CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

Overcome Vendor Lock-In by Integrating Already Available Container Technologies
Towards Transferability in Cloud Computing for SMEs

Peter-Christian Quint, Nane Kratzke
Liibeck University of Applied Sciences, Center of Excellence CoSA
Liibeck, Germany
email: {peter-christian.quint, nane.kratzke } @fh-luebeck.de

Abstract—Container clusters have an inherent complexity. A
distributed container application in the cloud can be complex
at planning, installation and configuration, maintenance and
search for failures. Small and medium enterprises (SMEs) are
mostly limited by their personnel and financial restrictions.
Using advanced cloud technologies like a container cluster often
requires high personnel expenses or the use of an external system
builder. In addition to economical, security- and governance
issues there is also the concern of technical vendor lock-ins.
This paper introduces C'S, an open source system for SMEs
to deploy and operate their container application with features
like elasticity, auto-scaling and load balancing. The system also
supports transferability features for migrating container between
different Infrastructure as a Service (IaaS) platforms. This paper
presents a solution for SMEs to use the benefits of cloud
computing without the disadvantages of vendor lock-in.

Keywords—Microservice; Container; Docker; Container Cluster;
Software Defined Network; Cloud Computing; SME

I. INTRODUCTION

Infrastructure as a service (IaaS) enables companies to
get resources like computational power, storage and network
connectivity on demand. IaaS can be obtained on public or
private clouds. Public clouds are provided by third parties for
general public use. Type representatives are Amazon’s Elastic
Compute Cloud (EC2) and Google Compute Engine (GCE).
Private Cloud are intended for the exclusive use by a single
organization [1]. They are mostly installed on the respective
companies own infrastructure. OpenStack is a cloud platform
for providing (not exclusively) private clouds. One big benefit
using cloud computing is the elastic scaling. Elasticity means
the possibility to match available resources with the current
demands as closely as possible [2]. Scalability is the ability of
the system to accommodate larger loads by adding resources
or accommodate weakening loads by removing resources [3].
With autoscaling, resources can be added automatically when
they are needed and removed when they are not in use [4].
The resources are allocated on demand and the customer only
has to pay for resources he really used. The system described
in this paper will support several, public and private, cloud
environments. Features like elastic scaling and transferability
will also be available. The authors define transferability as the
possibility to migrate some or all containers between different
cloud platforms. This is needed to avoid vendor lock-in by
the cloud providers, which is a major obstacle for small and
medium enterprises (SMEs) in cloud computing [5]. Only a
few research projects deal with the specific needs of SMEs in
cloud computing [6].

In the last few years, container technologies like Docker
got more and more common. Docker is an open source and
lightweight virtualization solution to provide an application

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

deployment without having the overhead of virtual machines
[7]. With Docker, applications can be easily deployed on
several machine types. This makes it possible to launch con-
tainers from the same application (image), e.g., on a personal
computer or a datacenter server.

Container clusters like Kubernetes (arose from Google
Borg [8]) and Mesos [9] can deploy a huge number of
containers on private and public clouds. A big benefit of cluster
technologies is the horizontal scalability of the containers, the
fast development and the contained software defined network,
which is often necessary for distributed container applications.
Container and container cluster software are mostly open
source and free to use.

SMEs are mostly financially and personnel-wise restricted
(see the European definition of SME [10]). Since the man-
agement of container cluster applications with features like
transferability and elasticity is complex, it can be very difficult
to achieve for a small (maybe only one person size) IT
department. Getting started using services like Infrastructure
as a Service (IaaS) might be very simple. But the use of
advanced cloud technologies like clusters, containers and cloud
benefits like auto-scaling and load balancing can quickly grow
into complex technical solutions. The cloud provider supplied
services (i.e., auto-scaling) might pose another issue due to
often having non-standardized service APIs. This is often
resulting in inherent vendor lock-in [11]. However, there are
products and services to manage these technologies like the
T-Systems Cloud Broker and Amazon EC2 Container Service
(ECS). These management solutions also have disadvantages.
For example, the Cloud Broker is a commercial product, which
is inherently designed for very big companies. This kind of
cloud broker services move the dependencies from the cloud
provider to the system/service provider like T-Systems. ECS
works only with Amazon EC2-instances, which means there is
still a vendor lock-in. Both solutions just shift vendor lock-in
to another company. Creating an open source system for easy
deployment and managing of cloud applications in a container
cluster would support SMEs using these technologies without
worries about vendor lock-in.

The software presented in this paper is called C*S. The
name is an acronym for Container Cluster in Cloud Computing
System. C*S is designed to (automatically) deploy an operating
container cluster application without vendor lock-in. Moreover,
the system will be able to monitor the cloud platform, the
container cluster and the containers themselves. Beside bare
reporting, the system will offer methods to keep the application
running in most failure states. Altogether, the C*S can make
container cluster cloud computing technologies usable for
SMEs without large and highly specialized IT departments.

38

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

C*S is not exclusively designed for SMEs. The user group
of C4S is not limited to specific company types, so (e.g.,
big international) companies with small and specific in-house-
departments can use it, too.

Section II describes the features and the requirements of
the C*S system. An overview about the C*S architecture
is given in Section III. The intended validation of concept,
which is performed at the final phase, is presented in Section
IV. Related work, several business services and products are
described in Section V. Finally, the conclusion is presented in
SectionVI.

II. GENERAL REQUIREMENTS OF C*S

C*S is designed to handle the high complexity of a
container cluster with benefits like elasticity, auto-scaling and
transferability. Feature requirements and the technical speci-
fications are explained below. By designing and developing a
generic cloud service description language, a solution to define
secure, transferable and elastic services of typical complexity
will be provided. Thus, they are deployable to any IaaS cloud
infrastructure. This work promotes the implementation of easy-
to-handle, elastic and transferable cloud applications.

A. Deploying and Controlling Applications

The basic feature of C*S is to deploy a distributed container
application on cloud environments. Therefore, the user can
easily configure the needed containers, the interfaces and the
cloud environments. According to the user set configuration,
the system will automatically deploy the application on the
container cluster and the cloud platforms. Overall, there are
three controlling levels the management solution C*S has to
support:

The Container Application can be configured, launched,
controlled, changed and stopped. Application parts (e.g., con-
tainer types) must be replaceable (e.g., changing of container
images to keep the application up to date). Details like the
status and the configuration of every single container and an
overview of all running containers should also be visible for
the customers.

The Container Cluster is used for automatic deployment
of the container on the available virtual machines (running
on laaS platforms). Therefore, the cluster solution can create,
terminate and transfer containers. The user is able to set values
like the deployment limitations and restrictions in the container
host selection.

Virtual Machines on IaaS platforms form the host system
of the container cluster with the containers. The system should
support a management solution for monitoring the status as
well as creating and terminating virtual machines on several
cloud platforms. The user is able to set values like the
virtual machine limitations and the favored platform for each
container type.

A view with all used machines, their type, running time,
and other data is also necessary to observe, e.g., economic
information like actual costs. The system has to be able
to monitor on all controlling levels. In case of failure, the
monitoring system should trigger reports and automatic actions
to keep the application running.

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

B. Usage of Cloud Features

As described in Section I, cloud computing enables features
like elasticity, scalability and load balancing. C*S enables the
user to handle the inherent complexity of these features in an
easy way. Auto-Scaling containers on the cluster and virtual
machines on TaaS platforms is also featured.

C. Prevent Dependencies

To avoid vendor lock-in by the cloud provider, the
system can install a multi-cloud container cluster with transfer-
ability features. On demand, some or all containers can migrate
from one cloud provider to another. Accordingly, the user has
full control over where the containers are running.

To prevent dependencies by used software and ser-
vices, the C*S will be published under MIT license. It is
recommended that all third-party parts like the cluster software
are also open source. Thus, the consuming companies avoid
dependencies to the C*S system and adapt the source code
to their special needs. The system has to be designed generic
for several cloud platforms. A modular architecture enables
extensions for other platforms. Beside the cloud platforms, the
users should not be limited by the choice of the container
cluster. The modular architecture enables later extensions for
missing cluster connectivity.

III. C*S ARCHITECTURE

The architecture is divided into four layers. The core of
C*S is the deployment and the monitoring engine. The user
can manage the deployment and get the monitoring events over
two interfaces. The other two parts are the container cluster
and the TaaS environments.

Deployment Monitoring St?:';ae Deployment
language Engine Enginge Engine

t

H Ey N
EE

L1

| Virtual

Graphical User Interface

—

[Command Line Interface]

)

N
H N
[T

12315n])
J3UIRIU0)

| Virtual

| Virtual

| Virtual

o Machines Machines Machines Machines
iz
W|5% <
@ amazon .
webservices* Google ! openstack

Figure 1. CS architecture overview

A. Interfaces @

The management system will provide a web-based graph-
ical user interface (GUI) and a command line interface (CLI),
see Figure 1, @. Here the user can set the the account data
and limits of the TaaS platforms, the configuration for scaling
and also set transfer orders (e.g., moving containers to another

39

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

cloud platform). It is also possible to set rules for creating,
terminating and moving containers on a special event. By
setting these rules, the system can deal with failures like a
cloud platform interrupt. Other features like the automatic
container cluster software installation can be started using the
interfaces. Status information about the containers, the cluster
and the cloud platform are visible, monitoring events and the
triggered actions are also reported.

B. Deployment and Monitoring Engines @

This subsection describes the engines shown at Figure
I, @. The deployment engine is responsible for creating
and deleting instances on the cloud platforms, managing the
container cluster and deployment of the containers on it,
making it the main core of CS. Features like load balancing
and container transfer are also controlled by this engine. The
deployment language is designed for stating the constraints of
the configuration. All needed informations about the container
application, the cluster and the IaaS platforms can be described
by the deployment language. The monitoring engine observes
the containers on the cluster and virtual machines on the IaaS
platform. Additional to reporting states and failures, actions
can be triggered by events. For example, if the engine registers
an exceptionally high workload of a container, it reports to the
deployment engine to scale out containers, and vice versa. The
engine can deploy the application on different cloud platforms
and is able to transfer containers between them. The data
storage engine is compatible with several block and object
storage systems to avoid vendor lock-in. The engine also
enables scalability and security features for data storage.

C. Container Cluster ®

The container cluster deploys the containers on the virtual
cloud machines (see Figure 1, ®). The management system
can terminate and create the containers in the cluster network.
The system can also transfer a container from one virtual
machine to another, which is not even necessarily running on
the same cloud platform. These actions are controlled by the
deployment engine and supervised by the monitoring engine.
In combination with the container cluster, the engines make it
possible to migrate services from one private or public cloud
infrastructure to another (not necessarily compatible) cloud
infrastructure.

D. laaS Platforms @

The C*S can manage several cloud platforms (see Figure
1, @). It is possible to create and terminate IaaS instances
accordingly on demand. Hence, it has to communicate with the
cloud platforms. Because of missing standardization [12] for
every provider API a special driver has to be designed. These
require a modular and easy to adapt software architecture. The
deployment language is designed for informations like access
data, limits and all other settings which can be set over the
described interfaces.

IV. INTENDED VALIDATION OF CONCEPT

It will be shown that SMEs can manage a container cluster
over (multi) cloud platforms. At first it will be demonstrated
that building a system, which fits all the required features, is
possible. Therefore, a working, open source C*S prototype,
which conforms the requirements set in Section II, will be

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

developed. The system has to be implemented in a modular
and extendable way. As cluster platform, C*S will support
Kubernetes first, other cluster environments will follow. Pre-
senting interchangeability and the open source type of C*S
will show that dependencies by the used software can be
prevented. To avoid vendor lock-in by the cloud provider,
the prototype must be able to install a multi-cloud container
cluster. First, the system will be compatible with the IaaS cloud
platform type representatives Amazon EC2, Google GCE and
OpenStack. To support other platforms, appropriate drivers
can be implemented. Transferability features like moving all
containers from one cloud platform to another will be imple-
mented. Terminating all containers and virtual machines on
one provider and creating them on another at the same time,
without changes in features like elasticity and auto-scaling, will
proof that C*S is preventing vendor lock-in. The software will
also manage container application deployment. It will deploy a
container cluster, create and terminate containers and is usable
for deploying applications. Also, workloads will be created to
test the autoscaling features. With enforced failure states, the
robustness of the system will be demonstrated. It will be shown
that the system is able to keep the applications running even
when containers and virtual machines get disconnected. In the
second part of the proof of concept, a company will employ
the software. Thus, the expense for a small business using the
container cluster manager will be evaluated. Finally, a proof of
concept will be realized by several business companies. These
companies will use the C*S system on their own for testing
a productive application deployment with real workload. Load
balancing, elasticity, auto-scaling and transferability features
will be applied in production. This way it will be shown that
SMEs can handle the complexity of a container cluster ap-
plication running on multiple cloud platforms without vendor
lock-in or dispensing with features like auto-scaling.

V. RELATED WORK

There are several solutions with overlapping features and/or
usage scenarios available. However, a system which fits all
requirements and features set in Section II for the C*S de-
ployment manager does not exist.

A. Container Cluster, Load Balancing and Scaling

A Container Cluster should run on homogeneous machine
types to provide fine-grained resource allocation capabilities
[9]. In previous work, the similarity of different cloud provider
instance types was analyzed. It was concluded that only a
few instance pairs are really similar. There are just a few
virtual machine types, which should be used when running
an application on a multi cloud platform environment [13].
Another issue to consider is the network performance impacts
using technologies like container and software defined net-
works (SDN). Previous investigations found that performance
impacts depends i.e., on the used machine types and the
message sizes [14]. Using a (encrypted) cross-provider SDN
also causes performance impacts, especially when using low-
core machines [15].

B. IaaS Management and Transferability

Container migration from one cloud provider to another is
an important feature of C*S. Vendor lock-in is caused, i.a., by a
lack of standards [12]. Currently the proprietary EC2 is the de-
facto standard specification for managing cloud infrastructure.

40

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

However, open standards like OCCI and CIMI are important to
reduce vendor lock-in situations [16]. C4S includes a special
IaaS driver for each supported cloud provider. Other research
approaches in cloud migration can be reviewed under [17].
There are several solutions like Apache Libcloud, KOALA
[18], Scalr, Apache jclouds and deltacloud and T-Systems
Cloud Broker for managing and deploying virtual machines on
TaaS platforms. Except for the T-Systems Cloud Broker, the
solutions are open source but have mostly payable services,
reduced functionality or limited virtual machine quantities.
These systems support features like creating, stopping and
scaling virtual machines on IaaS cloud platforms. Some of
them like the T-Systems Cloud Broker, Scalr and Apache
jclouds are designed for cross-platform IaaS deployment. In
contrast to the C*S requirements, the presented cloud managers
are limited to laaS managing and do not offer container
deploying services. Some of them do not prevent vendor lock-
in by cloud providers or create new dependencies by itself
(e.g., T-System Cloud Broker, KOALA is limited to Amazon
AWS API compatible services).

C. Application Deployment

Peinl et al. [19] has defined requirements for a container
application deploying system. These coincide strongly with the
requirements for the C*S system, which have been discussed
in Section II-A. He also gives an overview about container
cluster managing. For easy deployment a container application
with monitoring, scaling and controlling benefits, there exist
several commercial solutions like the Amazon EC2 Container
Service (ECS), Microsoft Azure Container Service and Giant
Swarm. Limited to the providers own laaS infrastructure,
these solutions are not designed for multi-cloud platform
usages, especially between public clouds (a requirement of
C*S). Open source cluster managers are Apache Mesos and
Kubernetes. These systems are designed to run workloads
across tens of thousands of machines. The benefits and issues
using cluster technologies are very high reliability, availability
and scalability [9] [8]. However, they are not designed to
create and terminate virtual machines (like AWS instances),
but to deploy applications on given resources. So, they cannot
prevent cloud provider dependencies on their own, but provide
essential ingredients to do so. Another cluster management
tool for increasing the efficiency of datacenter servers is
called Quasar, which is developed by the Stanford University
and designed for maximizing resource utilization. The system
performs coordinated resource allocation. Several techniques
analyze performance interferences, scaling (up and out) and
resource heterogeneity [20].

VI. CONCLUSION

The C*S is in the planning state, although some parts are
already implemented, like the cloud platform driver for fast
deploying laaS instances. The next step is the creation of
a deployment language for dedicated containers to run on a
Kubernetes container cluster, finding solutions for container
cluster scaling problems and handling stateful tasks like file
storage. The system will be implemented in a modular and
generic way to allow an easy adaptation for different cloud
platforms and container cluster software. With C*S SMEs will
be able to deploy and operate their container applications on
an elastic, auto-scaling and load balancing multi-cloud cluster
with transferability features to prevent vendor lock-in.

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

ACKNOWLEDGMENT

This research is funded by German Federal Min-
istry of Education and Research (Project Cloud TRANSIT,
03FHO021PX4). The author thank the University of Liibeck
(Institute of Telematics) and fat IT solution GmbH (Kiel) for
their support of Cloud TRANSIT.

REFERENCES
[1] P. Mell and T. Grance, “The nist definition of cloud computing,” 2011.

[2] M. Armbrust et al., “A view of cloud computing,” Communications of
the ACM, vol. 53, no. 4, 2010, pp. 50-58.

[3] L. M. Vaquero, L. Rodero-Merino, and R. Buyya, “Dynamically scaling
applications in the cloud,” ACM SIGCOMM Computer Communication
Review, vol. 41, no. 1, 2011, pp. 45-52.

[4] M. Mao and M. Humphrey, “Auto-scaling to minimize cost and meet
application deadlines in cloud workflows,” in Proceedings of 2011 In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis. ACM, 2011, p. 49.

[5] N. Kratzke, “Lightweight virtualization cluster - howto overcome cloud
vendor lock-in,” Journal of Computer and Communication (JCC), vol. 2,
no. 12, oct 2014.

[6] R. Sahandi, A. Alkhalil, and J. Opara-Martins, “Cloud computing from
smes perspective: A survey-based investigation,” Journal of Information
Technology Management, vol. 24, no. 1, 2013, pp. 1-12.

[7] J. Turnbull, The Docker Book: Containerization is the new virtualiza-
tion. James Turnbull, 2014.

[8] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at google with borg,” in
Proceedings of the Tenth European Conference on Computer Systems.
ACM, 2015, p. 18.

[9] B.Hindman et al., “Mesos: A platform for fine-grained resource sharing
in the data center.” in NSDI, vol. 11, 2011, pp. 22-22.

[10] Definition recommendation of micro, small and medium-sized
enterprises by the european communities. Last access 12th Nov.
2015. [Online]. Available: http://eur-lex.europa.eu/legal-content/EN/
TXT/?uri=uriserv:0J.L_.2003.124.01.0036.01.ENG

[11] N. Kratzke, “A lightweight virtualization cluster reference architecture
derived from open source paas platforms,” Open J. Mob. Comput. Cloud
Comput, vol. 1, 2014, pp. 17-30.

[12] J. Opara-Martins, R. Sahandi, and F. Tian, “Critical review of vendor
lock-in and its impact on adoption of cloud computing,” in Information
Society (i-Society), 2014 International Conference on. IEEE, 2014,
pp. 92-97.

[13] N. Kratzke and P.-C. Quint, “How to operate container clusters more
efficiently? some insights concerning containers, software-defined-
networks, and their sometimes counterintuitive impact on network
performance,” International Journal on Advances in Networks and
Services, vol. 8, no. 3&4, 2015, (in press).

[14] N. Kratzke and P.-C. Quint, “About automatic benchmarking of iaas
cloud service providers for a world of container clusters,” Journal of
Cloud Computing Research, vol. 1, no. 1, 2015, pp. 16-34.

[15] N. Kratzke, “About microservices, containers and their underestimated
impact on network performance,” CLOUD COMPUTING 2015, 2015,
p- 180.

[16] C. Pahl, L. Zhang, and F. Fowley, “Interoperability standards for cloud
architecture,” in 3rd International Conference on Cloud Computing and
Services Science, CLOSER. Dublin City University, 2013, pp. 8-10.

[17] P. Jamshidi, A. Ahmad, and C. Pahl, “Cloud migration research: a
systematic review,” Cloud Computing, IEEE Transactions on, vol. 1,
no. 2, 2013, pp. 142-157.

[18] C. Baun, M. Kunze, and V. Mauch, “The koala cloud manager: Cloud
service management the easy way,” in Cloud Computing (CLOUD),
2011 IEEE International Conference on. IEEE, 2011, pp. 744-745.

[19] R. Peinl and F. Holzschuher, “The docker ecosystem needs consolida-
tion.” in CLOSER, 2015, pp. 535-542.

[20] C. Delimitrou and C. Kozyrakis, “Quasar: Resource-efficient and qos-
aware cluster management,” ACM SIGPLAN Notices, vol. 49, no. 4,
2014, pp. 127-144.

41

