
Autonomic Management for Energy Efficient Data Centers

Forough Norouzi
Computer Science department, Western University

London, Canada
e-mail: fnorouz@uwo.ca

Michael Bauer
Computer Science department, Western University

London, Canada
e-mail: bauer@uwo.ca

Abstract—The complexity of today’s data centers has led
researchers to investigate ways in using autonomic methods for
data center management. In this work, we consider using
autonomic management techniques that can help reduce data
center energy consumption. In particular, we consider policy-
based, multi-level autonomic management for energy aware
data centers. We advocate for a hierarchical model of
managers with loosely coupled communication between them.
We describe our manager topology, communications and
manager operations. We implement our approach for high
performance computing centers that may have one or more
large high performance computing systems. A data center
simulator has been implemented that calculates data center
energy consumption. We evaluate different management
policies and our approach using this simulator. Preliminary
experiments show promising results in terms of minimizing
energy consumption and overhead on service level expectations
in high performance computing systems.

Keywords- autonomic computing; energy aware data center;
self-management system; policy-based management.

I. INTRODUCTION

Today’s data centers are large, complex and challenging

to manage. One of the central challenges in data center
management and operations is energy management. Data
centers at the core of Internet-scale applications consume
about 1.3% of the worldwide electricity supply, and this
level is predicted to increase to 8% by 2020 [1]. Google
alone, for example, consumed 2.26M MWh in 2010 [4].
Carbon emissions from data centers alone in November 2008
were 0.6% of the global total and predicted to be 2.6% by
2020 which is more than the total carbon emission of
Germany [3]. Given these statistics, reducing the energy
consumption of data centers and making them work in an
energy-aware manner is a major topic of data center
management research. Broadly, research into energy
efficiency in data centers can be categorized into a number of
areas. Server level energy management approaches take
advantage of lower power states built into components e.g.
CPU(Central Processor Unit) and memory. At the level of
clusters, management models aim to use optimization and
control theoretic approaches to optimize the number of
required compute node for each running application.
Virtualization looks at reducing the number of active
physical servers by multiplexing them as virtual machines
(VM) where having fewer physical servers means that other
servers can be turned off or maintained in a low power state.

Thermal aware scheduling considers energy consumption
criteria for job scheduling and resource allocation. However,
there are few approaches looking into overall holistic
strategies and automated methods to support administrators.
One strategy is to consider approaches based on autonomic
management, particularly policy-based autonomic
management, where part of the role of the administrator
would be codifying management policy for data center
operations. Autonomic Computing (AC) aims to embrace
the notion of self-management in distributed and complex
systems where administrator intervention in system
management is reduced or minimized. Instead,
administrators define the overall policy and strategy for
system management according to system organizational
objectives. Self-management based on use of policies is
referred to as policy-based management; it is a promising
approach for developing autonomic management in complex
distributed systems.

We advocate for multiple autonomic managers rather
than having a single centralized autonomic manager that
could be a single point of failure and potential performance
bottleneck. To the best of our knowledge, policy-based
autonomic management utilizing multiple managers for
energy aware data centers is only marginally addressed in
previous research. The proposed management system
focuses on multilateral interaction in a multi-agent
autonomic computing environment where autonomic
managers interact with each other in a hierarchical structure.
Intuitively, a hierarchical arrangement of managers would
seem to provide good scalability while keeping
communication overhead low and some previous research
has suggested the utility of hierarchical management [4] [14].
A hierarchical approach also matches well the hierarchy of
computational elements in the data center.

This paper organized as follows. Section 2 provides an
overview of related work. Aspects of data center
management and our proposed management system
architecture will follow. The data center simulator and a
number of implementation scenarios for a simple data center
are in Section 5. We conclude with a discussion on
management overhead and future plans.

II. RELATED WORK

Autonomic Computing (AC) refers to the idea of a
computing system or application being self-managing, that
is, a system that can manage itself in such a way that it is
adaptable to any changes in the system environment [6]. In
the autonomic computing paradigm, a management module

138Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

which controls the behavior of a managed element (ME) is
called an autonomic manager (AM). The managed element
provides some sensors and actuators to the manager. The
manager monitors available metrics through these sensors
and analyses the monitored information. It can then plan for
a series of actions that need to be taken, if any, and execute
those actions through the provided actuators. This process is
a feedback loop called the Monitor-Analyze-Plan-Execute
(MAPE) loop [10]. In AC, different AMs control different
resources in a distributed manner. This management could be
done individually, i.e. each AM is responsible for its own
MEs. More generally, in computing systems it is necessary
that AMs interoperate. There may be heterogeneous types of
AMs that may have different objectives. Research by
Mukherjee [13] illustrates coordination between two
independent AMs where the first AM deals with service
level agreement (SLA) management and resource allocation,
while the second AM deals with minimizing power
consumption by turning off unused servers. Their work
shows that the interaction between the managers is important
in achieving the goals.

Khargharia et al. [5] introduced a three-level hierarchy
for optimizing energy consumption and SLA violations. The
hierarchy starts from the device level inside a server,
proceeds to the server level and then encompasses the cluster
level. Decisions are based on the power status of each
managed element at each level. Their idea illustrates the
value of a hierarchical approach, but needs some
modification to be applicable for large scale data centers
which may have many different types of applications and
services. Anthony et al. [26] identify collaboration as a key
aspect and suggest that AMs should be designed for
collaboration and that the lack of collaboration between
managers is a problem. Then, the authors attempt to tackle
AM interoperability issues and define an interoperability
service. The interoperability service keeps a database of
registered AMs along with corresponding resources they
manage and scope of their management operation. The
interoperability service will detect potential conflicts and
send messages to related AMs to, for example, suspend or
stop their activities. Kusic et. al. [16] described an autonomic
cluster management framework. They defined three
different types of agents: general agents (implemented per
node), optimization agents, and configuration agents
(implemented per implementation of the management
framework). The proposed management infrastructure is a
hybrid of centralized and decentralized and communication
between agents is done via message passing. Complexity of
task distribution between agents makes it un-scalable for
large scale environment. Kennedy [9] argues that the
mechanism that defines interoperability between autonomic
elements must be reusable and generic enough to prevent
complexities. A standard means must be defined to exchange
context between autonomic elements. This meta level needs
to be context-aware. At this step, they have identified the
main challenges for automated recovery in autonomic
system. Thomas, et. al. [22] presented a management
framework for the automated maintenance cycle in the
computing cluster (part of the Data Grid project [23]). A

number of management modules, e.g. job management,
monitoring, fault recovery, and configuration management,
have been defined where each produces information as an
output which is used as input for others. Their system gets
configuration states from an administrator. Each machine has
a goal state which is stored in a configuration database and
also has an actual state which comes from the monitoring
agent. These states are compared within the fault detection
and recovery system for any mismatch, which then applies
any necessary actions to fix them. The fault detection system
has its set of rules (policies) for each node where these rules
are checked. A decentralized architecture, Unity, was
introduced in [24]. Unity introduces a two level management
model that tries to allocate optimized resources (servers) to
different types of application environments running both
batch type and interactive workload across the whole data
center.

Policy Based Management (PBM) is a management
paradigm that separates governing rules from the main
functionality of the managed system. Bahati et al. [18]
described an architecture for autonomic management and
demonstrated how policies are defined and mapped to their
corresponding elements. The authors of [13] propose a
Model-driven Coordinated Management architecture to make
dynamic management decisions based on energy benefits of
different policies to handle events. They used a workload
model, power model, and thermal model to predict the
impact of different management policies. A central
management unit monitors events, chooses the best policy
and makes decisions.

III. A MODEL FOR DATA CENTER MANAGEMENT SYSTEM

One can think of the AMs and their relationships as a
kind of management overlay network on top of the elements
of the data center. The actual position of management
modules might be on single physical server, or even
distributed over a number of servers. Number of essential
questions need to be addressed before implementing the
management system. For instance: what are managed
objects in the data center? What metrics of an object should
or could be monitored? And what are possible actions that
the management system could take to control that specific
object? To develop a management system, which contains a
dynamic number of managers for a data center, several
issues need to be addressed:

Topology of the AMs: AMs are more likely to have their
own overlay network, with a specific protocol to
communicate and exchange information e.g. SOAP (Simple
Object Access protocol). The topology has implications for
the coordination and communication among AMs and the
decomposition of management tasks among AMs.
• Hierarchical management means that some AMs can

monitor and influence or control the behavior of other
AMs. In this case, lower AMs are considered as managed
elements for the higher AM. AMs at different levels
usually work at different time scales. In this topology the
upper layer AM regulates and orchestrates the system by
monitoring parameters of all of its lower level AMs (see
Figure 1). The upper layer AM is privileged over lower

139Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

TABLE I. CLASSES OF AMS AND MES
ME class Generic associated AM

VM VM_AM.class

Cluster clusterAM.class
Rack rackAM.class
Application
-interactive
-Enterprise

appIAM.class
appEAM.class

layer AMs, and has the authority to control or manipulate
some parameters of the lower level AMs.

• A peer to peer topology entails AMs that can directly
communicate with one another, exchange information
and make decisions. In this paradigm, all AMs are often
equally privileged.

• Indirect coordination between AMs involves an AM
making changes in its MEs which are then sensed by
other AMs causing them to perform actions. There is no
direct communication between the AMs. Since the MEs
(e.g. application, services, and virtual machine) may
change over time (e.g. is finished or started), there should
be a way such that the topologies of corresponding AMs
can change on the go.

Collaboration Strategy: Depending on the topology, the
next question is how AMs influence other AMs in the
management system? How much information do they need
to share? What kind of information? For example, one AM
may be privileged over some set of other AMs because its
management scope is wider than the others or it has more
information about its surrounding environment.
Alternatively, all AMs could be acting the same, e.g. as in a
peer-to-peer topology. Finally, what is the nature of AMs
interaction and coordination?

Figure 1. Hierarchical Policy-based Management. System.

Manager Life Cycle: An autonomic manager has its own
life cycle which obviously corresponds to the life cycle of its
associated MEs. For example, for a cloud user renting
compute nodes and running an application for a period of a
time, the corresponding AM is born and dies along with the
application life cycle. One of the issues in multilevel
management systems is that each level of the management
model has to have the ability to create AMs based on the
respective ME life cycle, then introduce it to the
management system, and then destroy it at the end.

The overarching management approach assumes that the
management system will associate an AM with the new
arrival ME; this could be done automatically if the

administrator specified a particular AM for that class of ME
or could be just done manually by the administrator. We
expect that in many cases, the MEs can be grouped into
broad classes and, correspondingly, that AMs will be as well.
In our approach, we assume classes of AMs that have similar
requirements and characteristics will be defined and
associated with classes of MEs. Table I. illustrates samples
of MEs and corresponding classes of AMs. The
management system refers to this table upon the initialization

or creation of a new ME to check which class of AM should
be initiated for that particular ME. Part of the AM
initialization is to identify its parent and to get its policies.

The proposed management system is policy-based which
means that each AM has its own set of ECA (Event
Condition Action) policies referred to as a policy profile.
This set can be altered according to the system situation or
even a direct change from the data center administrator. In
our model, the parent AM can also make decisions regarding
the policy profile of its children as part of its planning task.
Policy repository holds the policy profiles associated with
each of the managed element classes. Generally, though, we
would expect that there would be much overlap, e.g. a policy
for managing an application during a work day would be
very similar to the policies for managing it at night or on a
weekend.

A. Management System Configuration

An administrator first needs to decide about the number
of management levels in the management system and then
the position of autonomic managers. For a given data center,
an administrator may define the number of management
levels and for each level the position of managers. Since
different types of applications may come and go, there will
be a dynamic number of MEs and, respectively, a dynamic
number of AMs in each level. Upon arrival of any new
application in the data center, the AM initiation module has
to be invoked. During the AM initialization procedure, a
unique ID is generated (for example, as a combination of an
IP address of the host where the AM will run, the parentID
or any local variables) for the AM. The AM also needs to
have access to the policy repository. The policy repository
server contains all policies for the AMs in the management
system. The first time that an AM has access to the policy
repository is at its bootstrapping phase to get initialized,
although during its life cycle the AM may be asked by its
parent to access the repository and get updated policies from
there.

After AM initialization in which all environmental
variables are initialized, the management loop starts to run

140Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

Input parameters: ParentID, AMLevel, ProfilePolicy, ME, heartbeat,
heartbeatValue, configVector, configVectorValue

1. begin
2. update heartbeat value
3. While (!messageQue.isEmpty())
4. begin
5. msg=messageQue.dequeue
6. if (msg.opcode== ReqForHeartbeat)
7. send(UpdateHeartbeat, ParentID,AMID, heartbeatValue>
8. if (msg.opcode== ChangeProfilePolicy)
9. Update ProfilePolicy with received one in the message
10. if (msg.opcode== PolicyChange)
11. Update the policy received in the message with the one that

already is in AM policy set
12. if (msg.opcode== UpdateConfig)
13. Update corr. param. in configVectorValue with parameter in

the message
14. end
15. //all triggered event are put in a queue
16. while (!eventQu.isEmpty())
17. begin
18. EV= eventQu.dequeue

19. for (all PL∈ ProfilePolicy)
20. begin
21. invoke applied policy
22. end
23. end
24. end

Figure 2. Management Loop

(see Figure 2.). The AM management loop uses the
monitoring heartbeat values of its managed elements and
checks for incoming messages. Messages correspond to
events and a timing event happens periodically. As events
occur, policies are examined and the values of the parameters
are used to evaluate conditions in policies. We assume that
the upper layers AMs are privileged over their child and so
their policies are affected by their parent’s policy. For
instance, the parent can change a child AM’s policy profile
to “green”, which could mean that the AM should give
higher priority to decreasing energy consumption of its MEs
than to ensuring that the SLA violations are minimized.

IV. DATA CENTER SIMULATOR

We have been developing a data center
simulator [19] [28] in order to evaluate different
configurations of autonomic managers and different policy
sets. Our data center contains a set of systems (its definition
follows) where each system runs its own kinds of

applications. We can think of a data center abstractly as
consisting of a number of racks R={r1, r2, …, rR} and coolers
{c1,c2,…,ck} laid out in some spatial configuration pattern
with some network connections among them (multiple
separate clusters are each collections of racks, with perhaps
no communication between the racks in different clusters).
Each rack is comprised of a number of chassis, and within
each chassis there are numbers of servers (compute nodes).

On top of this physical infrastructure, we have defined a
System; our terminology for a number of computes nodes
inside a number of racks, which are capable of running the
same type of jobs. We assume that systems are defined in
terms of a set of racks. Compute nodes inside racks can be

shared between different applications that run on that system.
At any time, a node ni inside the system is either assigned to
an application/user or ready to be assigned; also, individual
nodes can be powered on or off (put to sleep).

Application behavior and workload are key elements in
data center operations and have a direct impact on the energy
consumed by a system and hence a data center. In our
model, we consider three broad classes of applications:

Interactive: This system provides access to users across
the Internet/intranet, such as web servers, transactional
servers, etc. These applications process short requests
(transactions) and fast response time is the main objective of
these types of applications. We model this as an
InteractiveSystem.

Enterprise: This system provides applications to different
business units, where applications may require large amounts
of secure, reliable data storage and high availability, running
24/7, e.g. a human resources system. Workloads in these
kinds of application vary – from short requests/jobs to much
longer activities, e.g. report generation. The key
characteristic is that these systems typically run for long
periods.

High performance computing (HPC): This system runs
scientific applications in batch mode and typically needs
multiple CPUs to do high computation jobs.

With this definition in mind, we can think of a data
center as a set of systems running different types of
workloads, so our logical model of a data center is:

DC={sys1,sys2,…,sysi} where sysi is a system and a
system, then, is defined as:

<Name, RA, Sch, Rack-list, Node-list, App, AM>
where:

Name: is a system id.
RA: is resource allocation algorithm assigned to the

system. Assigning any compute node to the application is
done by this algorithm. Anytime that management polices
force an application to release/ allocate a compute node this
algorithm will decide.

Sch: is a scheduling algorithm for all applications
running in the system. It has just one output which is next
job (any type) to be run.

Rack-list: a list of racks assigned to this system.
Node-list: a list of compute nodes that are assigned to

this system. There may be situations which a rack is shared
between a number of system. In this case list of each system
compute node is important.

App: specifies the type of applications that run on the
system; Enterprise (Ent) applications, Interactive
Applications (Int) or HPC applications.

AM: autonomic manager attached to this system.
 The applications that run on a particular system are

described as follows:
• Ent: An Enterprise system has a number of applications,

each application having an interactive type workload
running on a list of servers and its own SLA violation
description.

• Int: An Interactive system deals with a list of dynamic
coming-going workload from users. This type of

141Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

TABLE II. SLA PROFILE FOR AM ATTACHED TO HPC
SYSTEM/WEBSERVER

PL0:
On Event: Timer Triggered
 If (SLA is violated)
 begin
 (Increase freq. of all busy nodes � Activate all sleep nodes) | Activate all sleep nodes
 End

TABLE III. GREEN PROFILE POLICY FOR AM ATTACHED TO
HPC SYSTEM/WEBSERVER

PL1:
On Event: Timer Triggered
 If (SLA is violated)
 begin
 (Increase freq. of just fully utilized CPU node �
Activate just half of sleep nodes) |
 Activate just half of sleep nodes
 end
PL2:
On Event: Timer Triggered
 If (SLA is not violated)
 begin

(Decrease freq. of all nodes � If node is ready and is
not used make it sleep) | If node is ready and is not
used make it sleep

 End

TABLE IV. AM ATTACHED TO COOLER

PL3:
If (Max temperature is greater than Red temperature)
 begin
 Send UpdateHeartbeat message to AM in DC level
 End

Figure 3. Overall Structure of Simulator

workload has arrival time, duration, and SLA violation
definition. They are web based type applications.

• HPC: An HPC system just has HPC type jobs; each job
has a duration, deadline, needed CPU utilization and
number of nodes (for parallel processing jobs).

Putting this information together, a data center is then
defined as:

<RackList, Cooler, SysList, RedTemp, ThermalMap, AM>
where:
RackList: is list of racks in the data center; information

regarding chassis and blade servers inside the rack is part of
the rack definition.

Cooler: is the cooling specification. The efficiency of the
Computer Room Air Conditioner (CRAC) depends on air
flow velocity and conductivity of materials which is
quantified as the Coefficient of Performance (COP).

SysList: is the list of defined systems.
RedTemp: Red temperature: the maximum temperature

that hardware in the data center can tolerate; this parameter
will affect the cooling energy consumption.

AM: is the manager of the whole data center.
thermalMap: is used to calculate energy consumption of

the data center; the thermal model used in this research was
developed by Arizona State university [20]. Briefly, the
computing and cooling power in data center are considered
where the thermal model is a matrix, where an entry in the
matrix specifies how much generated heat from each server
will re-circulate to other servers. The overall structure of our
simulator is presented in Figure 3. The illustrated autonomic
management module is in charge of coordination and
planning among different AMs across the data center. The
simulator has been evaluated with different types of systems.

V. EXPERIMENTS

To illustrate the impact of our proposed management

142Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

TABLE V. COMPARISON BETWEEN GREEN AND SLA PROFILE
POLICY IN SEMI-LARGE SIMULATED DATA CENTER

Scenario Green SLA

Computing power of
Webserver

7.7 * 10^8 9.6*10^8

total energy consumption
(Watt ˟ Simulation Time)

1.9*10^9 N/A

Mean power consumption
(Watts)

26982 N/A

Number of times crossing red
temperature

0 475

Figure 4. Prototype Management System

system, we evaluate different management scenarios for a
hypothetical data center with and without management
system. We describe two sets of experiments. In the first set
we look at the impact of policies in managing the behavior
of a hosted webserver in the simulated data center. In the
second experiment, we present our prototype management
system. We compare the effects of different policy profiles
on energy consumption and SLA violations. For this
experiment, we consider a data center with one or two HPC
systems.

A. Experiment 1: Webserver Management

Our simulated data center has 10 racks and in each rack
there are 5 chasses, each has 5 servers (in total our data
center has 250 compute nodes). The simulated servers are
Proliant HP DL320. This server has a standby power
consumption of 5Watts; when it is idle it consumes 100
Watts and, with a fully utilized CPU, it consumes 300
Watts [24] [25]. The DL320 has an Intel® Xeon® E3-
1200v2 processor which has frequency scaling levels which
are 3.07, 3.2, and 4.2 GHz, which when normalized to the
“base level” are 1, 1.07 and 1.37. The simulated data center
has one HP cooler (refer to the thermal model in IV).

In this experiment, we host a webserver in the data
center with 80 (minimum) to 90 (maximum) compute nodes
allocated to the webserver. Compute nodes are allocated to
the webserver. Workload is scaled up version of traffic from
1999 world cup web traffic. We have attached a manager to
the webserver which monitors the SLA and, according to its
active polices, does some actions. SLA is violated when the
response time is more than two simulator cycles. Two
distinct sets of policies are considered: a green profile and
SLA profile (see Table II. and Table III.). These policies are
trying to minimize energy consumption (Green policy
profile) and minimize SLA violations (SLA policy profile).
The SLA policy profile is a time-triggered policy (every 60
seconds). When triggered, the AM checks for any SLA
violations in the system and tries to do dynamic CPU

frequency scaling and activate sleep allocated compute
nodes. If frequency scaling is not supported by compute
nodes, this policy just activates sleeping nodes. The
simulator counts violations during policy timer period.
Green policy profile also tries to do dynamic frequency
scaling and activation/deactivation of compute nodes if SLA
violations happen. This profile tries to keep active compute
nodes and CPUs at moderate frequency levels based on
whether there are SLA violations or not. Results show
(Table V.) that the Green policies result in less consumption
of power than SLA based policies. In SLA based polices;
the total energy consumption (cooling and computing) is not
available since the inlet temperature is exceeded 475 times
and this is not handled in the simulator. The main objective
of this experiment is to show the scalability of the
developed data center and also the impact of policy based
management.

B. Prototype Management Environment

We have modeled our prototype management system

(illustrated in Figure 4.), using a three level hierarchy. At
the bottom level, we have local AMs. Each local AM is
attached to a number of compute nodes. The second level
of AMs are called aggregate AMs; they logically aggregate
management responsibility from the local level to the data
center level. AMs at this level have the AMs at the first

143Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

TABLE VI. GREEN POLICY PROFILE FOR DC LEVEL AM
PL4:
On Event: (SLAViolation 1 | SLAViolation2)
if (SLA1 is violated)
begin
 Switch system1 to SLA based
end
else
begin
 Switch system1 to Green
end

PL6:
On Event: Receiving UpdateHeartbeat from Cooler
if (true)
begin
 (block HPC system with lowest priority ->start a timer: “block timer”)| Switch strategy
of all others to Green
end

PL3:
On Event: “block timer” trigger
if (true)
begin
 Unblock the blocked system
End

PL5:
On Event: (SLAViolation 1 | SLAViolation2)
if (SLA2 is violated)
begin
 Switch system2 to SLA based
end
else
begin
 Switch system2 to Green
end

level as their managed elements. At the top level, there is
one (or more for replication) Data Center AM which is the
coordinator among all aggregate AMs. AMs in our
management system cooperate and so exchange information
with the other AMs in the level above or below. This
information is called heartbeat and configVector data that is
the sensor and actuator information. Heartbeat information
can be fetched by the parent periodically or upon the
occurrence of any event, i.e. specified in the event part of
AM policy set, e.g. on an SLA violation or power cap
violation. Aggregate level or data center level AMs may
inquire of their children for heartbeat updates to make better
decisions. Any changes in configuration parameters or
policies of the child are then sent from the parent AM as
configuration parameters. We have simulated this prototype
for just HPC type workload. We have attached an AM (local
AM) to a HPC system and for number of HPC system (in
our case we have two) we have a data center level AM
which manages HPC systems behavior beside other AMs
(the AM attached to the cooler in following it will be
explained) in the data center.

C. Experiment 2: HPC Data Center

In this experiment, we assume that each chassis has one
blade server, so, in total, the data center has 50 physical
servers configured into two separate HPC systems; one of
30 compute nodes and one of 20 compute nodes. Each of
our HPC systems runs an HPC workload consisting of long
and short batch jobs (their workloads are not the same).
Each job in the workload has an arrival time, duration,
needed CPU utilization (will be used for thermal model) and
deadline (maximum waiting time in the system before
dispatching to a compute node). An SLA violation occurs
when a deadline is passed for a job in the workload. Two
system workloads have 730 and 173 jobs respectively,
which on average demand 3 compute nodes [27].

Ponder-like [21] notation has been used to describe our
policies. For the simulation study, we assume, we have two

policy profiles at the system level: a Green and SLA policy
profiles as per our webserver experiment. We also have a
data center AM which can change the system level AM's
policy profile based on their SLA violation status. If there
is any SLA violation on any of the HPC systems, the policy
tries to change the policy profile of all systems based on
whether they have an SLA violation (change it to SLA) or
not (change to Green) (see policies PL4 and PL5 in Table
VI). Upon any SLA violation in any system, they will send
their heartbeat (SLA violation) to the data center AM. Data
center AM will evaluate its policies and change any system
with a violation to an SLA based policy and the rest of the
systems will be set to Green. We expect that, by changing
policy profile of system dynamically, we can get better
results in terms of total energy consumption and still limit
the number of SLA violations. Data center AM has policy to
deal with the Cooler - if the AM in the cooler detects a red
temperature then it sends message to the data center AM
(see Table IV.). There is a policy for the data center AM to
“block” an HPC system with lowest priority for a period of
time (timer is set to 2 minutes) to relief data center load.
What we have simulated for blocking HPC system is not
running any jobs from the workload and in case of new
arrival jobs just queuing them and not dispatching them to
the compute nodes.

D. Experimental Scenarios

Five different scenarios have been considered to
evaluate the performance of having multiple autonomic
managers with varying sets of policies.

Scenario 1. No management: The data center has the
two running HPC systems, one with 30 compute nodes and
a workload of 730 jobs and another system with 20 compute
nodes and a workload with 173 jobs.

Scenario 2. There is a manager at the system level,
which has a SLA policy profile (see Table II.SLA Profile
For AM Attached to HPC System/Webserver). This
scenario runs for the small HPC system of 20 compute
nodes (we assume that the large HPC system is not running

144Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

TABLE VII. COMPARISON BETWEEN DIFFERENT SCENARIOS

Scenario
No management

system
(Scenario 1)

Single AM
in system level

(Scenario 2 and 3)

Multiple AMs
(data center level and system level)

(Scenario 4 and 5)
Profile Policy N/A Green SLA DC AM Profile policy is Green

Num. of HPC systems in DC 2 1 1 2

Number of SLA Violation 448 189 187 189 454
total energy consumption
(Watt ˟ Simulation Time)

N/A 8,000,000 9,800,000 8,318,000 23,171,143

Mean power consumption (Watt) N/A 6,430 7,287 6,518 11,956

Number of time crossing red temperature 91 0 0 0 3
Number of exchanged messages 0 226 22 253 2,764

in the data center). The goal here is to evaluate the impact of
the SLA policy profile on power and performance.

Scenario 3. Exactly as scenario 2 except the Green
policy profile for system level AM.

Scenario 4. We have two managers: one AM at the
system level (the small HPC system is running) and data
center level. The data center AM's policy profile is Green
(see Table VI.). We aim to evaluate the impact of changing
policy profiles of the HPC systems dynamically on the
power and performance. The main goal in Scenario 4 is to
consider how the data center level AM impacts the behavior
of its lower level AMs. While data center level AM is green
means that it makes the system level AM to behave close to
when it is Green itself.

Scenario 5. We have both HPC systems with their AMs
running, an AM at the data center level, and the cooler has
its own manager that just checks for its maximum inlet
temperature. If the inlet temperature is greater than the red
temperature of hardware in the data center (specified in the
data center configuration), the cooler AM sends a message
(UpdateHeartbeat message) to the data center AM asking it
to do something (refer to Table IV.). In this scenario, we
assume that the policy available to the AM in the data center
indicates that a system should be “blocked” – essentially
decrease processing by not executing additional jobs.
Obviously, the blocked system will suffer from SLA
violations but the gain is that this decision addresses
exceeding the red temperature for the whole data center.
System priority is defined with the HPC system
configuration.

E. Experimental Results

The result of running these scenarios is shown in Table
VII. The first scenario does not have a management module
and has two HPC systems. Running these systems under
the workloads results in the inlet temperature of the cooler
exceeding the red temperature 91 times; as a result, the
simulator is not able to calculate the total energy consumed.
As shown in Table VII. , Scenarios 2 and 3 involve a single
HPC system with a manager. The Green policy profile
consumes less energy and power than the same HPC system
with the SLA policy profile while the number of SLA
violations is about the same. This scenario shows how a
small difference in policies can affect the overall behavior.
In Scenario 4, we consider an AM at the data center level

and its policy profile is Green. The data center AM with the
Green policy profile is configured to dynamically change
the policy profile of system level AMs in accordance with
the system’s SLA violations; if there are SLA violations at
the system level, its policy profile is altered to be SLA
based in order to put more priority on achieving SLAs than
on energy conservation. The result shows that by having a
data center level manager able to dynamically switch its
corresponding system level AMs profile we can get the
same results as when the system level has Green profile
policy. In Scenario 4, it is data center level AM that controls
the behavior of the system level AMs and by setting data
center to Green we implicitly mak system level AM to
behave close to Green profile policy.

F. Management Overhead

The management system is responsible for configuring
managing entities and making sure they have updated
context information. All communications are based on
message passing, which causes network traffic. Although
hierarchical architecture is expected to have less
communication overhead, we consider the number of
exchanged messages between managing entities as
management overhead. As shown in Table VII. , the last
scenario which has an AM attached to the cooler and dual
levels of AM is expected to have more messages. These
messages are passed between four different zones: within
the two HPC systems, between the data center AM and the
HPC system AMs, and between the cooler AM and the AM
in the data center. The other expected overhead is due to the
actual computing resources consumed for management
activities (from the initialization of the management system
to running the MAPE loop in each manager). We do not
actually execute managers within the simulation, so we
cannot get an estimate from the simulator itself. However,
to estimate computing resources consumed by a manager,
we ran a “pseudo-manager” that executed and timed a
MAPE loop with 10 policies with fairly CPU intensive
actions as well as accessing a file to simulate the reading of
policies – something that would not normally happen each
time through the MAPE loop. This manager was run on a
computer of roughly the same computational power as the
HP DL320. The result showed that this MAPE loop
consumes 0.00002% CPU utilization of the processor which
is essentially negligible. Even if our measure is off by a

145Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

factor of a thousand, the management overhead to evaluate
policies and initiate actions is small. Of course, the
resources consumed in executing those actions could be
substantial, e.g. a virtual machine migration, but this
depends on the specific actions and what makes sense in the
contact of managing the system.

VI. CONCLUSION AND FUTRUE WORK

This research aims to develop an autonomic management
system that can help reduce data center energy consumption
while still adhering to service level agreements and
performance expectations. The results of combining
autonomic computing and policy based management
suggest a useful approach. We considered a hierarchical
arrangement of autonomic managers that is based on the
physical position of managed elements. A general approach
for an autonomic management system has been introduced.
The core principles that drive the management model are: a
message passing approach and policy-driving autonomous
managers. The approach has been evaluated on a
hypothetical data center using a simulator. The simulator in
this experiment has 50 nodes but has the ability to be
extended by increasing the number of blade servers in each
chassis. (Here we have one blade server in each chassis;
webserver experiment addresses scalability). The results
show that, first, by having simple policies (such as SLA and
Green policies), we obtain an acceptable reduction in power
consumption. The second lesson learned is the impact of
upper layer AM profile on the behavior of its lower level
AM. As shown in scenario 4 upper layer AM being Green
causes the same behavior as while the system level AM is
Green. Comparison of Scenario 1 and 5 shows that the
proposed three-level management hierarchy with given
policies controls the behavior of the data center in terms of
minimizing power consumption with negligible
management overhead and effect on SLA violation. The
result of having different profile policy and different level of
management shown in this work are workload agnostic. We
have run experiments with web-based workload that shows
promising horizon for our management system. Future work
will look at the management algorithms and dealing with
changes in the computing environment, e.g. the dynamic
start of or termination of applications. It will also explore
means for more general cooperation between managers and
for different configurations for the management system, e.g.
peer-to-peer, etc.

REFERENCES
[1] J. Koomey, Growth in data center electricity use 2005 to 2010.

Analytics Press, August 2011.
[2] B. Anton, J. Abawajy, and R. Buyya. "Energy-aware resource

allocation heuristics for efficient management of data centers for
cloud computing." Future Generation Computer Systems 28.5 (2012):
755-768.

[3] W. Forrest, J.M. Kaplan, and N. Kindler, “Data centers: How to cut
carbon emissions and costs,” mckinseyquarterly.com, November
2008.

[4] Google green, http://www.google.com/green Last visited July 2014.

[5] Kh. Bithika, S.Hariri, and M.S. Yousif. "Autonomic power and
performance management for computing systems." Cluster computing
11.2 (2008): pp.167-181.

[6] Computing, Autonomic. "An architectural blueprint for autonomic
computing." IBM White Paper (2006).

[7] J. D. Moore, J.S. Chase, P. Ranganathan, and R.K. Sharma. "Making
Scheduling" Cool": Temperature-Aware Workload Placement in Data
Centers." In USENIX annual technical conference, General Track, pp.
61-75. 2005.

[8] http://institutes.lanl.gov/hec-fsio/ Last visited July 2014.

[9] K. Catriona. "Decentralised Metacognition in Context-Aware
Autonomic Systems: Some Key Challenges." In Metacognition for
Robust Social Systems. 2010.

[10] R. Boutaba, and A. Issam. "Policy-based management: A historical
perspective." Journal of Network and Systems Management 15.4
(2007): pp.447-480.

[11] J.O.Kephart, and D. M. Chess. "The vision of autonomic computing."
Computer 36.1 (2003):pp. 41-50.

[12] T. Mukherjee et al. "Spatio-temporal thermal-aware job scheduling to
minimize energy consumption in virtualized heterogeneous data
centers." Computer Networks 53, no. 17 (2009): pp.2888-2904.

[13] T. Mukherjee, et al. "Model-driven coordinated management of data
centers." Computer Networks 54.16 (2010): pp.2869-2886.

[14] J.O.Kephart. "Coordinating Multiple Autonomic Managers to
Achieve Specified Power-Performance Tradeoffs." Fourth
International Conference on Autonomic Computing, IEEE Computer
Society, 2007.pp. 24-33.

[15] Z.Abbasi. et al. "Thermal aware server provisioning and workload
distribution for internet data centers." In Proceedings of the 19th
ACM International Symposium on High Performance Distributed
Computing,ACM 2010, pp. 130-141.

[16] D. Kusic, J.O. Kephart, J.E. Hanson, N. Kandasamy, G. Jiang,
“Power and performance management of virtualized computing
environments via lookahead control”, Cluster Comput. 12 (1) (2009)
pp. 1–15.

[17] J.D.Baldassari, et al. "Autonomic cluster management system
(ACMS): A demonstration of autonomic principles at work."
Engineering of Computer-Based Systems, 2005. ECBS'05. 12th IEEE
International Conference and Workshops on the. IEEE, 2005. pp.
512-518.

[18] R.Bahatl, M.A. Bauer, Elvis M. Vieira, and O. K. Baek. "Using
policies to drive autonomic management." In Proceedings of the 2006
International Symposium on on World of Wireless, Mobile and
Multimedia Networks, IEEE Computer Society, 2006, pp. 475-479.

[19] http://publish.uwo.ca/~fnorouz/publication/Simulator.pdf. Last visited
July 2014.

[20] http://impact.asu.edu/BlueTool/wiki/index.php/BlueSim. Last visited
July 2014.

[21] http://www.ponder2.net/. Last visited July 2014.

[22] R. Thomas, et al. "Autonomic management of large clusters and their
integration into the grid." Journal of Grid computing 2.3 (2004):
pp.247-260.

[23] http://eu-datagrid.web.cern.ch/eu-datagrid/ Last visited July 2014.

[24] T. Gerald, et al. "A multi-agent systems approach to autonomic
computing." In Proceedings of the Third International Joint
Conference on Autonomous Agents and Multiagent Systems-Volume
1, IEEE Computer Society, 2004. pp. 464-471.

[25] Standard Performance Evaluation Corporation.
http://www.spec.org/power_ssj2008/results/power_ssj2008.html.
Last visited July 2014.

[26] A. Richard, M. Pelc, and H. Shuaib. "The interoperability challenge
for autonomic computing." EMERGING 2011, The Third
International Conference on Emerging Network Intelligence. 2011.

[27] http://institutes.lanl.gov/hec-fsio/ Last visited July 2014.

[28] https://github.com/fnorouz/simulator/ Last visited January 2015.

146Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

