of resources. This
assumption enables us to consider average of data instead
of sum of data. There are two points to be cleared with
respect to sending data to more than one task within a
super-task: (1) message processing time is negligible
compared to message transfer time, hence the sender can
handle parallel sends simultaneously, and (2) each receiver
task can immediately start its execution after the expected
data from its parent(s) is received. These two points justify
using the average data volume instead of the sum of data
volume on a link which connects an external task or super-
task to many tasks within a super-task.
Rule 5: If more than one task within a super-task want to
send data to an external task or super-task the average of
the data volume is sent by the super-task. The justification
for using the average of data volume, instead of the sum of
data volume, is similar to the reasoning used for Rule 4.

A. Time complexity of Algorithm 1

The number of operations needed for lines 2 to 4 of
Algorithm 1 is proportional to (N+E), i.e., C1(N+E), where
C1, N, and E, are a constant, the number of vertices, and the
number of edges in the original TIPG, respectively. The
number of operations for Lines 5 to 9 is proportional to the
number of pairs of vertices times NlogN+E, i.e.,
C2N

2(NlogN+E). The number of operations for line 17 is
C3(N+E). Therefore, the time complexity of the algorithm is
dominated by the time complexity of Lines 5 to 9.
Consequently, the time complexity of the algorithm is
O(N2(NlogN+E)). For the TIPG of Figure 3, Vector V will
be filled as in Formula (2).

V
T
=(0,0,0,1,1,1,0,0,0,2,2,0)

T
(2)

There are two connected components, (1) the TIG of
tasks T3, T4, and T5, and (2) the TIG of tasks T9 and T10.
There are no directed paths from T3 to T4, T4 to T5, T3 to
T5, T4 to T3, T5 to T4, T5 to T3, T9 to T10, or T10 to T9.
Therefore, the TIPG of Figure 3 is conflict-free. The
algorithm checks and makes sure that there is no cycle in
the whole new graph of tasks and super-tasks when each
super-task is considered indivisible. The new graph is a
valid hybrid workflow. The resulting hybrid DAG is shown
in Figure 5.

Figure 5. Hybrid DAG obtained from TIPG of Figure 3

An actual implementation of Algorithm 1 could include
a preliminary stage of finding the reachability matrix of the
graph by considering only directed edges. This can be done
using the Floyed-Warshall algorithm [15]. The matrix can
be accessed in Line 6 of the algorithm many times. The
complexity of the preliminary stage of the algorithm is
O(N3), where N is the number of vertices. This is a lower
time complexity than the time complexity of the algorithm
which we produced earlier, hence the time complexity of
the algorithm is still O(N2(NlogN+E)).

B. Scheduling hybrid workflows

Conventionally, workflow schedulers assume that tasks
are non-preemptable hence, each processing resource runs
the current task in a single-programming fashion. With the
extension of workflows to include super-tasks called TIGs
multiprogramming becomes more attractive and beneficial
to the cloud users. Tasks of a TIG may have quite different
execution times, on the one hand and, they should be co-
scheduled to be able to interact during execution. We are
faced with three options, (1) allocation of as many
processing resources as there are tasks and assigning each
task to one resource, (2) assigning all tasks of each TIG to
one fast enough processing resource and running then in a
multiprogramming fashion, and (3) clustering tasks and
allocation of as many processing resources as there are
clusters and assigning each cluster to one resource then
running each cluster in a multiprogramming fashion.

By selecting Option 1 we are aware that all tasks should
start simultaneously in order to be able to interact during
execution since otherwise resources’ time could be wasted
due to tasks wanting to interact with others which are not
available. It is not always the case that whenever we want
to schedule a TIG in the midst of scheduling a workflow it
would be beneficial to lease new resources from the cloud.
Furthermore, at the time of assigning a TIG, the finish time
of already leased resources may not be the same hence
waste of some resource’s time is inevitable. Depending on
the nature of the application being scheduled, we might
want to start a descendent task or super-task when all tasks
of a TIG are completed. For this case the scheduler should
make use of simultaneous completions of tasks if it is
beneficial towards the scheduling objectives. These kind of
applications are called parallel TIGs.

Option 2 can be useful in many cases for example,
when the objective is to minimize cost of running the
workflow on the cloud and the given relative deadline is
not very short. A relative deadline is a duration of time-
interval that is given to a workflow to complete as opposed
to an absolute deadline which is an exact moment of time
before or at which the workflow must be completed. A
major benefit of this approach is that the interaction time is
negligible because the common main memory could be
used for data and results sharing.

Option 3 is applicable when Option 2 is not useable
with respect to the scheduling objectives. In any case, we
cannot simply say that the time-span of executing a super-
task is for example equal to the sum of execution times of
its included tasks. It depends on the approach that the TIG
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is modeled considering aforementioned models. An
estimate of execution time is needed before we can go
about designing a hybrid workflow scheduler. Although
there are differences between scheduling hybrid workflows
and simple workflows, the guidelines are already
developed.

To make the paper short, a brief summary of what has
been done with respect to scheduling TIPGs and the results
obtained up to now follows. The base of our two
experiments was the graph of Figure 1. Primarily, Edges
<T4, T3>, <T5, T4>, and <T9, T10> were added to the graph.
Six hundred TIPGs were randomly generated from the
topology of this modified graph. That is, all execution
times and communication times were first removed from
the graph but vertices and edges were not changed. The
execution time of each vertex was then randomly selected
from the interval [0, 50] and communication time of each
edge was randomly generated from the interval [0, 30]. An
integer number between zero to eight (exclusive) was
randomly selected and that many vertices of the graph were
randomly selected and were changed to undirected edges. If
the graph was a valid Hybrid DAG it was selected for
scheduling. A list scheduling heuristic with the objective of
minimizing timespan [16], while the deadline is respected
was developed to schedule the workflow. The deadline
parameter was randomly selected within the interval [CPL,
1.4*CPL], where CPL is the Critical Path Length of the
workflow. The CPL was calculated in a different way
which is usually calculated. All communication times were
ignored in the calculation of the critical path because the
whole critical path could be assigned to one processor,
hence communications are zeroed. This kind of critical path
represents the absolute minimum timespan for running the
workflow, with regards to the resource type being used.
Five types of the cloud processing resources with
performances 1.0, 1.2, 1.6, 2.4, and 3.0 with price factors
equal to their performances were assumed. The ready task
(or super-task) with the highest rank was scheduled next.
The two experiments differ in the way a super-task is
scheduled. The objective of the experiments was to
compare parallel and concurrent execution of super-tasks.
See Figure 6 (Algorithm 2.) In this algorithm,
lease_appropriate(1) will lease one new resource with
proper processing power, considering the current state of
the scheduler. Similarly, lease_appropriate(Ni-available)
leases as many as the difference of Ni, i.e., the number of
tasks in the ith super-task, and the number of available
resources, if Ni is greater than the number of available
resources. The procedure assign_task(task) assigns the task
to the resource which completes it the soonest. On the other
hand, assign_stask(super-task) assigns all tasks of the
super-task to as many processors as needed by the super-
task.

Experiment 1 followed Option 1 guideline. For this
case, effective execution time of each task is equal to the
maximum execution time of the tasks of the super-task.
Experiment 2 also followed Option 1 with the possibility of
each task of a super-task to complete and sent its data to its
children vertices, independently. A simple heuristic (not
necessarily optimal) was used to assign tasks within a
super-task to resources. If Super-task Si needed Ni

simultaneous resources, Ni resources with earliest
availability time were found, first. If there were not enough

available resources new resources were leased. Then the
task with the longest execution time (with respect to the
processor’s performance) was assigned to the resource
which can complete it the earliest time. This task and the
corresponding processor were removed and the process
continued until allocation is completed.

-------------------------------------------------------------------------------
1: Retrieve cloud resources’ availability and prices
2: Rank tasks and super-tasks and enqueue (Q)
3: mark the entry task as ready
4: While (exists ready task in Q)
5: remove (highest ranked ready task T (Q))
5: case 1: regular task Ti (T, V) //A simple task
6: begin
7: lease_appropriate (1)
8: call assign_task (Ti)
9: remove father-son links of Ti

10: if a child becomes orphan mark it ready
11: end begin
12: case 2: super-task Si (T, V) // A super-task
13: begin
14: if available resources are not enough
15: lease_appropriate(Ni-available)
16: end if
17: call assign_stask(Si)
18: remove father-son links of Si

19: if a child becomes orphan mark it ready
20: end begin
21: end while
22: end algorithm
-------------------------------------------------------------------------------

Figure 6. Algorithm 2- scheduling hybrid workflows of tasks and TIGs

For these experiments the success rate of the second
experiment was 7% higher (with respect to the total number
of generated workflows) than that of the first experiment.
From the 600 workflows with the assigned deadlines, 276
cases were successfully scheduled in the second experiment
whereas 235 were successfully scheduled in the first
experiment. The success rate of the second experiment was
0.46 and that of experiment one was approximately 0.39. It
is a good indication that TIPGs should have their own
schedulers rather than using schedulers of workflows of
tasks and parallel tasks. It is worth mentioning that a TIPG
can handle both parallel and concurrent super-tasks. Having
applied the ideas on small-scale TIPGs it can be extended
to large-scale scientific workflows with thousands of tasks
and super-tasks. Scheduling, and then running, such
workflows requires powerful supercomputers or a Cloud
environment composed of thousands of Virtual Machines
(VM).

V. SUMMARY AND FUTURE WORK

A new task model called task interaction-precedence
graph is presented in this paper. Tasks, in this model, not
only can communicate information at the end of their
executions but they can also interact during their executions.
A validity algorithm is developed to check the correctness
of the design of such a model. Furthermore, a procedure for
transforming a conflict-free TIPG into a hybrid DAG, i.e., a
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DAG composed of simple tasks and super-tasks is
established in order to be able to check that the final graph is
acyclic. Problems involved in scheduling TIPGs on the
cloud are investigated. This new modeling technique allows
us to model many more complex applications which were
not possible to model using DAGs or TIGs alone. The
novelty claim of this paper is in the introduction of a new
task model in which precedence, interaction, and
communication are all simultaneously possible. Hybrid
workflows, Hybrid DAGs, and even hybrid graphs become
meaningful and very useful. The scheduling algorithm
developed in this paper is the first step in this regard and
much work has to be done. The experiments of this paper
focused on the scheduling aspects of TIPG workflows. It is
predictable that starting with a graph in which both directed
and undirected edges, i.e., communications and interactions,
are allowed and the granularity of all tasks are the same and
the recognitions of TIGs are automated, the model designing
is simpler and less time consuming. However, the actual
performance is left to be evaluated in the future.
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