
Cloud Data Denormalization of Anonymous Transactions 

Aspen Olmsted, Gayathri Santhanakrishnan 

Department of Computer Science 

College of Charleston, Charleston, SC 29401 

e-mail: olmsteda@cofc.edu, santhanakrishnang@g.cofc.edu 

 
Abstract— In this paper, we investigate the problem of 

representing transaction data in PAAS cloud-based systems.  

We compare traditional database normalization techniques 

with our denormalized approach.  In this research, we 

specifically focus on transactional data that is not attached to a 

specific customer.  The absence of the relationship in the 

customer object allows for the vertical merging of tuples. to be 

stored in aggregate form. The journaling features of the data 

store, allow full audits of transactions while not requiring 

anonymous data to be materialized in fine-grained levels.  The 

horizontal merging of objects is also deployed to remove detail 

lookup data instance records and replace them with business 

rule objects. 
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I.  INTRODUCTION 

In this work, we investigate the problem of representing 
transactional data in a platform as a service (PAAS) cloud-
based system. In traditional client-server architectures, 
database normalization is used to ensure that redundant data 
is not stored in the system.  Redundant data can lead to 
update anomalies if the developer is not careful to update 
every instance of a fact when modifying data.  Normalization 
is also performed to ensure unrelated facts are not stored in 
the same tuples resulting in deleting anomalies. 

Data representation in the cloud has many of the same 
challenges as data representation in client/server 
architectures.  One challenge data representation in the cloud 
has that is not shared with client/server is the minimization 
of data because costs of cloud data storage are significantly 
higher than local storage.  We are thinking of simple costs 
for disk storage, not true costs.  Organizations budget only 
the costs of disk drives for local storage which are in the tens 
of dollars per gigabyte but cloud storage can be in the 
hundreds of dollars per gigabyte per month [1]. Often this 
storage is expressed as the number of tuples in the data store 
instead of the number of bytes on the disk drive holding the 
data. For example, force.com [2] charges for blocks of data 
measured in megabytes but they calculate usage as a flat 
2KB per tuple.    Zoho Corporation also tracks data storage 
by the tuple for serval of their cloud products including 
Creator [3] and CRM [4]. The tuple count method is used as 
it is easier to calculate in a multi-tenant system where the 
physical disk drives are shared by many clients. 

In this paper, we present an algorithm that will minimize 
the number of tuples used to store the facts for a software 
system.  We use a motivating example from a cloud software 
system developed by students in our lab.  The algorithm 
performs three main operations: 

 The horizontal merging of objects – several distinct 
relations are combined into one. 

 The vertical merging of objects – several distinct 
instances of the same type of facts is combined into 
one. 

 Business rule adoption – instead of storing tuples to 
represent availability of lookup data, we replace the 
tables with pattern based business rules  

We apply our algorithm to a system in the humanities 
application domain and show an approximately 500% 
reduction in tuple storage. 

 
Date [5] invests a good deal of his text on the definition 

of denormalization.  He argues that denormalization is when 

the number of relational variables is reduced, and functional 

dependencies are introduced where the left hand of the 

functional dependency no longer is a super key.  In our 

work, we perform many optimizations.  When we 

horizontally merge relations, then we are performing a true 

denormalization.  Other optimizations such as vertical 

merging do not fit Date’s definition of denormalization.  We 

choose to stay with the term denormalization algorithm as it 

is a set of steps taken after the normalization process.   

The organization of the paper is as follows. Section 2 

describes the related work and the limitations of current 

methods. In Section 3 we give a motivating example where 

our algorithm is useful and describe our denormalization 

algorithm.  Section 4 describes additional enhancements 

through the design of business rule objects. Section 5 

explores reporting from the denormalized objects utilizing 

the object version history stored in the journal. Section 6 

contains our comparison of the proposed method and the 

traditional database normalization method. We conclude and 

discuss future work in Section 7. 
. 

II. RELATED WORK 

Sanders and Shin [6] investigate the process to be 

followed when denormalization is done on relational data 

management systems (RDBMS) to gain better query 

performance. Their work was done before the cloud 

database offerings became prevalent.  In the cloud, database 

performance is less of an issue to storage requirements 

because the systems are designed to distribute queries across 

many systems. 

Conley and Whitehurst [7] patented the idea of 

denormalizing databases for performance but hiding the 

denormalization for the end user.  Their work focuses on 

merging two relations into one relationship to eliminate the 

processing required to join the records back together.  Their 

work uses horizontal denormalization to gain performance.  
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Our work uses both horizontal and vertical denormalization 

to minimize storage space and increase usability. 

Most denormalization research work was done in the 

late 1990s and was focused on improvement in query 

performance over the correctness and usability of the data.  

Recently, folks like Andrey Balmin have looked at 

denormalization as a technique to improve the performance 

of querying XML data.  Like the previously mentioned 

research, this work differs from our work in the desired end 

goal of minimized data storage and end user usage. 

In Bisdas’ [8] blog, he demonstrates ways that end users 

can improve data visualization by vertically merging 

hierarchical data in the Salesforce, data model.  He takes 

advantage of the trigger architecture to create redundant 

data in the hierarchy.  Taber [9] also recommends 

denormalization to improve data visualization.  The problem 

with both solutions is that data storage requirements are 

increased while correctness is jeopardized by the redundant 

data. 

In our previous work [10], we study UML models from 

the perspective of integrating heterogeneous software 

systems.  In the work, we create an algorithm to sort cyclical 

UML class data diagrams to enable transaction reformation 

in the integration.  In the process, discoveries were made on 

the freshness of data at different layers in the UML graph.  

The knowledge is useful in this study when considering 

anomalies that can happen in response to data updates. 

Additional semantics for models can be added by the 

integration of the matching UML Activity and Class 

diagrams. UML provides an extensibility mechanism that 

allows a designer to add new semantics to a model.  A 

stereotype is one of three types of extensibility mechanisms 

in the UML that allows a designer to extend the vocabulary 

of UML to represent new model elements [11].  

Traditionally these semantics were consumed by the 

software developer manually and translated into the 

program code in a hard coded fashion. 
Developers have implemented business rules in software 

systems since the first software package was developed. 
Most research has been around developing expert systems to 
process large business rule trees efficiently.  Charles Forgy 
[12] developed the Rete Algorithm, which has become the 
standard algorithm used in business rule engines.  Forgy has 
published several variations on the Rete Algorithm over the 
past few decades. 

 
 

III. DENORMALIZATION 

We demonstrate our work using a Tour Reservation 

System (TRS).  TRS uses web services to provide a variety 

of functionalities to the patrons who are visiting a museum 

or historical organization.    We use the UML specification 

to represent the meta-data. Figure 1 shows a UML class 

diagram for an implementation of this functionality. The 

Unified Modeling Language includes a set of graphic 

notation techniques to create visual models of object-

oriented software systems [13].  In this study, we use data 

collected by the Gettysburg Foundation on visitors to their 

national battlefield.  The system is modeled and 

implemented on the force.com [2] cloud platform. 

Figure 1 shows a normalized UML class model of 

reservation transactions of visitors to the Gettysburg 

National Battlefield.  In the model the central object ticket 

represents a pass for an entry that is valid for a specific date 

and time and a specific activity.  Activities are itinerary 

items the visitor can be involved in while visiting the 

battlefield.  In the normalized model, each ticket is linked to 

a specific activity schedule entry that will designate the date 

and time the pass is valid for entry.  Each activity schedule 

is linked to an activity object that designates the name and 

location of the activity. 

Each ticket is linked to a user in the Gettysburg 

organization who was responsible for the transaction.  Each 

ticket can be linked to a patron object.  In the case of 

advanced reservations, there will be a valid patron object 

linked to the ticket.  Advanced reservations are transactions 

that take place through the organization's website or over 

the phone to a reservation agent. In the case of walk-up 

transactions, there will not be a linked patron.  A walk-up 

transaction is a transaction that takes place when a visitor 

arrives on the site without a prior reservation and pays for 

the ticket at the front desk. 

In Figure 1, the multiplicity of the association between 

the patron and the ticket is a zero or one to many.  A 

multiplicity that can be zero represents anonymous data.  

Anonymous data is data that does not need to be specified in 

order for the transaction to be valid.  In the example 

transaction, the patron can remain anonymous but still visit 

the battlefield and partake in the activities.  In the case of 

the sample Gettysburg data, 60 percent of ticketing 

transactions were anonymous. 

In the case of the force.com [2] PAAS, data storage is 

charged by the tuple.  With an enterprise license to the 

platform, the organization is granted access to one gigabyte 

of data storage.  The storage is measured by treating every 

tuple as two kilobytes.  This form of measurement  allows 

Figure 1. Normalized Transaction Model 
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the organization 500,000 tuples in the enterprise data 

storage option.  The data collected for the normalized data 

model would allow the Gettysburg organization to store 

around nine months’ worth of data.  With the anonymous 

transaction, the ticket and the payment data is only 

important on the original transaction level for auditing.  For 

example, the accounting department may want to see the 

details behind a specific ticket agent’s cash total for the day.  

Another example would be the marketing department wants 

to see the ticket price patterns within an hour of the day. 

The force.com [2] platform uses an Oracle relational 

database to deliver the data storage services but adds a 

journal feature so history can be stored on all changes to an 

object over time.  This journal can be used at no additional 

data storage cost.  The field level changes stored in the 

journal would allow aggregate data to be stored for 

anonymous transactions and still have the detail to perform 

the audits mentioned earlier. 

If an object is used between two other objects where the 

middle object is the “many” side of the one-to-many 

relationship and the one side of the other relationship, then 

the same data can be represented by moving the attributes to 

the object on the composition side of the relationship.  The 

middle object is then able to be removed, reducing the 

number of tuples representing the same amount of data.  In 

Figure 1, the “Activity Schedule” object fits this profile and 

can be horizontally merged with the “Ticket” object.  In our 

previous work [10], we study UML data model freshness 

requirements and document the relationship between data 

changes and location in the UML graph.  In our findings, we 

see that middle object nodes are less predisposed to changes 

than leaf nodes.  The lower amount of data changes reduces 

the change of update anomalies. 

In Figure 1, we also designate objects that are updated in 

transactions differently than objects that are navigated for 

transactional lookup values.  Two stereotypes are added to 

the diagram: 

 Transactional – The classes designated with the 

orange color and the <<Transactional>> tag are 

updated during transactional activities. 

 Lookup – The classes designated with the green 

color and the <<Lookup>> tag are not updated 

during transactional activities.  The data in these 

classes are created by administrative activities.  

During transactions, the data is searched for the 

proper values. 

The Denormalization Algorithm, Algorithm 1, 

transforms a normalized model stored in a UML class 

diagram into a denormalized model represented as an entity-

relationship diagram.  The algorithm assumes input and 

output of the models in the XMI [14] format.  XMI is a 

standard exchange format used to represent structural 

models in a non-proprietary way. 

The algorithm first loops through each object in the 

normalized model and adds the object and attributes as 

entities in the denormalized entity-relationship diagram. If 

the object has the transactional stereotype, then the 

attributes are marked unique.  Surrogate identifier fields are 

added to each object’s definition to be used as an auto-

incrementing primary key. 

The next pass of the algorithm is to find objects that can 

be eliminated from the middle relationship of two “one-to-

many” relationships.  The original model, in Figure 1, had 

an activity schedule object that consumed a lot of data space 

by storing a lot of tuples to represent the occurrences an 

activity can take place.  We use a stereotype of “PK” 

applied to attributes in the original model to designate the 

primary identifier for instances of an object.  This 

designation allows us to shift the attribute down the 

association and swap the positioning of the objects.  In this 

iteration over the objects, we also look for date-time data 

Figure 2 Denormalized Transaction Model 

Algorithm 1. Denormalization Algorithm 

INPUT: normalizedObjects (XMI representation of 

UML class diagram) 

OUTPUT: denormalizedEntities (XMI representation 

of denormalized entities) 

foreach object in normalizedObjects 

    add entity to denormalizedEntities 

    foreach attribute in object 

       add attribute to entity 

       if object is transactional 

          mark attribute as unique 

    add id attribute as primary key 

    mark id as autoincrement 

 

foreach entity in denormalizedEntities 

    if entity is both a many side and a one side of two 

relationships            

     and  a lookup object 

       foreach attribute in object 

          if attribute is PK 

             add attributes to many side entity  

             if attribute is a datetime type expand date pattern 

       swap graph location entity of the one sides 

  

foreach association in normalizedObjects 

    if association is one-to-may and many side is transactional 

        add foreign key to many side entity 

        add quantity field to entity on many side              
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types that are part of the primary key.  When we locate an 

occurrence, we replace the attribute with a date-time 

specification occurrence.  The date-time specification 

includes a starting date, ending date, starting time, ending 

time and day of the week pattern. 

The final pass of the algorithm adds foreign keys and 

aggregation counters.  The aggregation significantly reduces 

the count of tuples stored.  An example of this is shown in 

Figure 1. Instead of having an instance of each ticket, we 

add the quantity field to store the aggregate count for the 

unique attributes. 

Figure 2 shows an entity-relationship diagram of a 

transformed model of Figure 1. Unique attributes have been 

applied where aggregations should be performed.  The 

activity schedule entity has been shifted out in the graph, 

and the quantity fields have been added to the aggregated 

transactional objects. 

 

IV. BUSINESS RULES 

Business rule engines have sprung up to allow the 

separation of business rules from the core application code.  

The systems are designed to allow the end users to change 

the business rules freely without changing the original 

application code. In 2007, International Data Corporation 

implemented a survey where they asked 'How often do you 

want to customize the business rules in your software?’. 

Ninety percent of the respondents reported that they 

changed their business rules annually or more frequently.  

Thirty-four percent of the respondents reported that they 

changed their business rules monthly [15]. 

Figure 2 shows two tables that implement business rules:  

 Activity Schedule – This table implements the 

date-time pattern mentioned earlier to store the 

business rules for when a particular activity is 

valid. 

 Price Schedule – This table implements the 

date-time pattern mentioned earlier to store the 

business rules for when a particular price is 

available. 

In each case objects in Figure 1, that inserted instances to 

represent availability, are replaced with rule instances to 

represent the availability.  So instead of having a tuple per 

availability instance, a single tuple can represent the pattern. 

In the case of activity schedules, the example year had over 

26,000 instances of availability that were replaced with 30 

instances of the business rule. 

 

V. OBJECT HISTORY ANALYSIS 

One of the main reasons enterprises develop or purchase 

software solutions to allow the organization to increase their 

knowledge of their operations through the analysis of the 

data collected in the software solution.  The denormalization 

solution presented earlier may limit the data available from 

the denormalization process.  The data is presented to the 

users through dashboards, reports or exports.  A dashboard 

is presented as a graphical chart to measure where the 

organization stands compared to a goal.  Examples of these 

would be sales to date compared to same period last year.  A 

report has a set of input parameters that control the data 

displayed.  The data displayed in the report tends to include 

tables with aggregated values.  Exports allow for the 

exporting of data into a two-dimensional table saved as a 

comma separated value (CSV) format.  In this format, 

attributes represent the columns of the data.  Columns are 

escaped with double quotes and separated by commas.  For 

our purposes, we will refer to all three categories generically 

as reports. 

Current state and historical comparison are the two 

categories of reports a user may want to pull in their 

analysis. In current state reports only the latest version of 

the object is needed.  In historical comparison reports, all 

versions of an object may be needed depending on the level 

of aggregation. An example of a historical comparison 

report would be a report that compares sales for the month 

compared to sales last year in the same month. 

In our work, we developed Algorithm 2 to create an in-

memory copy of all historical versions of a specific object.  

We use code to generate the data and then generate the 

report output. If the organization wanted to allow end users 

to report on historical versions, they could modify 

Algorithm 2 to write records as temporary tuples and then 

call the reporting tool. 

 

VI. EMPIRICAL RESULTS 

The empirical results demonstrate the success of 

representing the example transaction data with significantly 

lower cloud storage costs. TABLE 1 shows the tuple counts 

for the original data model and the denormalized data 

model.  Both data models represent the complete 2014 

calendar year of visitor transactions for the Gettysburg 

National Battlefield. The denormalized model creates a 78% 

reduction in the number of tuples. In the specific case of the 

Algorithm 2. History Creation Algorithm 

INPUT: object 

OUTPUT: collection of object’s version history 

 

Set thisObject = newest version of object 
Set objectVersions = empty list 

Set fieldVersions = distinct saveDates values from object journal  

Sort fieldVersions by saveDate descending 
Set lastDate = maximum(saveDate) 

Foreach version in fieldVersions 

     If lastDate = version.saveDate 
        objectVersions.add(thisObject) 

    Set thisObject.[version/attribute] = version.value 

    Set lastDate = version.saveDate 
Return objectVersions 
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force.com [2] platform, the reduction in number of tuples 

allows the organization to store nearly three years of 

transaction data in the data storage provided without 

additional subscriptions costs.  In the minimal data storage 

provided to an enterprise customer of force.com [2], the 

organization receives 500,000 tuples. Additional data 

storage is available to the organization for a monthly 

subscription price of 2,000 tuples per dollar. Using the 

normalized data model, the organization would not be able 

to store a complete year of data without needing to purchase 

more data storage. 

VII. CONCLUSION 

In this paper, we propose an algorithm for object 

denormalization when transforming an application domain 

object model to a data model used in a cloud PAAS data 

store. Our solution is based on navigating the relationships 

in a UML class diagram and horizontally compressing 

classes between multiple one-to-many relationships, 

aggregating relationships on anonymous relationships and 

using temporal offering patterns. 

In this research, we studied a specific application 

domain related to humanities organizations.  The algorithms 

can be applied to similar application domains that contain 

entity objects representing transactions and customers. 

Future work needs to test our algorithms in other application 

domains to ensure the work applies across different 

application domains.    
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TABLE 1. EMPIRICAL RESULTS 

Table Normalized 

Tuples 

Denormalized 

Tuples 

user 31 31 

patron 17,610 17,610 

ticket 738,981 157,780 

activity 

schedule 

26,697 30 

price schedule 220 24 

activity 17 17 

Total 783,556 175,492 
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