
Cloud Data Denormalization of Anonymous Transactions

Aspen Olmsted, Gayathri Santhanakrishnan

Department of Computer Science

College of Charleston, Charleston, SC 29401

e-mail: olmsteda@cofc.edu, santhanakrishnang@g.cofc.edu

Abstract— In this paper, we investigate the problem of

representing transaction data in PAAS cloud-based systems.

We compare traditional database normalization techniques

with our denormalized approach. In this research, we

specifically focus on transactional data that is not attached to a

specific customer. The absence of the relationship in the

customer object allows for the vertical merging of tuples. to be

stored in aggregate form. The journaling features of the data

store, allow full audits of transactions while not requiring

anonymous data to be materialized in fine-grained levels. The

horizontal merging of objects is also deployed to remove detail

lookup data instance records and replace them with business

rule objects.

Keywords-web services; distributed database; modeling

I. INTRODUCTION

In this work, we investigate the problem of representing
transactional data in a platform as a service (PAAS) cloud-
based system. In traditional client-server architectures,
database normalization is used to ensure that redundant data
is not stored in the system. Redundant data can lead to
update anomalies if the developer is not careful to update
every instance of a fact when modifying data. Normalization
is also performed to ensure unrelated facts are not stored in
the same tuples resulting in deleting anomalies.

Data representation in the cloud has many of the same
challenges as data representation in client/server
architectures. One challenge data representation in the cloud
has that is not shared with client/server is the minimization
of data because costs of cloud data storage are significantly
higher than local storage. We are thinking of simple costs
for disk storage, not true costs. Organizations budget only
the costs of disk drives for local storage which are in the tens
of dollars per gigabyte but cloud storage can be in the
hundreds of dollars per gigabyte per month [1]. Often this
storage is expressed as the number of tuples in the data store
instead of the number of bytes on the disk drive holding the
data. For example, force.com [2] charges for blocks of data
measured in megabytes but they calculate usage as a flat
2KB per tuple. Zoho Corporation also tracks data storage
by the tuple for serval of their cloud products including
Creator [3] and CRM [4]. The tuple count method is used as
it is easier to calculate in a multi-tenant system where the
physical disk drives are shared by many clients.

In this paper, we present an algorithm that will minimize
the number of tuples used to store the facts for a software
system. We use a motivating example from a cloud software
system developed by students in our lab. The algorithm
performs three main operations:

 The horizontal merging of objects – several distinct
relations are combined into one.

 The vertical merging of objects – several distinct
instances of the same type of facts is combined into
one.

 Business rule adoption – instead of storing tuples to
represent availability of lookup data, we replace the
tables with pattern based business rules

We apply our algorithm to a system in the humanities
application domain and show an approximately 500%
reduction in tuple storage.

Date [5] invests a good deal of his text on the definition

of denormalization. He argues that denormalization is when

the number of relational variables is reduced, and functional

dependencies are introduced where the left hand of the

functional dependency no longer is a super key. In our

work, we perform many optimizations. When we

horizontally merge relations, then we are performing a true

denormalization. Other optimizations such as vertical

merging do not fit Date’s definition of denormalization. We

choose to stay with the term denormalization algorithm as it

is a set of steps taken after the normalization process.

The organization of the paper is as follows. Section 2

describes the related work and the limitations of current

methods. In Section 3 we give a motivating example where

our algorithm is useful and describe our denormalization

algorithm. Section 4 describes additional enhancements

through the design of business rule objects. Section 5

explores reporting from the denormalized objects utilizing

the object version history stored in the journal. Section 6

contains our comparison of the proposed method and the

traditional database normalization method. We conclude and

discuss future work in Section 7.
.

II. RELATED WORK

Sanders and Shin [6] investigate the process to be

followed when denormalization is done on relational data

management systems (RDBMS) to gain better query

performance. Their work was done before the cloud

database offerings became prevalent. In the cloud, database

performance is less of an issue to storage requirements

because the systems are designed to distribute queries across

many systems.

Conley and Whitehurst [7] patented the idea of

denormalizing databases for performance but hiding the

denormalization for the end user. Their work focuses on

merging two relations into one relationship to eliminate the

processing required to join the records back together. Their

work uses horizontal denormalization to gain performance.

42Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

mailto:olmsteda@cofc.edu

Our work uses both horizontal and vertical denormalization

to minimize storage space and increase usability.

Most denormalization research work was done in the

late 1990s and was focused on improvement in query

performance over the correctness and usability of the data.

Recently, folks like Andrey Balmin have looked at

denormalization as a technique to improve the performance

of querying XML data. Like the previously mentioned

research, this work differs from our work in the desired end

goal of minimized data storage and end user usage.

In Bisdas’ [8] blog, he demonstrates ways that end users

can improve data visualization by vertically merging

hierarchical data in the Salesforce, data model. He takes

advantage of the trigger architecture to create redundant

data in the hierarchy. Taber [9] also recommends

denormalization to improve data visualization. The problem

with both solutions is that data storage requirements are

increased while correctness is jeopardized by the redundant

data.

In our previous work [10], we study UML models from

the perspective of integrating heterogeneous software

systems. In the work, we create an algorithm to sort cyclical

UML class data diagrams to enable transaction reformation

in the integration. In the process, discoveries were made on

the freshness of data at different layers in the UML graph.

The knowledge is useful in this study when considering

anomalies that can happen in response to data updates.

Additional semantics for models can be added by the

integration of the matching UML Activity and Class

diagrams. UML provides an extensibility mechanism that

allows a designer to add new semantics to a model. A

stereotype is one of three types of extensibility mechanisms

in the UML that allows a designer to extend the vocabulary

of UML to represent new model elements [11].

Traditionally these semantics were consumed by the

software developer manually and translated into the

program code in a hard coded fashion.
Developers have implemented business rules in software

systems since the first software package was developed.
Most research has been around developing expert systems to
process large business rule trees efficiently. Charles Forgy
[12] developed the Rete Algorithm, which has become the
standard algorithm used in business rule engines. Forgy has
published several variations on the Rete Algorithm over the
past few decades.

III. DENORMALIZATION

We demonstrate our work using a Tour Reservation

System (TRS). TRS uses web services to provide a variety

of functionalities to the patrons who are visiting a museum

or historical organization. We use the UML specification

to represent the meta-data. Figure 1 shows a UML class

diagram for an implementation of this functionality. The

Unified Modeling Language includes a set of graphic

notation techniques to create visual models of object-

oriented software systems [13]. In this study, we use data

collected by the Gettysburg Foundation on visitors to their

national battlefield. The system is modeled and

implemented on the force.com [2] cloud platform.

Figure 1 shows a normalized UML class model of

reservation transactions of visitors to the Gettysburg

National Battlefield. In the model the central object ticket

represents a pass for an entry that is valid for a specific date

and time and a specific activity. Activities are itinerary

items the visitor can be involved in while visiting the

battlefield. In the normalized model, each ticket is linked to

a specific activity schedule entry that will designate the date

and time the pass is valid for entry. Each activity schedule

is linked to an activity object that designates the name and

location of the activity.

Each ticket is linked to a user in the Gettysburg

organization who was responsible for the transaction. Each

ticket can be linked to a patron object. In the case of

advanced reservations, there will be a valid patron object

linked to the ticket. Advanced reservations are transactions

that take place through the organization's website or over

the phone to a reservation agent. In the case of walk-up

transactions, there will not be a linked patron. A walk-up

transaction is a transaction that takes place when a visitor

arrives on the site without a prior reservation and pays for

the ticket at the front desk.

In Figure 1, the multiplicity of the association between

the patron and the ticket is a zero or one to many. A

multiplicity that can be zero represents anonymous data.

Anonymous data is data that does not need to be specified in

order for the transaction to be valid. In the example

transaction, the patron can remain anonymous but still visit

the battlefield and partake in the activities. In the case of

the sample Gettysburg data, 60 percent of ticketing

transactions were anonymous.

In the case of the force.com [2] PAAS, data storage is

charged by the tuple. With an enterprise license to the

platform, the organization is granted access to one gigabyte

of data storage. The storage is measured by treating every

tuple as two kilobytes. This form of measurement allows

Figure 1. Normalized Transaction Model

43Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

the organization 500,000 tuples in the enterprise data

storage option. The data collected for the normalized data

model would allow the Gettysburg organization to store

around nine months’ worth of data. With the anonymous

transaction, the ticket and the payment data is only

important on the original transaction level for auditing. For

example, the accounting department may want to see the

details behind a specific ticket agent’s cash total for the day.

Another example would be the marketing department wants

to see the ticket price patterns within an hour of the day.

The force.com [2] platform uses an Oracle relational

database to deliver the data storage services but adds a

journal feature so history can be stored on all changes to an

object over time. This journal can be used at no additional

data storage cost. The field level changes stored in the

journal would allow aggregate data to be stored for

anonymous transactions and still have the detail to perform

the audits mentioned earlier.

If an object is used between two other objects where the

middle object is the “many” side of the one-to-many

relationship and the one side of the other relationship, then

the same data can be represented by moving the attributes to

the object on the composition side of the relationship. The

middle object is then able to be removed, reducing the

number of tuples representing the same amount of data. In

Figure 1, the “Activity Schedule” object fits this profile and

can be horizontally merged with the “Ticket” object. In our

previous work [10], we study UML data model freshness

requirements and document the relationship between data

changes and location in the UML graph. In our findings, we

see that middle object nodes are less predisposed to changes

than leaf nodes. The lower amount of data changes reduces

the change of update anomalies.

In Figure 1, we also designate objects that are updated in

transactions differently than objects that are navigated for

transactional lookup values. Two stereotypes are added to

the diagram:

 Transactional – The classes designated with the

orange color and the <<Transactional>> tag are

updated during transactional activities.

 Lookup – The classes designated with the green

color and the <<Lookup>> tag are not updated

during transactional activities. The data in these

classes are created by administrative activities.

During transactions, the data is searched for the

proper values.

The Denormalization Algorithm, Algorithm 1,

transforms a normalized model stored in a UML class

diagram into a denormalized model represented as an entity-

relationship diagram. The algorithm assumes input and

output of the models in the XMI [14] format. XMI is a

standard exchange format used to represent structural

models in a non-proprietary way.

The algorithm first loops through each object in the

normalized model and adds the object and attributes as

entities in the denormalized entity-relationship diagram. If

the object has the transactional stereotype, then the

attributes are marked unique. Surrogate identifier fields are

added to each object’s definition to be used as an auto-

incrementing primary key.

The next pass of the algorithm is to find objects that can

be eliminated from the middle relationship of two “one-to-

many” relationships. The original model, in Figure 1, had

an activity schedule object that consumed a lot of data space

by storing a lot of tuples to represent the occurrences an

activity can take place. We use a stereotype of “PK”

applied to attributes in the original model to designate the

primary identifier for instances of an object. This

designation allows us to shift the attribute down the

association and swap the positioning of the objects. In this

iteration over the objects, we also look for date-time data

Figure 2 Denormalized Transaction Model

Algorithm 1. Denormalization Algorithm

INPUT: normalizedObjects (XMI representation of

UML class diagram)

OUTPUT: denormalizedEntities (XMI representation

of denormalized entities)

foreach object in normalizedObjects

 add entity to denormalizedEntities

 foreach attribute in object

 add attribute to entity

 if object is transactional

 mark attribute as unique

 add id attribute as primary key

 mark id as autoincrement

foreach entity in denormalizedEntities

 if entity is both a many side and a one side of two

relationships

 and a lookup object

 foreach attribute in object

 if attribute is PK

 add attributes to many side entity

 if attribute is a datetime type expand date pattern

 swap graph location entity of the one sides

foreach association in normalizedObjects

 if association is one-to-may and many side is transactional

 add foreign key to many side entity

 add quantity field to entity on many side

44Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

types that are part of the primary key. When we locate an

occurrence, we replace the attribute with a date-time

specification occurrence. The date-time specification

includes a starting date, ending date, starting time, ending

time and day of the week pattern.

The final pass of the algorithm adds foreign keys and

aggregation counters. The aggregation significantly reduces

the count of tuples stored. An example of this is shown in

Figure 1. Instead of having an instance of each ticket, we

add the quantity field to store the aggregate count for the

unique attributes.

Figure 2 shows an entity-relationship diagram of a

transformed model of Figure 1. Unique attributes have been

applied where aggregations should be performed. The

activity schedule entity has been shifted out in the graph,

and the quantity fields have been added to the aggregated

transactional objects.

IV. BUSINESS RULES

Business rule engines have sprung up to allow the

separation of business rules from the core application code.

The systems are designed to allow the end users to change

the business rules freely without changing the original

application code. In 2007, International Data Corporation

implemented a survey where they asked 'How often do you

want to customize the business rules in your software?’.

Ninety percent of the respondents reported that they

changed their business rules annually or more frequently.

Thirty-four percent of the respondents reported that they

changed their business rules monthly [15].

Figure 2 shows two tables that implement business rules:

 Activity Schedule – This table implements the

date-time pattern mentioned earlier to store the

business rules for when a particular activity is

valid.

 Price Schedule – This table implements the

date-time pattern mentioned earlier to store the

business rules for when a particular price is

available.

In each case objects in Figure 1, that inserted instances to

represent availability, are replaced with rule instances to

represent the availability. So instead of having a tuple per

availability instance, a single tuple can represent the pattern.

In the case of activity schedules, the example year had over

26,000 instances of availability that were replaced with 30

instances of the business rule.

V. OBJECT HISTORY ANALYSIS

One of the main reasons enterprises develop or purchase

software solutions to allow the organization to increase their

knowledge of their operations through the analysis of the

data collected in the software solution. The denormalization

solution presented earlier may limit the data available from

the denormalization process. The data is presented to the

users through dashboards, reports or exports. A dashboard

is presented as a graphical chart to measure where the

organization stands compared to a goal. Examples of these

would be sales to date compared to same period last year. A

report has a set of input parameters that control the data

displayed. The data displayed in the report tends to include

tables with aggregated values. Exports allow for the

exporting of data into a two-dimensional table saved as a

comma separated value (CSV) format. In this format,

attributes represent the columns of the data. Columns are

escaped with double quotes and separated by commas. For

our purposes, we will refer to all three categories generically

as reports.

Current state and historical comparison are the two

categories of reports a user may want to pull in their

analysis. In current state reports only the latest version of

the object is needed. In historical comparison reports, all

versions of an object may be needed depending on the level

of aggregation. An example of a historical comparison

report would be a report that compares sales for the month

compared to sales last year in the same month.

In our work, we developed Algorithm 2 to create an in-

memory copy of all historical versions of a specific object.

We use code to generate the data and then generate the

report output. If the organization wanted to allow end users

to report on historical versions, they could modify

Algorithm 2 to write records as temporary tuples and then

call the reporting tool.

VI. EMPIRICAL RESULTS

The empirical results demonstrate the success of

representing the example transaction data with significantly

lower cloud storage costs. TABLE 1 shows the tuple counts

for the original data model and the denormalized data

model. Both data models represent the complete 2014

calendar year of visitor transactions for the Gettysburg

National Battlefield. The denormalized model creates a 78%

reduction in the number of tuples. In the specific case of the

Algorithm 2. History Creation Algorithm

INPUT: object

OUTPUT: collection of object’s version history

Set thisObject = newest version of object
Set objectVersions = empty list

Set fieldVersions = distinct saveDates values from object journal

Sort fieldVersions by saveDate descending
Set lastDate = maximum(saveDate)

Foreach version in fieldVersions

 If lastDate = version.saveDate
 objectVersions.add(thisObject)

 Set thisObject.[version/attribute] = version.value

 Set lastDate = version.saveDate
Return objectVersions

45Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

force.com [2] platform, the reduction in number of tuples

allows the organization to store nearly three years of

transaction data in the data storage provided without

additional subscriptions costs. In the minimal data storage

provided to an enterprise customer of force.com [2], the

organization receives 500,000 tuples. Additional data

storage is available to the organization for a monthly

subscription price of 2,000 tuples per dollar. Using the

normalized data model, the organization would not be able

to store a complete year of data without needing to purchase

more data storage.

VII. CONCLUSION

In this paper, we propose an algorithm for object

denormalization when transforming an application domain

object model to a data model used in a cloud PAAS data

store. Our solution is based on navigating the relationships

in a UML class diagram and horizontally compressing

classes between multiple one-to-many relationships,

aggregating relationships on anonymous relationships and

using temporal offering patterns.

In this research, we studied a specific application

domain related to humanities organizations. The algorithms

can be applied to similar application domains that contain

entity objects representing transactions and customers.

Future work needs to test our algorithms in other application

domains to ensure the work applies across different

application domains.

REFERENCES

[1] brainsell blog, "Salesforce, SugarCRM and SalesLogix —

Data Storage Costs Compared," 2016. [Online]. Available:

https://www.zoho.com/creator/pricing-comparison.html.

[Accessed 03 02 2016].

[2] Salesforce.com, inc, "Run your business better with Force.,"

2006. [Online]. Available:

http://www.salesforce.com/platform/products/force/?d=701

30000000f27V&internal=true. [Accessed 03 02 2016].

[3] Zoho Corporation, "Creator Pricing Comparison," 2016.

[Online]. Available: https://www.zoho.com/creator/pricing-

comparison.html. [Accessed 03 02 2016].

[4] Zoho Corporation, "Compare Zoho CRM editions," 2016.

[Online]. Available:

https://www.zoho.com/crm/comparison.html. [Accessed 03

02 2016].

[5] C. J. Date, "Denormalization," in Database Design and

Relational Theory, O'Reilly Media, 2012.

[6] G. L. Sanders and S. Shin, "Denormalization Effects on

Performance of RDBMS," in Proceedings of the 34th

Hawaii International Conference on Systems Sciences,

2001.

[7] J. D. Conley and R. P. Whitehurst, "Automatic and

transparent denormalization support, wherein

denormalization is achieved through appending of fields to

base relations of a normalized database". USA Patent

US5369761 A, 29 November 1994.

[8] A. Bisda , "Salesforce Denormalization Delivers New

Power for Nurtures," DemandGen, 29 07 2014. [Online].

Available: http://www.demandgen.com/salesforce-

denormalization-delivers-new-power-nurtures/. [Accessed

09 11 2015].

[9] D. Taber, Salesforce.com Secrets of Success: Best Practices

for Growth and Profitability, Prentice Hall, 2013.

[10] A. Olmsted, "Fresh, Atomic, Consistent and Durable

(FACD) Data Integration Guarantees," in Software

Engineering and Data Engineering, 2015 International

Conference for, San Diego, CA, 2015.

[11] Object Management Group, "Unified Modeling Language:

Supersturcture," 05 02 2007. [Online]. Available:

http://www.omg.org/spec/UML/2.1.1/. [Accessed 08 01

2013].

[12] C. L. Forgy, "Rete: A fast algorithm for the many

pattern/many object pattern match problem," Artificial

Intelligence, vol. 19, no. 1, p. 17–37, 1982.

[13] Object Management Group, "Unified Modeling Language:

Supersturcture," 05 02 2007. [Online]. Available:

http://www.omg.org/spec/UML/2.1.1/. [Accessed 08 01

2013].

[14] Object Management Group, "OMG Formal Versions of

XMI," 06 2015. [Online]. Available:

http://www.omg.org/spec/XMI/. [Accessed 11 11 2015].

[15] Ceiton Technologies, "Introducing Workflow," [Online].

Available:

http://ceiton.com/CMS/EN/workflow/introduction.html#Cus

tomization. [Accessed 15 09 2014].

TABLE 1. EMPIRICAL RESULTS

Table Normalized

Tuples

Denormalized

Tuples

user 31 31

patron 17,610 17,610

ticket 738,981 157,780

activity

schedule

26,697 30

price schedule 220 24

activity 17 17

Total 783,556 175,492

46Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

