
Modeling Non-Functional Requirements in Cloud Hosted Application

Software Engineering

Santoshi Devata, Aspen Olmsted

Department of Computer Science
College of Charleston, Charleston, SC 29401

e-mail: devatas@g.cofc.edu, olmsteda@cofc.edu

Abstract- Functional Requirements are the primary focus

of software development projects for both end users and

developers. The Non-Functional Requirements (NFR) are

treated as a secondary class requirement, ignored until the

end of the development cycle. They are often hidden,

overshadowed and therefore, frequently neglected or

forgotten. NFRs are sometimes difficult to deal with and

are the most expensive in certain cases. NFRs become even

more important with cloud architectures because the

concurrent load and response latency are more vulnerable

using public networks than they were on private networks.

More wok is needed on mapping NFR models into software

code. Developing a cloud based system with functional

requirements only is not enough to build a good and useful

software. NFRs should become an integral part of software

development. In this paper, we focus on the modeling of

NFRs and the transformations from UML models into the

source code. Specifically, we choose three NFRS: response

time, concurrency, user response time for a Theater

Booking system.

Keywords - Non-Functional Requirements; NFRs;

Response time; Concurrency

I. INTRODUCTION

The software engineering process is intended to

produce software with specific functionality that is

delivered on time, within budget and satisfying

customer’s need. Bruegge and Dutoit [1] dedicate the

first chapter of their text book to these outcomes and

budget constraints. These demands mean that the

software development is focused and driven by the

functional requirements. The software market is

changing every day increasing its demands for providing

best quality software that not only implements all the

desired functionality but also satisfies the NFRs.

Including NFRs in the model, leads to a complete

software capable of handling not just the requirements

associated with the product but also provides the

usability according to the current standards. NFRs

(sometimes also referred to as software qualities)

indicate how the system behaves and includes

requirements dealing with system performance,

operation, required resources and costs, verification,

documentation, security, portability, and reliability.

Thus, satisfying NFRs is critical to building good

software systems and expedites the time-to-the-market

process, since errors due to not properly dealing with

NFR, which is usually time-consuming and complex,

can be avoided. However, software engineers need to

know whether the performance cost of the algorithms

that deal with the various NFRs will violate the basic

performance requirements or conflict among

themselves.

Failing to address NFRs in the design phase can lead

to a software product that may meet all the functional

requirements but fail to be useful because it cannot be

used. In the United State, the federal government

contracted a 3rd party vendor to develop an application

for individuals to register for health care coverage. The

designers failed to specify the NFRs for concurrency,

and the application could not be used because of the

mistake. [2]

NFRs are sometimes not intuitive to the developers,

so implementing and including them in the development

cycles is challenging. There are different approaches to

handling the NFRs, but the best way is to model them

and implement for each case. Rahman and Ripon [3]

describe a use case and the challenge of integrating the

NFRs into the design models.

The organization of the paper is as follows: Section

2 describes the related work and the limitations of

current methods. In Section 3 we give a motivating

example and explain our proposal, present our

algorithms and show how they are used in our research.

We conclude and discuss future work in Section 4.

II. RELATED WORK

Functional requirements are defined and represented

in many ways. These functional requirements are the

basis of software development, but NFRs are the ones

that supply the rules when implementing the code. Many

authors have looked at NFRs and the problems of their

inclusion in the design process. Pavlovski and Zou [4]

define NFRs as specific behaviors and operational

constraints, such as performance expectations and policy

constraints. Though there are many discussions about the

NFRs, they are not taken as seriously as they should be.

Glinz [5] suggest the notion of splitting both functional

and NFRs into a set of categories and make groups of

47Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

mailto:devatas@g.cofc.edu

them so that they are inherently considered while

developing the applications. Alexander [6] suggests

looking at the language used to describe the

requirements. Words ending in ‘-ility’ are often the

NFRs. Examples of these words are reliability and

verifiability. All of their work focuses on identification

of the NFRs. Our work builds on theirs by applying

domain specific models using extensibility mechanisms

built into standard modeling notations.

Ranabahu and Sheth [7] explore four different

modeling semantics required when representing cloud

application requirements. These include data, functional,

non-functional and system. Their work focuses on

functional and system requirements. There is a small

overlap with our work, but only with nonfunctional

requirements from the system perspective. They build

on work done by Stuart [8] in his workshops where he

defined semantic modeling languages to model cloud

computing requirements in the three phases of the cloud

application life cycle. The three phases are development,

deployment, and management. Our work adds to the

missing semantic category of NFRs.

In Ranabahu and Sheth [7] work they use Unified

Markup Language (UML) [9] to model the functional

requirements only. UML is a standardized notation for

representing interactions, structure and process flow of

software systems. UML consists of many different

diagram types. Individual diagrams can be linked

together to model different perspectives of the same part

of a software system. We utilize UML to express the

NFRs also.

Additional semantics for models can be added by the

integration of the matching UML Activity and Class

diagrams. UML provides an extensibility mechanism

that allows a designer to add new semantics to a model.

A stereotype is one of three types of extensibility

mechanisms in the UML that allows a designer to extend

the vocabulary of UML to represent new model elements

[10]. Traditionally the semantics were consumed by the

software developer and manually translated into the

program code in a hard coded fashion.

Object Constraint Language (OCL) [11] is part of the

official Object Management Group (OMG) standard for

UML. An OCL constraint formulates restrictions for the

semantics of the UML specification. An OCL constraint

is always true if the data is consistent. Each OCL

constraint is a declarative expression in the design model

that states correctness. Expression of the constraint

happens on the level of the class, and enforcement

happens on the level of the object. OCL has operations

to observe the system state but does not contain any

operations to change the system state.

Our contribution in the domain of cloud computing

software modeling is in the use of modeling standards

such as UML and OCL with their extensibility

mechanism of stereotypes to model the NFRs. We

demonstrate these models can be transformed into

application source code through the application of three

application domain constraints.

III. RESEARCH PROPOSAL

Our contribution in this work is to look at application

domain specific NFRs that are useful for cloud based

application architectures. We model the NFRs using the

extensibility mechanisms built into the standard

modeling notations of UML and OCL to specify those

NFRs. We then auto-generate code for NFRS using

Java. We demonstrate the NFRs using a theater booking

system example. A theater booking system is an online

application used by theatres to sell their entrance tickets.

Figure 1 shows an activity diagram for a theatre booking

system where the NFRs are represented using UML

stereotypes. We chose to focus on three NFRs for this

study: response time, concurrency, and pick seat time to

implement the theater booking system. For each NFR,

we model in UML and OCL utilizing stereotypes to

apply the additional required semantics. We then

generate code from the model to enforce the NFRS. The

code is generated for these NFRs for use in a cloud

application that uses the threads on the server side for

each client.

Request response time is one of the key performance

measures in a theater booking system. It is an NFR that

is represented as a ‘Response time’ stereotype in the

UML activity diagram (Figure 1). This stereotype is

related to every interaction between the client and the

server. In general terms, response time can be defined as

the amount of time system takes to process a request after

it has received one. A control flow in an activity diagram

can be assigned the stereotype. In the algorithm that is

used to enforce for this stereotype, the time is noted right

before the request is sent to the server and the difference

is measured once the response is received. The

difference between the send and receive time gives the

response time for the request. Specific stereotypes are

used to represent different latency requirements.

Examples are “low latency: and “high latency”. Runtime

configuration can define the allowable time for each

stereotype. Response time for each request from the

users is measured, and the average response is calculated

for the overall system. This is particularly useful to

measure the overall system performance and compare it

over time. If the average response time increases, we can

further get the average response of each module/type of

requests and find the bottlenecks. Algorithm 1 shows the

algorithm implemented to guarantee this NFR. In the

algorithm, the client notifies the server when the timeout

occurs to enable the server to rollback any partial work

completed.

48Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

Concurrency is a robustness measure of applications,

and especially for any online booking system. This is

represented as ‘Concurrent Users’ stereotype in the

UML activity diagram (Figure 1). We represent the

threshold concurrency as the ‘Concurrent Users’

stereotype in the UML activity diagram (Figure 1). We

implemented this by spawning a thread pool with the size

based on stereotype. The server then handles the request

by creating a queue. Requests are pulled from the queue

and assigned a thread from the pool to process the

request. In the implementation of this stereotype, we

measure the latency of the request by noting the time

right before the request is sent to the server also when the

response is received. This difference between the two

values gives the latency for that request. This latency for

each request is measured and the queue time is appended

to the log. The log of measurements is particularly useful

to measure the overall system performance and compare

it over time. If the average latency time increases, we can

further get the average latency of each module/type of

requests and find the bottlenecks. When handling the

concurrency stereotype, the bottleneck is often caused by

a pool of threads that is smaller than the demand on the

server. Algorithm 2 shows the algorithm implemented

to guarantee this NFR.

Handling the situation where a user does not respond

to a form in an appropriate amount of time is another

important NFR for many systems. In the theater booking

system, while the user is picking a seat, resources are

locked from other users. The time the locks are held

needs to be minimized. We represent the form response

time requirement as ‘Limited user time’ stereotype in the

UML activity diagram (Figure 1). The stereotype is

specific to the pick seats activity in the ticketing

application domain. The user should be given a limited

time to respond when selecting the seats. We

implemented this by binding an event to the request

submission of the client. When the user tries to pick the

seats, the client application polls continuously to check

if the request is sent during the specified time. When

there is a delay of more than the time specified by the

stereotype, then the user gets a message indicating that

Algorithm 1. Request Response Timeout

INPUT: XML of Send to Server, timeout

OUTPUT: XML of response with server

Send request to server

Set timer to fire every second

Set timeExpired = 0

Do

 Check if response is received

While timeExpired < timeout or response received

If not response received

 Set response to time expiration error

 Set response to timeout error

 Notify server of timeout

End if

Return response

Figure 1 Activity Diagram for A Theater Booking System

Algorithm 2. Concurrency

INPUT: XML of request, timeout

OUTPUT: XML of data entered or XML with error

Check if anythreads in pool

If no threads in pool

 Set timer to fire every second

 Set timeExpired = 0

 Do

 Check if thread available in the pool

 While timeExpired < timeout or thread received

If not thread received

 Set response to timeout error

ELSE

 Execute request in thread

End if

Return response

49Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

there locks have been released. If the request is sent

before the specified time, then the user will proceed to

next activity. Algorithm 3 shows the algorithm

implemented to guarantee this NFR.

IV. CONCLUSION/FURTHER RESEARCH

In this work, we show that it is possible to model

many cloud based software NFRs using UML

stereotypes. UML diagrams have been used for years to

model the functional requirements of the application.

We extended the modeling of functional requirements by

using UML stereotypes to model the NFRs in the same

design model. The UML stereotype is transformed to

application code that guarantees the NFR will be

enforced. Future work will enhance our work to include

OCL constraints to broaden the type of NFRs that can be

modeled and transformed into cloud application code.

REFERENCES

[1] B. Bruegge and A. Dutoit, Object-Oriented

Software Engineering, Prentice Hall, Inc, 2010.

[2] T. Mullaney, "Obama adviser: Demand

overwhelmed HealthCare.gov," USA Today, 06

10 2013. [Online]. Available:

http://www.usatoday.com/story/news/nation/201

3/10/05/health-care-website-repairs/2927597/.

[Accessed 24 02 2016].

[3] M. M. Rahman and S. Ripon, "Elicitation and

Modeling Non-Functional Requirements – A POS

Case Study," International Journal of Future

Computer and Communication, vol. 2, no. 5, pp.

485-489, 2013.

[4] C. J. Pavlovski and J. Zou, "Non-functional

requirements in business process modeling,"

Proceedings of the Fifth on Asia-Pacific

Conference on Conceptual Modelling, vol. 79,

2008.

[5] M. Glinz, "Rethinking the Notion of Non-

Functional Requirements," Third World Congress

for Software Quality, Munich, Germany, 2005.

[6] Alexander, I, "Misuse Cases Help to Elicit Non-

Functional Requirements," Computing & Control

Engineering Journal, 14, 40-45, 2003.

[7] R. Ajith and A. Sheth, "Semantic Modeling for

Cloud Computing, Part I," Computing, vol.

May/June, pp. 81-83, 2010.

[8] S. Charlton, Model Driven Design and operations

for the Cloud, Towards Best Practices in Cloud

Computing Workshop, 2009.

[9] Object Management Group, "OMG Formal

Versions of UML," 06 2015. [Online]. Available:

http://www.omg.org/spec/UML/. [Accessed 11

09 2015].

[10] Object Management Group, "Unified Modeling

Language: Supersturcture," 05 02 2007. [Online].

Available:

http://www.omg.org/spec/UML/2.1.1/. [Accessed

08 01 2013].

[11] Object Management Group, "OMG Formally

Released Versions of OCL," 02 2014. [Online].

Available: http://www.omg.org/spec/OCL/.

[Accessed 09 11 2015].

Algorithm 3. User Response Timeout

INPUT: XML of form to display, timeout

OUTPUT: XML of data entered or XML with error

Show form to user

Set timer to fire every second

Set timeExpired = 0

Do

 Check if response is received

While timeExpired < timeout or response received

If not response received

 Notify user of time expiration

 Set response to timeout error

End if

Return response

50Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

