
High Performance Computing in a Cloud Using OpenStack

Roman Ledyayev and Harald Richter

Institute for Informatics, Clausthal University of Technology

Clausthal, Germany

Email: {roman.ledyayev, hri}@tu-clausthal.de

Abstract—Cloud computing is a rapidly gaining popularity

computing paradigm, prompted by much research efforts.

However, not much work is done in the area of joining cloud

computing with high performance computing in an efficient

way, e.g., for scientific simulation purposes. Moreover, there is

even less research effort in making cloud computing for

scientific simulations more efficient and suitable for specific

simulation codes. This paper presents an ongoing “SimPaaS”

project – our research efforts in building a cloud based

platform for scientific simulations. It deals with some

challenging features in cloud computing, such as performance.

The concepts and methods proposed in this paper allow

customizing and optimizing cloud infrastructure to increase its

performance and to meet certain requirements, drawn from

the analysis of case study simulation codes. Even though clouds

are not the most suitable environments for high performance

computing, the conclusion was drawn that there are ways to

increase cloud performance and effectively combine the two

paradigms.

Keywords-simulation; cloud computing; High Performance

Computing; OpenStack; VM

I. INTRODUCTION

In a project, entitled Simulation Platform as a Service
(SimPaaS) [34], we attempt to marry two technology
domains: cloud computing and scientific simulations,
sometimes referred to as scientific computing or High
Performance Computing (HPC). In this introduction, a brief
definition of these two technologies in context of the
ongoing research project is presented. Note, that in this
paper, the terms scientific simulations and High Performance
Computing are used interchangeably.

There are multiple definitions out there of the cloud [1].
In the project under consideration, the definition provided by
the National Institute of Standards and Technology (NIST)
[2] was adopted and relied on.

Cloud computing is a relatively new computing
paradigm, composed of a combination of grid computing and
utility computing concepts. Cloud promises high scalability,
flexibility, cost-effectiveness, power savings and various
other benefits to satisfy ever emerging computing
requirements of modern applications.

The scalability, flexibility, cost-effectiveness and relative
user-friendliness of various cloud services make it also an
attractive model to address computational challenges in the
scientific community. Individual research groups, who
decide not to build their own cloud environments, do not
need to provide and maintain IT-infrastructure on their own,
but instead rely on cloud-computing services to satisfy their

needs. However, they can also build their own specialized
cloud services, which can be implemented on-site, and which
could enable them to customize and optimize their cloud
utilization specifically for scientific simulations.

High Performance Computing is an important field with
two branches. These are: numerical simulations and big data
analysis. The latter is well suited for clouds, because of the
distributed file systems available in clouds. Massive amounts
of data can be stored in a distributed file system and
subsequently processed by individual cloud nodes. However,
up to now it is an unsolved problem for numerical
simulations to run efficiently on a cloud, because clouds, by
nature, are distributed systems and thus based on TCP/IP
communication. TCP/IP, in turn, has no quality of service
with respect to bandwidth and latency, thereby creating
much variance in both key parameters. As a result,
exchanging data with high bandwidth and low latency
becomes dependant on the traffic in the Internet. On the
other hand, HPC is a numerical intensive task, based on
highly efficient Inter-Process Communication (IPC). It is
difficult to join both worlds, clouds and HPC, because in
parallel and multicore computers, which are the hardware
basis for HPC, interprocess, interprocessor and intercore
communications are highly optimized. Additionally, clouds
are intensively using the concept of virtualization, which
results in computing overheads, as seen from the HPC’s
point of view. As a consequence, a lot of CPU power is not
used for executing HPC codes, but to run the cloud operating
system, such as OpenStack [3].

In this paper, a set of methods that can transform
OpenStack into a middleware, able to accommodate HPC, is
presented. The proposed method set is based on a mixture of
hardware and software changes.

The ultimate goal of the project is to provide a cloud-
based software platform for scientific simulations
(Simulation as a Service). Figure 1 shows how such service
would fit in the cloud stack. SimPaaS project prototype
cloud will implement a platform on top of Infrastructure as a
Service (IaaS), which provides virtualized resources for
automatic distributed and scalable deployment. The specific
simulation applications can be implemented as Software as a
Service (SaaS) on top of the simulation cloud.

108Copyright (c) IARIA, 2014. ISBN: 978-1-61208-338-4

CLOUD COMPUTING 2014 : The Fifth International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 1. Simulation as a Service in the cloud stack

The rest of the paper is organized as follows. Section II
presents related work. In Section III, various types of
simulation codes and their impact on Inter-Process
Communication and cloud efficiency are discussed and more
details about the current test bed cloud setup are presented.
Next, Section IV presents the proposed method set of
making the current cloud suitable for High Performance
Computing. Finally, some preliminary conclusions and
directions for future research are outlined in Section V.

II. RELATED WORK

There are projects and research articles that have made
fairly successful attempts to introduce scientific simulation
into the area of cloud computing on various levels and to
various degrees.

First, we must admit that significant research efforts [4]
have been made to migrate scientific computing simulations
to the cloud. Several science clouds [5] have been
established. There have also been attempts to design
distributed computing frameworks, which would fully
support scientific computing algorithms and take advantage
of those characteristics of a cloud that have made it such a
convenient and popular source for utilizing computing
resources [6]. Several simulations and applications have been
executed on these hybrid clouds. Research teams have been
able to measure the performance of running those
simulations in the clouds, thus evaluating the efficiency of
scientific computing on the cloud in general [33]. Jakovits et
al. [6] drew a conclusion that clouds are perfect
environments for scientific simulations. It was observed that
the communication, interference and other latencies added
by the virtualization technology are the major hindrances for
executing scientific computing applications on the cloud
[4][7][9]. The cloud computing community is trying to
address these issues and a number of interesting solutions
have been proposed over the last few years [7][8].

Even though virtualization is to be taken into account
when using clouds for HPC, some studies show, that for
running scientific codes in parallel, performance is
comparable, indicating that the virtual machine hosting
environment introduced little overhead, even when all of the
available cores were running at full capacity [34].

There have also been projects that used OpenStack to
build and manage a scientific cloud. One such project worth
mentioning was called Applied Computational Instrument
for Scientific Synthesis (ACISS) [10]. Some objectives of

the ACISS project overlap with our own goals for SimPaaS
project [10].

Second, even though there has been much research in
cloud computing and related technologies, comparatively
little work has focused on their use in simulation, especially
parallel and distributed simulation. Execution of parallel and
distributed simulations over clouds not only represents an
interesting opportunity, but also presents certain technical
challenges, as discussed by Fujimoto et al. [9].

However, it is clear that significant further developments
are needed to create a platform for materials simulations that
meets all the particular needs of HPC without requiring
further configuration and is accessible not only to system
administrators but also to general public users. Furthermore,
the questions of cost-effectiveness and performance have not
been conclusively answered and need to be addressed for
each type of scientific cloud application. In particular,
concerns about cloud computing performance are strong in
the materials science community. Jorissen et al. [11] shows
that Scientific Cloud Computing (SCC) is especially
appropriate for materials science and quantum-chemistry
simulations, which tend to be dominated by computational
performance rather than data transfer and storage.

Despite the number of cloud computing research projects
mentioned above, which deal with cloud computing and
scientific simulation, there have not been, to the best of our
knowledge, very many efforts to design and implement
techniques to address specific performance requirements and
optimize the overall resource utilization of simulation
applications run in a cloud.

III. CURRENT SETUP AND SIMULATION APPLICATIONS

This section describes the current setup of the cloud test
bed based on OpenStack, the choice of tools and gives brief
information about the applications used in the experimental
research (simulation case studies).

A. Scientific Cloud Based on OpenStack

OpenStack, co-founded by Rackspace and NASA in
2010, is quickly becoming one of the most popular open
source cloud computing platforms. According to its mission
statement, the OpenStack developers strive to produce the
platform that will be simple to implement and massively
scalable [12]. Admittedly, there are a number of alternatives
to OpenStack, both in the open source and commercial arena.
Eucalyptus [13], CloudStack [14], Joyent [15], OpenNebula
[16] and proprietary-powered pioneers like Amazon Web
Services [17] and VMware [18]. Our choice of OpenStack
over these other platforms was motivated by a few factors.
One of them is active development, which keeps it up to date
with new releases every half a year. Other reasons are: less
overhead, better scalability, and its open source nature. It has
also been actively used by our partners – GWDG [19].

Figure 2 depicts a high level diagram of the current
prototypical cloud setup. Grizzly 1.3 release of OpenStack
was used and deployed on Ubuntu 12.04.3 LTS Precise 64
bit (kernel version 3.2.0-52-generic) as the operating system.
Ubuntu with KVM are used as Hypervisor on one of the
machines, which serves as cloud controller.

109Copyright (c) IARIA, 2014. ISBN: 978-1-61208-338-4

CLOUD COMPUTING 2014 : The Fifth International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 2. Current setup of the prototypical cloud

To measure the performance of the cloud, Ganglia [20]

monitoring system (Ganglia Web 3.5.10) was installed on

each node. It measures CPU, memory and network

performance and loads. At the moment, we also consider

automation tools like Puppet modules [21] and attempt to

integrate the prototypical cloud with other research projects,

such as Cloud4E project [22].

B. Simulation Applications

The primary focus was made on simulation applications
in materials science, high energy physics and public
transport networks.

1) Modelling and Optimization of Public Transport

Networks
These are mathematical solvers for planning and

optimization of public networks, which are running on multi-
core platforms. The software used: Xpress and Mosel [23],
LinTim [24].

2) High Energy Physics Monte Carlo Simulation and

Data Analysis
This is both computational intensive and data-intensive

simulation and data analysis. These applications are using
data-parallelism and there is no communication between the
processes. The software used: ROOT/PROOF [25].

3) Material Simulation
Open Source Field Operation and Manipulation

(OpenFOAM [26]) is used to perform simulations in
computational fluid dynamics (CFD). It covers the whole
spectrum of the machines on which it can be compiled and
run, from single-core and multi-core (e.g., Intel) to parallel
computer (e.g., HLRN supercomputer [27]) and Graphical
Processing Units (GPUs) which are currently in progress.
The default, however, is parallel computer. Currently, only
MPI library (OpenMPI) is used for message-passing.

C. Initial Simulation Test Results

In Figure 3, some preliminary simulation test results are
presented. OpenFoam’s “breaking of a dam” use case was
selected for test runs, using the same configuration files
(mesh size, decomposition). The simulation was executed on
both, dedicated physical machines and VMs in the cloud.

Figure 3. Initial OpenFOAM simulation test results

It was observed, that increasing the number of VMs

and/or the number of hosts on which those VMs are run,

drastically increases the time necessary to complete the

simulation. It is also worth noting, that increasing the

number of virtual cores per VM, even if that number is

above the number of the physical cores available, had no

visible impact on performance and provided no speedup in

execution time.
Thus, some preliminary conclusions could be drawn

from these test results. First of all, virtualization does not

seem to have any significant impact on performance when 1

VM is used and there is no overcommitting in the number of

CPUs (the number of virtual CPUs is no larger than the

number of physically available CPUs). However, increasing

the number of VMs significantly increases simulation

execution time. This is especially noticeable if those VMs

are run on two or more separate hosts. In such cases, the

simulation is executed in parallel and in distributed mode, as

opposed to cases when it is run on one VM (non-

distributed). The fastest execution time was achieved when

simulations were run on 1 VM with the number of virtual

cores equal to the number of physical cores of the physical

computer on which it was run. In this case, the execution

time was almost equal to the time it takes to run the same

simulation on a physical computer outside of the cloud.
Independent of the used programming paradigm and

library, simulation codes can be categorized with respect to
their interprocessor communication. These categories are
important for understanding the measures proposed.

D. Types of HPC Simulation Codes

1) Category 1: Multiple Runs of a Sequential Code
In this case, a sequential code has to be executed multiple

times but with different input values respectively, which is
called parameter sweep. In theory, a cloud can achieve high
throughput here, because all sweeps can be executed in
parallel by different virtual cores on the same Virtual
Machine (VM) or by different VMs. Inter-Process
Communication is not needed, with the exception of the
beginning and the end of the runs, where some master node

110Copyright (c) IARIA, 2014. ISBN: 978-1-61208-338-4

CLOUD COMPUTING 2014 : The Fifth International Conference on Cloud Computing, GRIDs, and Virtualization

must distribute the set of input values to computing nodes
and, subsequently, collect their results.

2) Category 2: Single Run of a Parallel Code
The decisive question in this case is how much IPC is

needed in the considered code, because IPC is the bottleneck
in a cloud compared to a parallel computer or a multi-core
CPU. Fortunately, if the code is data parallel and not
function parallel then IPC is mostly moderate. Most solvers
for partial differential equations, for example, belong to data
parallel class. However, if the code is function parallel then
standard clouds are not a good choice, because a high
fraction of IPC and an intricate pattern of communication are
normally present. Only a significant improvement of the
cloud’s inter-core and/or inter-VM bandwidth and latency
could help, which is suggested in the next section.

3) Category 3: Multiple Runs of a Parallel Code
This is the combination of the two cases discussed above,

which means that respective problems and prerequisites are
also combined. To avoid slowdowns, either cloud nodes
must be upgraded as described below or the scheduler must
be modified and the cloud’s IPC must be made more
effective. A code written for a parallel computer with
specific features should be executed on a machine in a cloud
with the same properties, if possible. However, OpenStack
does not guarantee that a specific real machine is indeed
chosen for a given VM. Therefore, changes must be made to
address this shortcoming as well.

IV. METHODS OF INCREASING CLOUD PERFORMANCE

The method set proposed in this paper can be divided
into two categories of hardware and software changes.

A. Hardware Changes

In OpenStack, it is a common practice that heterogeneous
computers are configured to be computing or storage nodes,
together with a controller node. These nodes and the
controller are coupled on ISO layers 1 and 2 by a Gigabit
Ethernet switch. Optionally, a VLAN can also be
established. The hardware proposed here uses a 10 Gigabit
switch and proper network cards in 10 Gigabit Ethernet or
Infiniband technology in a way that a Beowulf cluster comes
into existence. Beowulf cluster implies that homogenous
computers are coupled with identical network interfaces and
with high-speed switches, such that deterministic latency and
bandwidth are achieved on ISO layers 1 and 2. Additionally,
the TCP/IP protocol set has to be abandoned, because it is
slow and non-deterministic and because a Beowulf cluster is
not world-wide and distributed but localized in a computing
center. As a consequence, most of the TCP/IP features are
not needed. However, in order to maintain compatibility with
existing MPI and OpenMP implementations, the Berkeley
socket API must be preserved. This is possible by employing
the commercially available “VMA Messaging Accelerator
Protocol” [28] from Mellanox. It provides the Berkeley API
but bypasses the TCP/IP protocol stack and writes user data
directly into the Mellanox network cards and reads input
from them without much protocol overhead. So, changes in
the user codes are not needed.

1) Unnecessary TCP/IP functions in Beowulf cluster
Data transmission errors are practically excluded in the

described cluster, because of the relatively short distances
between switches and nodes. As a consequence, the
automatic packet retransmission of TCP is not needed.
Additionally, the TCP sliding window protocol is
unnecessary, because all network interfaces are identical and
have the same speed and buffer sizes. Furthermore, the
packet reorder function of TCP is also not needed, because
only point-to-point connections without routers exist. No
packet that is sent later can arrive earlier. Additionally, IP
packet segmentation and reassembly is also not necessary,
because there is the same LAN technology in usage
everywhere, without differences in maximum frame size.
Finally, IP routing is not useful here, because there is no
router but switches in the cluster. As a consequence, nearly
all functions of the TCP/IP stack can be dismissed, as it is
done by the VMA messaging accelerator, which boosts
bandwidth and drastically reduces latency.

2) Bandwidth and latency improvements
Mellanox claims that their accelerator reduces latency on a

10 Gigabit Ethernet to 1.6 µs between two sending and
receiving Berkeley socket APIs in case of 12 bytes payload
per frame. This is significantly faster than via the Internet,
but it means that the compute and storage nodes of the cloud
are no longer part of the Internet. Only their controller node
can stay connected. However, this is fully compatible with
concepts used in OpenStack, which allows using floating IP
addresses for compute and storage nodes that must overlap
with publicly used addresses. Additionally, the network
service of OpenStack can be exclusively localized in the
controller node which has Internet connection.

Suggestions could be made to fix bandwidth and latency
issues with hardware devices such as fiber optic networking,
ramdisks/SSDs, etc. The substitution of copper cables as
computer interconnects by glass fiber optics can fix the
bandwidth problem only if fiber speeds are significantly
higher than 10 GB/s, which is the limit for copper. However,
it will not fix the latency problem, because the electric/optic
converters introduce additional delays and because the speed
of light is similar in glass and in copper (about 0.75c). The
replacement of hard drives in the cloud by SSDs could
accelerate the throughput of some OpenStack services. But,
as with the glass fiber solution, the cloud costs would
significantly increase, which is not desirable in this case.

3) Hardware scalability
The hardware scalability, necessary to engage thousands

of CPUs in one cluster, is achieved by a hierarchical cascade
of layer 2 switches and by employing VLAN technology.
This allows enlarging the spatial circumference of the cloud
to several kilometers, which is sufficient to accommodate
thousands of computers. There should be no problem with
scalability, since Mellannox 10 Gigabit Ethernet switches are
supported by OpenStack via using Mellanox plugins.

B. Software Changes

Software changes have to be made in the underlying
operating system (Linux Ubuntu), in the OpenStack network
service (Neutron) and its scheduler.

111Copyright (c) IARIA, 2014. ISBN: 978-1-61208-338-4

CLOUD COMPUTING 2014 : The Fifth International Conference on Cloud Computing, GRIDs, and Virtualization

1) New operating system for OpenStack
The first software change is to replace Linux host OS, on

which OpenStack runs, by a Real-Time Linux such as the RT
Preempt Patch [29] or Xenomai [30]. The reason for that is
that standard Linux, such as Ubuntu, uses the Completely
Fair Scheduler from Ingo Molnar, which does not allow
prioritizing processes as real-time operating systems do. The
selected RT OS is used not only as host OS for OpenStack,
but also as guest OS for every VM. This gives users a precise
control over which task is scheduled at which time. Such a
feature is important when two user tasks want to exchange
data at the same time, because of Inter-Process
Communication.

2) New OpenStack scheduler
The Nova scheduler of OpenStack determines which

physical compute node is allocated to which VM as soon as
the VM is provisioned. This reflects a scheduling in space,
but not in time, and is of static nature. An automatic live
migration of VMs that periodically balances out the load
between physical nodes does not exist in the Grizzly release.
This is not favorable for HPC, because resources may
become extremely overloaded.

a) Periodic live migration

Because of the fact that an RT OS was chosen for both,
host and guest OS, it is possible to re-allocate VMs for load
balancing, because Nova can be prioritized before user tasks
and executed periodically. To achieve this, scheduling in
host and guest OS must be synchronized, so that all
schedulers act together.

b) Gang scheduling

Schedulers must schedule all sets of communicating
VMs simultaneously, as soon as they are starting data
exchange, so that they can send and receive information
efficiently (Gang Scheduling). Otherwise, unnecessary
waiting times would be the consequence, because
rendezvous between senders and receivers cannot take place.
In that case, sent data must be buffered until receivers are
ready to proceed and receivers must wait until senders can
send data, which is unfavorable for HPC.

c) Advanced reservation

Accessing a hard drive requires up to 10 µs until the
searched record is found. Such I/O delays are unbearable for
HPC, especially if they occur one after another in physical
nodes that must communicate with each other. Advanced
reservation, in this case, means that user code can be
instrumented with an OpenStack call that is directed to the
storage services, Cinder and Swift, and that read and cache
or cache and write a whole data object in advance before the
hard drive is ready. This allows hiding I/O latencies and thus
improves communication latency.

d) High priority scheduling

Some system processes, such as Nova itself or the
Mellanox messaging accelerator, must be scheduled before
user tasks. Consequently, user tasks must be rescheduled for
high priority system tasks. Priority scheduling is a standard
feature of all RT OS. However, for the synchronous
cooperation of host and guest schedulers, a software

framework must be created that instructs all schedulers via a
common API, that should also be available in Open Cloud
Computing Interface (OCCI) [31], which is both, a protocol
and an API for all kinds of management tasks.

3) New OpenStack networking service
VLANs are needed for a scalable Beowulf cluster to

extend cable lengths and cascade switches. To make this
possible, the OpenStack networking service must be
enhanced with the following functions:

 Generation of VLAN-IDs.

 Creation of a mapping table “VLAN-ID – Port
number” for every switch, according to the cluster
topology used, so that each switch can forward a
frame to correct destination.

 Generation of IEEE 802.1Q Ethernet header tags at
every switch input port and removal of these tags at
every switch output port. This is needed for
Ethernet interfaces that do not support VLAN tags.

 Defining which method is used for assigning a
specific frame to its VLAN.

 Automatic setting of frame priorities. This is needed
in cases when multiple frames collide at the same
time at the same switch output, and a decision must
be made by the switch which frame gets a passage
first. This allows resolving conflicts in the transport
system of the cloud under full control of the user
code, thus avoiding speed up degradations.

V. CONCLUSION AND FUTURE WORK

The contribution of this paper is two-fold. In the first
place, the possibility of effectively combining cloud
computing, which by its very nature is not a very suitable
environment for applications designed for HPC platforms,
with High Performance Computing was examined. In the
second place, a set of methods which, if followed and
implemented, could make clouds more suitable for running
HPC codes was proposed.

By running OpenFoam as a benchmark for OpenStack,
we found out that this cloud operating system is not well-
suited for OpenFoam, because it degrades performance with
respect to a reference computer of the same capabilities that
is outside of OpenStack. The results can be generalized to
any cloud operating system, to any computational fluid
dynamics codes and to any HPC codes in general.

We plan to investigate why this happens. At the moment,
we believe this happens because of potential overcommitting
of physical resources by virtual ones, and by data exchanges
needed between VMs running on two computers and
between virtual cores running in the same VM, as soon as it
takes place via TCP/IP. With TCP/IP, parallel computing
mutates into distributed computing which results in code
slow down. However, three use cases with different slow
down factors could be identified, and measures could be
given to repair this behavior. These measures are: 1)
Abandon the internal functions of TCP/IP, but preserve its
Berkeley socket API, because of the often used MPI library.
2) Replace the distributed cloud by a Beowulf cluster and
install OpenStack on it. 3) Replace guest and host operating

112Copyright (c) IARIA, 2014. ISBN: 978-1-61208-338-4

CLOUD COMPUTING 2014 : The Fifth International Conference on Cloud Computing, GRIDs, and Virtualization

systems by real-time Linux. 4) Add a frame-work that
schedules communicating VMs and cores synchronously. 5)
Introduce disk I/O in advance for data objects to avoid
unpredictable message latencies. 6) Add periodic live-
migration of VMs for load balancing between physical
CPUs.

Future work will be to investigate how much these
measures can change the cloud's HPC efficiency under the
boundary conditions of given user codes and cloud hardware.

Our future efforts will concentrate on further analysis of
the issues mentioned above and the propositions described in
the previous section, experimenting with the results of
running the simulation codes inside the cloud, and, finally,
designing and implementing one or more of the proposed
solutions from the method set.

References

[1] A. Isherwood (Hewlett-Packard’s Vice President of European
Software Sales), quoted in ZDnet News, December 11, 2008.

[2] P. Mell and T. Grance, “The NIST definition of cloud
computing”, NIST Special Publication 800-145, September,
2011.

[3] http://www.openstack.org/, [accessed: January, 2014].

[4] S. Srirama, O. Batrashev, P. Jakovits, and E. Vainikko,
“Scalability of Parallel Scientific Applications on the Cloud,”
Scientific Programming, vol. 19, Apr. 2011, pp. 91–105,
2011, doi:10.3233/SPR-2011-0320.

[5] S. N. Srirama, O. Batrashev, and E. Vainikko, “SciCloud:
Scientific Computing on the Cloud,” Proc. 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid
Computing (CCGrid), 2010, pp. 579–580,
doi:10.1109/CCGRID.2010.56.

[6] P. Jakovits, S. N. Srirama, and I. Kromonov, “Stratus: A
Distributed Computing Framework for Scientific Simulations
on the Cloud,” Proc. IEEE 14th International Conference on
High Performance Computing and Communications (HPCC
2012), IEEE Press, 2012, pp. 1053–1059, doi:
10.1109/HPCC.2012.154.

[7] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose,
and R. Buyya, “Cloudsim: A Toolkit for Modeling and
Simulation of Cloud Computing Environments and
Evaluation of Resource Provisioning Algorithms,” Software:
Practice and Experience, vol. 41, 2011, pp. 23–50,
doi:10.1002/spe.995.

[8] Q. Li and Y. Guo, “Optimization of Resource Scheduling in
Cloud Computing,” Proc. 12th International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC 2010), pp. 315–320, doi:
10.1109/SYNASC.2010.8.

[9] R. M. Fujimoto, A. W. Malik, and A. J. Park, “Parallel and
distributed simulation in the cloud,” SCS M&S Magazine,
issue 3, July 2010, [Online]. Available:
http://www.scs.org/magazines/2010-
07/index_file/Articles.htm, [accessed: January, 2014].

[10] C. Hoge, “Building a scientific cloud computer with
OpenStack,” OpenStack Day, Portland, July 16-20, 2012.
[Online]. Available:
http://www.oscon.com/oscon2012/public/schedule/detail/242
61, [accessed: January, 2014].

[11] K. Jorissen, F.D. Vila, and J.J. Rehr, “A High Performance
Scientific Cloud Computing Environment for Materials
Simulations,” Computer Physics Communications, vol.183,
issue 9, pp. 1911-1919, doi: 10.1016/j.cpc.2012.04.010.

[12] https://wiki.openstack.org/wiki/Main_Page, [accessed:
January, 2014].

[13] http://www.eucalyptus.com/, [accessed: January, 2014].

[14] http://cloudstack.apache.org/, [accessed: January, 2014].

[15] http://www.joyent.com/, [accessed: January, 2014].

[16] http://opennebula.org/start, [accessed: January, 2014].

[17] http://aws.amazon.com/, [accessed: January, 2014].

[18] http://www.vmware.com/, [accessed: January, 2014].

[19] http://www.gwdg.de/index.php, [accessed: January, 2014].

[20] http://ganglia.sourceforge.net/, [accessed: January, 2014].

[21] https://wiki.openstack.org/wiki/Puppet-openstack, [accessed:
January, 2014].

[22] http://www.cloud4e.de/, [accessed: January, 2014].

[23] http://www.fico.com/en/Products/DMTools/xpress-
overview/Pages/Xpress-Mosel.aspx, [accessed: January,
2014].

[24] http://lintim.math.uni-goettingen.de/index.php?lang=en,
[accessed: January, 2014].

[25] http://root.cern.ch/drupal/content/proof, [accessed: January,
2014].

[26] http://www.openfoam.com/, [accessed: January, 2014].

[27] https://www.hlrn.de/home/view, [accessed: January, 2014].

[28] http://www.mellanox.com/related-
docs/prod_acceleration_software/VMA.pdf, [accessed:
January, 2014].

[29] https://rt.wiki.kernel.org/index.php/Main_Page, [accessed:
January, 2014].

[30] http://www.xenomai.org/, [accessed: January, 2014].

[31] http://occi-wg.org/, [accessed: January, 2014].

[32] J.J. Rehr, F.D. Vila, J.P. Gardner, L. Svec, and M. Prange,
“Scientific Computing in the Cloud,” Computing in Science
& Engineering, vol. 12, issue 3, pp. 34-43, 2010, doi:
10.1109/MCSE.2010.70.

[33] P. Saripalli, C. Oldenburg, B. Walters, and N. Radheshyam,
“Implementation and Usability Evaluation of a Cloud
Platform for Scientific Computing as a Service (SCaaS),”
2011 Fourth IEEE International Conference on Utility and
Cloud Computing (UCC), 2011, pp. 345-354, doi:
10.1109/UCC.2011.58.

[34] http://www.simzentrum.de/en/education/cloud-basierte-
software-infrastruktur-fuer-verteilte-simulation/, [accessed:
May, 2014].

113Copyright (c) IARIA, 2014. ISBN: 978-1-61208-338-4

CLOUD COMPUTING 2014 : The Fifth International Conference on Cloud Computing, GRIDs, and Virtualization

http://www.openstack.org/
http://www.scs.org/magazines/2010-07/index_file/Articles.htm
http://www.scs.org/magazines/2010-07/index_file/Articles.htm
http://www.oscon.com/oscon2012/public/schedule/detail/24261
http://www.oscon.com/oscon2012/public/schedule/detail/24261
https://wiki.openstack.org/wiki/Main_Page
http://www.eucalyptus.com/
http://cloudstack.apache.org/
http://www.joyent.com/
http://opennebula.org/start
http://aws.amazon.com/
http://www.vmware.com/
http://www.gwdg.de/index.php
http://ganglia.sourceforge.net/
https://wiki.openstack.org/wiki/Puppet-openstack
http://www.cloud4e.de/
http://www.fico.com/en/Products/DMTools/xpress-overview/Pages/Xpress-Mosel.aspx
http://www.fico.com/en/Products/DMTools/xpress-overview/Pages/Xpress-Mosel.aspx
http://lintim.math.uni-goettingen.de/index.php?lang=en
http://root.cern.ch/drupal/content/proof
http://www.openfoam.com/
https://www.hlrn.de/home/view
http://www.mellanox.com/related-docs/prod_acceleration_software/VMA.pdf
http://www.mellanox.com/related-docs/prod_acceleration_software/VMA.pdf
https://rt.wiki.kernel.org/index.php/Main_Page
http://www.xenomai.org/
http://occi-wg.org/
http://www.simzentrum.de/en/education/cloud-basierte-software-infrastruktur-fuer-verteilte-simulation/
http://www.simzentrum.de/en/education/cloud-basierte-software-infrastruktur-fuer-verteilte-simulation/

	I. Introduction
	II. Related Work
	III. Current Setup and Simulation Applications
	A. Scientific Cloud Based on OpenStack
	To measure the performance of the cloud, Ganglia [20] monitoring system (Ganglia Web 3.5.10) was installed on each node. It measures CPU, memory and network performance and loads. At the moment, we also consider automation tools like Puppet modules [2...
	B. Simulation Applications
	1) Modelling and Optimization of Public Transport Networks
	2) High Energy Physics Monte Carlo Simulation and Data Analysis
	3) Material Simulation

	C. Initial Simulation Test Results
	D. Types of HPC Simulation Codes
	1) Category 1: Multiple Runs of a Sequential Code
	2) Category 2: Single Run of a Parallel Code
	3) Category 3: Multiple Runs of a Parallel Code

	IV. Methods of Increasing Cloud Performance
	A. Hardware Changes
	1) Unnecessary TCP/IP functions in Beowulf cluster
	2) Bandwidth and latency improvements
	3) Hardware scalability

	B. Software Changes
	1) New operating system for OpenStack
	2) New OpenStack scheduler
	a) Periodic live migration
	b) Gang scheduling
	c) Advanced reservation
	d) High priority scheduling

	3) New OpenStack networking service

	V. Conclusion and Future Work
	References

