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Abstract—We report on a computational model for data pro-
cessing in privacy. As a core design goal here, we will focus on
how the data owner can authorize another party to process data
on his behalf. In that scenario, the algorithm or software for
the processing can even be provided by a third party. The goal
is here to protect the intellectual property rights of all three
players (data owner, execution environment and software vendor),
while retaining an efficient system that allows data processing in
distrusted environments, such as clouds. We first sketch a simple
method for private function evaluation. On this basis, we describe
how code and data can be bound together, to implement an
intrinsic access control, so that the user remains the exclusive
owner of the data, and a software vendor can prevent any use of
code unless it is licensed. Since there is no access control logic, we
gain a particularly strong protection against code manipulations
(such as “cracking” of software).

Keywords—private function evaluation; cloud computing; licens-
ing; security; cryptography.

I. I NTRODUCTION

Cloud computing is an evolving technology, offering new
services like external storage and scalable data processing
power. Up to now, most cases of data processing, such as
statistical computations on medical data, are subject to most
stringent privacy requirements, making it impossible to have
third parties process such person-related information.

A classical technique to prevent unauthorized parties from
reading confidential information is by use of encryption. Un-
fortunately, this essentially also prevents any form of process-
ing. This work concerns a generic extension [1] to standard
ElGamal encryption, towards enabling permitted parties to
process encrypted information without ever gaining accessto
the underlying data.

The core of this paper is a mechanism to endow the data and
software owner with the capability of allowing or preventing
designated parties from using either the data or the software
for any data processing application. This is to let users retain
full control over their data and software. The licensing scheme
described herein is thus a method of providing or revoking
the explicit consent to data processing in privacy. Moreover,
unlike classical access control techniques, our scheme is cryp-
tographic and as such cannot be circumvented nor deactivated
by standard hacking techniques.
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Figure 1. Example Scenario – Cloud Computing.

The most general scenario to which our licensing scheme
(and computing model) applies involves three entities: first,
there is theclient (CL), who owns data that needs processing.
The second player is thesoftware vendor(SV), who owns
the code for data processing. The third party is theexecution
environment(EE), which is the place where the actual data
processing takes place (e.g., a cloud provider with sufficient
hardware resources, or similar).

Figure 1 illustrates an example scenario, in which a client
hands over its data to a cloud provider who runs third-
party software for data processing services. Security issues are
printed in italics.

Especially the client and software vendor have different
interests, which may include (but are not limited to) the
following:
● The client wants to keep its data confidential and wants

to keep control over how and where it is processed
● The software vendor wants to prevent theft of its computer

programs (software piracy), or other misuse of its software
by unauthorized parties

The execution environment can be seen as theattacker in our
setting: it is the only party that has access to both, the data
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and the algorithms to process it. So, its main interest wouldbe
gaining access to the data, or run the program on data of its
own supply. We emphasize that the described protection does
not automatically extend to the algorithm itself. However,it is
a simple yet unexplored possibility to apply code obfuscation
in the computational model that we sketch in Section I-A.

Based on the above division, we can distinguish the follow-
ing four scenarios:

1) All three entities separated: in this setting, the EE runs
an externally provided software from the SV on data
provided by the CL.

2) SV= EE: an example instantiation of this setting would be
cloud SaaS, such as GoogleDocs. Here, the client obtains
a licence to use a particular software, but seeks to protect
his data from the eyes of the (cloud) provider.

3) CL = SV: here, the client is the one to provide the code for
data analysis, yet seeks to outsource the (perhaps costly)
computation to an external entity, e.g., a cloud provider.

4) CL = EE: the client obtains the software from the SV and
runs the code on its own data within its own premises.
Here, actually no particular licensing beyond standard
measures is required (not even encrypted code execution),
so we leave this scenario out of further investigations.

A. The Basic Idea – Outline of the Main Contributions

Briefly sketching what comes up, we will describe how
algorithms can be executed on encrypted data, using a ablind
Turing machine(BTM) [1]. Leaving the details of BTMs
aside here (for space reasons), the central insight upon which
this work is based is the fact that BTMs require a secret
encoding of the data, which establishes compatibility between
the data and the program that processes it. More specifically,
BTMs, in the way used in this paper, allow the execution of
arbitrary assembly instructions on encrypted data. Briefly(yet
incompletely) summarizing the idea posed in [1], we encrypta
data itemx into a pair(Epk1(x),Epk2(g

x)), wherepk1, pk2 are
two distinct public keys,gx is a cryptographic commitment
to x, and E is any public key encryption. The crux of this
construction is the possibility of comparing two encrypted
valuesx1

?= x2, without revealing either value, based only on
decryptions of the commitmentsx1 = x2 ⇐⇒ gx1 = gx2. Herein,
neither commitment revealsx1 or x2, if computing discrete
logarithm computations are intractable in the underlying group
of E (the trick is similar yet with a different goal as for
commitment consistent encryption; cf. [2]). Hereafter, wewill
use a subgroup of prime orderq within the setZp, when p is
a large safe prime.

Executing arithmetic assembly instructions likeadd A,
B, C, whereA←B+C andB,C are encrypted values, comput-
ing the sum (or any other operation like multiplications, logical
connectives, etc.) can be done by a humble table-lookup, based
on the equality checking of encrypted inputs. Equally obvious
is that the necessary lookup tables have to be small, i.e., we
have only a small number of inputs{x1, . . . ,xn}. Practically,n

is limited to small values ofn, to keep the lookup tables (of
sizeO(n2) feasibly small). Indeed, this is still an advantage of
many fully homomorphic encryption schemes, which work on
the bit-level (where we would haven= 2 for x1 = 0 andx2 = 1
in our setting).

The smallness of the plaintext space, together with the
equality checking of the (so-modified) encryption scheme, also
enables attacks by brute-force trial encryptions (ofx1, . . . ,xn)
and equality checks of the candidate plaintext to decipher
any register content. Thwarting this attack is simple, if the
encryption additionally uses a secret random representative a
to encode the input before encrypting it (thus taking away the
adversary’s ability to brute-force try all possible plaintexts).
That is, the encryption ofx is actually one ofa ⋅ x. To ease
notation in the following, we writeEpk(ga⋅x) as a shorthand of
the secret messagex being encoded with the random valuea,
where the encoding is

x↦ gax. (1)

As a technical condition, we require gcd(a, p−1) = 1.
Our description of the computational model is admittedly

somewhat incomplete, as we do not discuss how memory
access or control flow can be handled in the blind Turing ma-
chine model (when applied to assembly instruction executions).
We leave this route for further exploration along follow up
research, and confine ourselves to the observation that code
(involving encrypted constants like offsets for memory access,
etc.) and data can be made compatible or incompatible, based
on whether the secret encoding used for the code (a valuea)
and the data (another valueb) is equal or not.

The rest of the paper will be devoted to changing the secret
value a – the encoding– or negotiating it between two or
three parties (CL, SV, EE). The respective protocols form
the announcedlicensingscheme, which are nothing else than
the authorizationto use the encryption’s plaintext comparison
facility. Practically, knowledge ofa and the comparison keys
(the secret decryption keysk2 belonging topk2, to decrypt the
commitments) enable (or in absence disable) the ability to run
an arbitrary algorithm on encrypted data.

The authorization is thus bound to knowledge of anevalua-
tion key, which is composed from the comparison token (secret
key sk2), plus the lookup tables (for all assembly instructions).
The encodinga is excludedfrom the evaluation key, so that it
can be given to the EE without enabling it to process data of
its own interest.

Blind Turing machines provide a technical possibility to do
the following upon a combination with the licensing scheme
as described in Section III:

1) Encrypt a software in a way so that only licensed copies
of it can be run on input data. This issecurity for the
software vendor, in the sense of preventing software use
without license, e.g., by the EE.

2) Encrypt data in a way to bind its use to a single li-
censed copy of a software (so that data processing by
unauthorized parties is cryptographically prevented). This
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is security for the client, in the sense of preventing misuse
of either her/his software license or her/his data as given
to the EE.

B. Example Applications

We briefly describe three possible applications, leaving more
of this for extended versions of this work.

Cloud Services for Data Processing:consider an online
service that offers data processing over a web-interface, using
a software that runs remotely within the cloud. The client could
safely input its data through the web-interface, knowing that
the cloud is unable to execute the program (for which the client
has obtained a license) on other data that what comes from the
client. In addition, the client can be sure that the cloud provider
does not learn any of the secret information that the customer
submits for processing.

Such services are already existing, although not at the level
of security that we propose here. One example isGoogle Docs.

En-route information processing: sensor networks and
smart metering infrastructures use decentralized data process-
ing facilities. In case ofsmart metering, data concentrators
collect and preprocess data harvested from the subscribers,
before sending properly compiled information to the head end
for further processing (such as billing, etc.). Using the proposed
licensing scheme, this processing could be done in entirely
encrypted fashion, without “opening or breaking” the encrypted
channel for the sake of intermediate processing.

A third example scenario is theprotection of intellectual
property , namely the firmware that runs inside a device. This
example is expanded in full detail in Section V.

C. Organization of the Paper

Section II discusses related work. Section III is based on the
model for private function evaluation as sketched in Section
I-A, and describes the ideas underneath the main contribu-
tion as described in Section IV. That section also completes
the description of how the authorization is implemented and
granted. Security of our protocols is discussed in Section VI,
and concluding remarks are made in Section VII.

II. RELATED WORK – COMPUTATION IN PRIVACY

Processing encrypted data is traditionally done using one of
three approaches: homomorphic encryption, multiparty compu-
tation (MPC) and garbled circuits (GC). Picking up homomor-
phic encryption as the most recent achievement, many well-
known encryption schemes are homomorphisms between the
plain- and ciphertext spaces. Prominent examples are RSA and
ElGamal encryption, which are both multiplicatively homo-
morphic. Likewise, Paillier encryption [3] enjoys an additive
homomorphic property onZn, wheren is a composite integer
(as for RSA), and the Goldwasser-Micali encryption [4], which
is homomorphic w.r.t. the bitwise XOR-operation.

Surprisingly, until 2009 no encryption being homomorphic
w.r.t. to more than one arithmetic operation was known. The

work of Gentry [5] made a breakthrough by giving an encryp-
tion that is homomorphic for both, addition and multiplication.
Ever since this firstfully homomorphic encryption(FHE), many
variations and improvements have appeared (e.g., [6]–[8] to
name a few), among these beingsomewhat homomorphic en-
cryptions, which permit several arithmetic operations, however,
only a limited number of executions of each operation (e.g.,
arbitrarily many multiplications, but only a one addition over
time).

Yao’s concept ofgarbled circuits [9] provides a way to
construct arithmetic circuits that hide their inner information
flow by means of encryption. Interestingly, this works without
exploiting any homomorphism, and is essentially doable with
most standard off-the-shelf encryption primitives (cf. [10] and
references therein).

Common to these two mainline approaches to the problem
of data processing in confidentiality is the need to construct
evaluation circuits (for both, fully homomorphic encryption
and garbled circuits) that strongly depend on the data process-
ing algorithm. In that sense, neither technique offers a fully
automated mechanism to put an arbitrary algorithm to work on
encrypted information, and compilers that take over this task
are subject of intensive ongoing research [11]–[17]. Similar
difficulties apply to multiparty computation approaches [18]–
[20] or combinations of GC and MPC [10].

In the past, encryption circuits or interactive protocols have
commonly been used as computational models, as opposed to
Turing machines, which have only recently been considered as
an execution vehicle [1], [21]. The latter of these references
proposed the concept of ablind Turing machine, which is
an entirely generic construction that uses standard ElGamal
encryption (unlike [21], which works with attribute-based
encryption). The idea relies on Turing machines as the most
powerful known computational model (up to other models
being equivalent to Turing machines), and the construction
resembles the full functionality of a general Turing machine
using encrypted content. This approach has briefly been out-
lined in Section I-A.

III. T HE L ICENSING SCHEME

The main objective of the licensing protocols is to change
the valuea that encodes the secret data itemx ∈ Zp by (1).
Hereafter, we let∈R denote a uniformly random draw from the
given set. From the construction of blind Turing machines, i.e.,
the execution of instructions by table-lookups on the data being
processed, it is evident that a program can only be executed if
the code and data obey the same encoding (since the lookup
table in the evaluation key must use the same encodinga
as the data, for otherwise the lookup will fail). Establishing
or changing the common encodinga is detailed in the next
subsection.

A. Changing the Encoding

If a is known, then, it is easy to switch to another encoding
based onb, via raising (1) to the power ofa−1b, wherea−1 is
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computed modulop−1 (this inverse exists, as we assumeda
relatively prime top−1; see Section III). This gives

(gax)a
−1b ≡ gaxa−1b ≡ gbx (mod p). (2)

B. Negotiating an Encoding

If a given encoding of one entity (e.g., the SV) shall be
changed to a chosen encoding of another entity (e.g., the CL),
then the following interactive scheme can be used to switch
from encodinga to encodingb, while revealing neither value
to the other party. The protocol is as follows, where entityA
secretly knows the encodinga, which shall be changed into the
encodingb that entityB secretly chose. Common knowledge
of both parties are all system parameters, in particular the
generatorg and primep are known to both partiesA andB.

1) A→B: an encoded itemgax.
2) B→A: raise gax to b, and return the value(gax)b ≡ gabx

(mod p).
3) A: strip a from the exponent via(gaxb)a

−1
≡ gbx (mod p).

A can continue to work with the new encodingb, which
is in turn unknown toA.

Notice that the knowledge ofA is x,a,gx,gax andgabx, from
which b cannot be extracted efficiently.

IV. PUTTING IT TO WORK

With the encoding taking the form (1) and the encryptionE
being multiplicatively homomorphic(e.g., ElGamal), we can
apply Diffie-Hellman like protocols to change the values in
the exponentga⋅x even within an encryption. In the following,
it is important to stress that any communication between the
entities in the upcoming scenarios is encrypted, in order to
prevent external eavesdroppers from trivial disclosure ofsecret
information (an evident possibility in the protocols).

1) Licensing Scenario 1: Three Separated Parties:Suppose
that a programP written by the SV resides within the EE
under an encodinga (unknown to the EE). We assume that the
programP is encrypted under the SV’s public keypkSV for
reasons of intellectual property protection and to effectively
prevent an execution without explicit permission by the SV.

To obtain a license (permission) and execute the program,
the following steps are taken (Figure 2 illustrates the process
in alignment to Figure 1).

1) The CL initiates the protocol by asking SV for a license.
2) The SV chooses a secret valueb ∈ Zp and sends the

quantity a−1b mod(p−1) to the EE, which it can use
to “personalize” the programP by re-encoding it as

EpkSV(g
ax)a

−1b =EpkSV((g
ax)a

−1b) =EpkSV(g
bx), (3)

by virtue of the multiplicative homomorphy ofEpkSV.
3) The CL prepares the evaluation key, i.e., the respective

lookup-tables underhis ownpublic keypkCL. This implies
that all results obtained from the lookup table can only
be decrypted by CL after the computation has finished. In
particular, it assures that all internal intermediate results

ask for
license

b ∈RZp

a−1b

encoded dataEpkCL
(gby)

CL
pkCL datay

EE

EpkSV
(gax)↦ EpkSV

(gbx)

SV

a ∈Zp

prepare
evaluation key3

1

1

22

4

Figure 2. Licensing scenario involving three separated parties.

obtained over the execution ofP will be encrypted under
the CL’s public key, so that they remain inaccessible for
the EE or the SV.

4) Usingb the CL can encode and submit its data to the EE
for processing. The results are encrypted underpkCL and
hence only accessible to the CL afterwards.

It is obvious that the scheme becomes insecure if two out
of three of these entities collaborate in a hostile fashion.In
either case, the secret encoding and also the secret data could
be disclosed.

2) Licensing Scenario 2: SV= EE: Here, the EE/SV knows
the encodinga but the client can interactively change it into
his own chosen encodingb to obtain a license. Referring to
Section III-B for the details, the remaining steps comprisethe
execution of the programP, which is then compatible with
the secret encodingb under which the data has been prepared.
For personalization, the SV/EE decrypts and submits all code
items EpkSV(g

ax) to the client for re-encoding. Note that the
CL cannotrun the program, as it lacks the code itself (the CL
gets only the constants found in the code). Figure 3 illustrates
the details.

3) Licensing Scenario 3: CL= SV: This case is even more
trivial, as the CL, being the SV at the same time, simply
chooses the encodinga and submits its code and data to the
EE for processing. No change or interactive negotiation of
encoding is required here.

4) Involving a Different End-User:In some cases, the CL
may be the source but not the final end-user of the data (e.g., in
a smart meter network, where the CL is a user’s smart meter,
the EE is a data aggregator/data concentrator, and the end-user
is the energy provider’s head end system). In such cases, it
is straightforward to prepare the evaluation key for a (fourth)
party EU (end user). The change is simply by preparing the
evaluation key under the EU’s public keypkEU instead ofpkCL.
With this modification, all of the above scenarios work exactly
as described.

V. EXAMPLE APPLICATION SCENARIO

Another potentially very important application of our licens-
ing scheme concerns theprotection of firmware (intellectual
property). Suppose a manufacturer – here being the client CL –
obtains the device’s firmware from an external software vendor
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Figure 3. Licensing scenario when the data processing and software remains
with the SV.

(SV). Furthermore, assume the device is equipped with an
internal unique identity, such as a physically uncloneablefunc-
tion (PUF) or other hardwired unchangeable and uncloneable
identity. We call this identityID.

As before, let the firmware be code with encrypted fragments
of the formEpkSV(g

ax), under a secret encodinga∈Zp used by
the SV, which is unknown to CL. After uploading the firmware,
the device manufacturer obtains a license by

1) choosing a secret valueβ and submitting the blinded
identity β ⋅ ID MOD p to SV, and

2) retrieving the license L′ = (gb⋅ID⋅β ,a−1
⋅ b ⋅ (ID2) ⋅

β 2MOD p) from the firmware manufacturer, where
b ∈ Zp is a secret random value chosen by the SV.
The device manufacturer then strips the factorsβ , resp.
β 2, from the contents ofL′ to obtain the final license
L = (ℓ1,ℓ2) = (gb⋅ID ,a−1

⋅b ⋅(ID2)MOD p).
We note that blindingβ is only required to avoid attackers
listening on the channel in an attempt to clone an identity and
hence a device, runnable with the same license as for the honest
manufacturer. Usingβ , the licenseL cannot be obtained from
L′ unless by the device manufacturer (or the device itself),
knowing β .

Using the licenseL, the CL can personalize the code via

(EpkSV(g
ax))

ℓ2 = (EpkSV(g
ax))

a−1bID2

=EpkSV(g
b⋅ID2⋅x), (4)

and can encode input datay accordingly by computing

ℓ
y⋅ID
1 ≡ (gb⋅ID)y⋅ID ≡ gb⋅ID2⋅y (mod p). (5)

We stress that an extracted firmware (e.g., software piracy)
will not run on a structurally identical hardware, as the other
device works with a differentID′ ≠ ID, even if the same license
L = (ℓ1,ℓ2) is brought into the device!

To see this, observe that the encoding is actuallyb ⋅ ID2,
yet the encoding information for the data is onlygb⋅ID , which
enforces an exponentiation with the internally supplied identity
(e.g., PUF-value)ID. Hence, the encoding by (5) will fail to
reproduceID2 in the exponent, asID cannot be replaced in

the second device (as coming from a PUF for example). The
exponent, in that case, will take the formgb⋅ID⋅ID′ ⋅y, which is
incompatible with the program encoded viagb⋅ID2

.

VI. SECURITY

By construction and the discussion in Section I-A, our
scheme becomes insecure under any of the following two
circumstances:

1) collaboration of at least two entities in any of the de-
scribed licensing scenarios

2) a party succeeds in extracting the constanta that defines
the secret encoding of symbols as defined in (1).

Obviously, we cannot mathematically rule out hostile cooper-
ations among any of the entities in our context, but we can
prove that the second of the above attack scenarios will fail
under usual computational intractability hypotheses.

More concretely, we prove security of our licensing scheme
by showing that the extraction of a license is at least as
hard as computing discrete logarithms in the underlying group
(see Definition VI.1). To this end, we distinguish different
potential attackers and licensing scenarios according to our
preceding discussion. Throughout this section, we assume
passive adversaries and authenticated parties (thus, we donot
discuss person-in-the-middle scenarios here).

Definition VI.1 (Discrete Logarithm Problem). Given: a
prime p, a generator g ofZ∗p and a value y∈Z∗p.

Sought: an integer x∈N, such that y= gxMOD p. We write
x= dlogg(y) and call this thebase-g-logarithm ofy.

We call this problemintractable, if there is no efficient
algorithm able to compute the base-g-logarithm of y.

Under the intractability of discrete logarithms, securityof
our scheme is easy to prove in every scenario. Observe that
the encryption wrapped around the values considered in the
following can be neglected in cases where the attacker is an
“insider”, i.e., the client CL, the execution environment EE, or
an external person-in-the-middle intruder.

A. Licensing Scenario 1: Three Separated Parties

Precluding collaborations between parties, the attacker can
either be the client, the execution environment or an external
eavesdropper. Consequently, we need to analyze security in
each case separately.

This case is essentially trivial, as the client CL gets only his
personal licenseb, but cannot access the encrypted quantity
a−1b that is sent directly to the execution environment. Asb
is chosen stochastically independent ofa, it does not provide
any information abouta.

Under a slight modification by sendinggb instead ofb in this
scenario, we can even allow an attacker to mount a person-in-
the-middle attack, in the course of which he getsa−1b andgb

in plain text. The following result asserts security even under
this modified stronger setting.
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Proposition VI.2 (Security against external adversaries). Let
a ∈Zp be the secret license used by the software vendor, and
let I = (a−1b,gb) be the attacker’s information. Computing a
from I is at least as hard as computing discrete logarithms.

Proof. Let A be an algorithm that extractsa from I =(a−1b,gb).
We construct another algorithmA′ that computes discrete
logarithms and takes only negligibly more time for this thanA
needs. Given a valuey, algorithmA′ simply submits the pair
(z,y) to A, wherez is a uniformly random number. Asb is
uniquely determined byy= gx, there is another unique number
z′ that satisfiesz= z′ ⋅x, wherez′ is stochastically independent
of x. Hence, the pair(z,y) has the proper distribution to act as
input toA, andA returnsz′ so that the sought discrete logarithm
of y returned byA′ is x= z′ ⋅z.

By symmetry, security against a malicious execution envi-
ronment EE holds by the same line of arguments, and under
both, the modified and original licensing scenario. The problem
for a malicious EE is to compute the client’s licenseb from
its informationI = (a−1b,gby), which is even harder as before,
as there is another stochastically independent quantityy that
blindsb in that case. We hence get the following result, whose
proof is obvious from the preceding discussion:

Proposition VI.3 (Security against malicious EE). Let b∈Zp

be the secret license of the CL, and let I= (a−1b,gyb) be the
attacker’s information. Computing b from I is at least as hard
as computing discrete logarithms.

B. Licensing Scenario 2: SV= EE

Here, the problem is to extractb from (gax,gabx,gby).
Given that the software vendor is identical to the execution
environment, we can assume the attacker to know the values
x and a, so that the actual problem is to computeb from
I = (gb,gby).

Proposition VI.4 (Security in case of malicious SV=EE). Let
p,q be primes so that p= 2q+ 1 and let g generate a q-
order subgroup ofZp. Computing the client’s secret b from
I =(gb,gby) is at least as hard as computing discrete logarithms
in the subgroup⟨g⟩ ⊊Zp.

Proof. The argument is again a reduction: letA be an algorithm
that correctly returnsb upon inputI = (gb,gby). We construct
an algorithmA′ that computes discrete logarithms as follows:
given a valuey, we submit the input(y,z) to A, wherez is
a random value. Asy= gx uniquely defines a valuex, it also
uniquely defines a valuez′ so thatz= gxz′ . To see this, observe
that the solvability of the equationgby = z, by taking discrete
logarithms on both sides, is equivalent to the solvability of
congruenceby≡dloggz (mod q), which is trivial. Hence,(y,z)
has the proper input-distribution forA, which then correctly
returns the discrete logarithmx of y= gx.

We stress that working in subgroups is not explicitly as-
sumed in the previous security proofs, yet is a standard

requirement in secure instantiations of ElGamal encryptions,
such as over elliptic curves. Hence, the additional hypothesis
of proposition VI.4 is mild and will always be satisfied in
practical scenarios.

C. Licensing Scenario 3: CL= SV

Here, the problem is for the EE to extract information
from the data submitted by the client. This is equivalent to
either breaking the cipher or computing discrete logarithms,
and hence covered by known security proofs concerning the
underlying cryptographic concepts.

VII. C ONCLUSION AND OUTLOOK

This work is compilation of concepts that enable secure and
authorized processing of encrypted information. In essence,
it is a deployment scheme for private function evaluation
based on blind Turing machines, where the involved parties
can secure their interests (prevention of software piracy and
prevention of personal data misuse) by running interactive
protocols.

Along experiments with implementations of the ideas
sketched here, we identified various security issues and pos-
sible attacks, some of which were sketched in the previous
sections. Future work is on implementing the described ideas
and studies of security implications on a real prototype imple-
menting a full computing platform. To this end, the concept of
oblivious lookup tables [22] has been devised as a substitute
that does lookups without comparing encrypted plaintexts.

Unfortunately, chosen instruction attacks are not entirely
disabled in that case, since branching instructions and memory
access can be turned into a plaintext comparison facility (e.g.,
by submitting conditional branches and observe the control
flow, or by asking for two ciphertexts to address the same
memory cell, using the fact that the physical addressing is most
likely deterministic). A working prevention against such misuse
calls for additional code obfuscation (particularly on thebranch
instructions) and secure memory access techniques (such as
oblivious RAM or private information retrieval). Interestingly,
this renders the proof of security of blind Turing machines
against active adversaries (see [1]) practically void, as the
assumptions of the proof are violated in side-channel scenarios.

As an overall conclusion, however, the following points can
be made:

● Processing encrypted informationappears possibleusing
standard encryption, although this induces new vulner-
abilities like side-channel information leakage. Whether
ultimate security can be achieved in this generic con-
struction (as incompletely sketched in Section I-A) is an
interesting open issue; we hope that this article stipulates
future research in this direction.

● Authorized processing of data can be achieved in various
settings by agreeing on secret encodings and/or chang-
ing them interactively by exploiting the homomorphy of
encryption, as described in Section III.
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● The efficiency of our licensing scheme depends on how
large the code is that we “personalize”, since every
instruction of a program and every data item has to be
(re-)encoded. The main practical bottleneck will, however,
be the underlying data processing system; in case of blind
Turing machines, this amounts to roughly 1 multiplication
and 1 exponentiation per instruction (processing up to 4
bits). See [23] for a detailed analysis and comparison to
competing approaches.

It is important to note that any of the described schemes
can be implemented in general groups; there is no need to
strictly rely on modulo-arithmetic (this particular instantiation
serves only illustrative purposes). Hence, for a practicalimple-
mentation, we recommend elliptic curve groups (elliptic curve
cryptography) or similar as a substitute for the structureZp.

Most importantly, the scheme works mostly using off-
the-shelf cryptographic primitives that have been known for
decades, are well understood and enjoy good hardware support
already.
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