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Abstract—Cloud computing is a rapidly gaining popularity 

computing paradigm, prompted by much research efforts. 

However, not much work is done in the area of joining cloud 

computing with high performance computing in an efficient 

way, e.g., for scientific simulation purposes. Moreover, there is 

even less research effort in making cloud computing for 

scientific simulations more efficient and suitable for specific 

simulation codes. This paper presents an ongoing “SimPaaS” 

project – our research efforts in building a cloud based 

platform for scientific simulations. It deals with some 

challenging features in cloud computing, such as performance. 

The concepts and methods proposed in this paper allow 

customizing and optimizing cloud infrastructure to increase its 

performance and to meet certain requirements, drawn from 

the analysis of case study simulation codes. Even though clouds 

are not the most suitable environments for high performance 

computing, the conclusion was drawn that there are ways to 

increase cloud performance and effectively combine the two 

paradigms. 

Keywords-simulation; cloud computing; High Performance 

Computing; OpenStack; VM 

I. INTRODUCTION 

In a project, entitled Simulation Platform as a Service 
(SimPaaS) [34], we attempt to marry two technology 
domains: cloud computing and scientific simulations, 
sometimes referred to as scientific computing or High 
Performance Computing (HPC). In this introduction, a brief 
definition of these two technologies in context of the 
ongoing research project is presented. Note, that in this 
paper, the terms scientific simulations and High Performance 
Computing are used interchangeably. 

There are multiple definitions out there of the cloud [1]. 
In the project under consideration, the definition provided by 
the National Institute of Standards and Technology (NIST) 
[2] was adopted and relied on. 

Cloud computing is a relatively new computing 
paradigm, composed of a combination of grid computing and 
utility computing concepts. Cloud promises high scalability, 
flexibility, cost-effectiveness, power savings and various 
other benefits to satisfy ever emerging computing 
requirements of modern applications. 

The scalability, flexibility, cost-effectiveness and relative 
user-friendliness of various cloud services make it also an 
attractive model to address computational challenges in the 
scientific community. Individual research groups, who 
decide not to build their own cloud environments, do not 
need to provide and maintain IT-infrastructure on their own, 
but instead rely on cloud-computing services to satisfy their 

needs. However, they can also build their own specialized 
cloud services, which can be implemented on-site, and which 
could enable them to customize and optimize their cloud 
utilization specifically for scientific simulations. 

High Performance Computing is an important field with 
two branches. These are: numerical simulations and big data 
analysis. The latter is well suited for clouds, because of the 
distributed file systems available in clouds. Massive amounts 
of data can be stored in a distributed file system and 
subsequently processed by individual cloud nodes. However, 
up to now it is an unsolved problem for numerical 
simulations to run efficiently on a cloud, because clouds, by 
nature, are distributed systems and thus based on TCP/IP 
communication. TCP/IP, in turn, has no quality of service 
with respect to bandwidth and latency, thereby creating 
much variance in both key parameters. As a result, 
exchanging data with high bandwidth and low latency 
becomes dependant on the traffic in the Internet. On the 
other hand, HPC is a numerical intensive task, based on 
highly efficient Inter-Process Communication (IPC). It is 
difficult to join both worlds, clouds and HPC, because in 
parallel and multicore computers, which are the hardware 
basis for HPC, interprocess, interprocessor and intercore 
communications are highly optimized. Additionally, clouds 
are intensively using the concept of virtualization, which 
results in computing overheads, as seen from the HPC’s 
point of view. As a consequence, a lot of CPU power is not 
used for executing HPC codes, but to run the cloud operating 
system, such as OpenStack [3]. 

In this paper, a set of methods that can transform 
OpenStack into a middleware, able to accommodate HPC, is 
presented. The proposed method set is based on a mixture of 
hardware and software changes. 

The ultimate goal of the project is to provide a cloud-
based software platform for scientific simulations 
(Simulation as a Service). Figure 1 shows how such service 
would fit in the cloud stack. SimPaaS project prototype 
cloud will implement a platform on top of Infrastructure as a 
Service (IaaS), which provides virtualized resources for 
automatic distributed and scalable deployment. The specific 
simulation applications can be implemented as Software as a 
Service (SaaS) on top of the simulation cloud. 
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Figure 1.  Simulation as a Service in the cloud stack 

The rest of the paper is organized as follows. Section II 
presents related work. In Section III, various types of 
simulation codes and their impact on Inter-Process 
Communication and cloud efficiency are discussed and more 
details about the current test bed cloud setup are presented. 
Next, Section IV presents the proposed method set of 
making the current cloud suitable for High Performance 
Computing. Finally, some preliminary conclusions and 
directions for future research are outlined in Section V. 

II. RELATED WORK 

There are projects and research articles that have made 
fairly successful attempts to introduce scientific simulation 
into the area of cloud computing on various levels and to 
various degrees. 

First, we must admit that significant research efforts [4] 
have been made to migrate scientific computing simulations 
to the cloud. Several science clouds [5] have been 
established. There have also been attempts to design 
distributed computing frameworks, which would fully 
support scientific computing algorithms and take advantage 
of those characteristics of a cloud that have made it such a 
convenient and popular source for utilizing computing 
resources [6]. Several simulations and applications have been 
executed on these hybrid clouds. Research teams have been 
able to measure the performance of running those 
simulations in the clouds, thus evaluating the efficiency of 
scientific computing on the cloud in general [33]. Jakovits et 
al. [6] drew a conclusion that clouds are perfect 
environments for scientific simulations. It was observed that 
the communication, interference and other latencies added 
by the virtualization technology are the major hindrances for 
executing scientific computing applications on the cloud 
[4][7][9]. The cloud computing community is trying to 
address these issues and a number of interesting solutions 
have been proposed over the last few years [7][8]. 

Even though virtualization is to be taken into account 
when using clouds for HPC, some studies show, that for 
running scientific codes in parallel, performance is 
comparable, indicating that the virtual machine hosting 
environment introduced little overhead, even when all of the 
available cores were running at full capacity [34]. 

There have also been projects that used OpenStack to 
build and manage a scientific cloud. One such project worth 
mentioning was called Applied Computational Instrument 
for Scientific Synthesis (ACISS) [10]. Some objectives of 

the ACISS project overlap with our own goals for SimPaaS 
project [10]. 

Second, even though there has been much research in 
cloud computing and related technologies, comparatively 
little work has focused on their use in simulation, especially 
parallel and distributed simulation. Execution of parallel and 
distributed simulations over clouds not only represents an 
interesting opportunity, but also presents certain technical 
challenges, as discussed by Fujimoto et al. [9].  

However, it is clear that significant further developments 
are needed to create a platform for materials simulations that 
meets all the particular needs of HPC without requiring 
further configuration and is accessible not only to system 
administrators but also to general public users. Furthermore, 
the questions of cost-effectiveness and performance have not 
been conclusively answered and need to be addressed for 
each type of scientific cloud application. In particular, 
concerns about cloud computing performance are strong in 
the materials science community. Jorissen et al. [11] shows 
that Scientific Cloud Computing (SCC) is especially 
appropriate for materials science and quantum-chemistry 
simulations, which tend to be dominated by computational 
performance rather than data transfer and storage. 

Despite the number of cloud computing research projects 
mentioned above, which deal with cloud computing and 
scientific simulation, there have not been, to the best of our 
knowledge, very many efforts to design and implement 
techniques to address specific performance requirements and 
optimize the overall resource utilization of simulation 
applications run in a cloud. 

III. CURRENT SETUP AND SIMULATION APPLICATIONS 

This section describes the current setup of the cloud test 
bed based on OpenStack, the choice of tools and gives brief 
information about the applications used in the experimental 
research (simulation case studies). 

A. Scientific Cloud Based on OpenStack 

OpenStack, co-founded by Rackspace and NASA in 
2010, is quickly becoming one of the most popular open 
source cloud computing platforms. According to its mission 
statement, the OpenStack developers strive to produce the 
platform that will be simple to implement and massively 
scalable [12]. Admittedly, there are a number of alternatives 
to OpenStack, both in the open source and commercial arena. 
Eucalyptus [13], CloudStack [14], Joyent [15], OpenNebula 
[16] and proprietary-powered pioneers like Amazon Web 
Services [17] and VMware [18]. Our choice of OpenStack 
over these other platforms was motivated by a few factors. 
One of them is active development, which keeps it up to date 
with new releases every half a year. Other reasons are: less 
overhead, better scalability, and its open source nature. It has 
also been actively used by our partners – GWDG [19]. 

Figure 2 depicts a high level diagram of the current 
prototypical cloud setup. Grizzly 1.3 release of OpenStack 
was used and deployed on Ubuntu 12.04.3 LTS Precise 64 
bit (kernel version 3.2.0-52-generic) as the operating system. 
Ubuntu with KVM are used as Hypervisor on one of the 
machines, which serves as cloud controller. 
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Figure 2.  Current setup of the prototypical cloud 

To measure the performance of the cloud, Ganglia [20] 

monitoring system (Ganglia Web 3.5.10) was installed on 

each node. It measures CPU, memory and network 

performance and loads. At the moment, we also consider 

automation tools like Puppet modules [21] and attempt to 

integrate the prototypical cloud with other research projects, 

such as Cloud4E project [22]. 

B. Simulation Applications 

The primary focus was made on simulation applications 
in materials science, high energy physics and public 
transport networks. 

1) Modelling and Optimization of Public Transport 

Networks 
These are mathematical solvers for planning and 

optimization of public networks, which are running on multi-
core platforms. The software used: Xpress and Mosel [23], 
LinTim [24]. 

2) High Energy Physics Monte Carlo Simulation and 

Data Analysis 
This is both computational intensive and data-intensive 

simulation and data analysis. These applications are using 
data-parallelism and there is no communication between the 
processes. The software used: ROOT/PROOF [25]. 

3) Material Simulation 
Open Source Field Operation and Manipulation 

(OpenFOAM [26]) is used to perform simulations in 
computational fluid dynamics (CFD). It covers the whole 
spectrum of the machines on which it can be compiled and 
run, from single-core and multi-core (e.g., Intel) to parallel 
computer (e.g., HLRN supercomputer [27]) and Graphical 
Processing Units (GPUs) which are currently in progress. 
The default, however, is parallel computer. Currently, only 
MPI library (OpenMPI) is used for message-passing.  

C. Initial Simulation Test Results 

In Figure 3, some preliminary simulation test results are 
presented. OpenFoam’s “breaking of a dam” use case was 
selected for test runs, using the same configuration files 
(mesh size, decomposition). The simulation was executed on 
both, dedicated physical machines and VMs in the cloud. 

 
Figure 3.  Initial OpenFOAM simulation test results 

It was observed, that increasing the number of VMs 

and/or the number of hosts on which those VMs are run, 

drastically increases the time necessary to complete the 

simulation. It is also worth noting, that increasing the 

number of virtual cores per VM, even if that number is 

above the number of the physical cores available, had no 

visible impact on performance and provided no speedup in 

execution time. 
Thus, some preliminary conclusions could be drawn 

from these test results. First of all, virtualization does not 

seem to have any significant impact on performance when 1 

VM is used and there is no overcommitting in the number of 

CPUs (the number of virtual CPUs is no larger than the 

number of physically available CPUs). However, increasing 

the number of VMs significantly increases simulation 

execution time. This is especially noticeable if those VMs 

are run on two or more separate hosts. In such cases, the 

simulation is executed in parallel and in distributed mode, as 

opposed to cases when it is run on one VM (non-

distributed). The fastest execution time was achieved when 

simulations were run on 1 VM with the number of virtual 

cores equal to the number of physical cores of the physical 

computer on which it was run. In this case, the execution 

time was almost equal to the time it takes to run the same 

simulation on a physical computer outside of the cloud. 
Independent of the used programming paradigm and 

library, simulation codes can be categorized with respect to 
their interprocessor communication. These categories are 
important for understanding the measures proposed. 

D. Types of HPC Simulation Codes 

1) Category 1: Multiple Runs of a Sequential Code 
In this case, a sequential code has to be executed multiple 

times but with different input values respectively, which is 
called parameter sweep. In theory, a cloud can achieve high 
throughput here, because all sweeps can be executed in 
parallel by different virtual cores on the same Virtual 
Machine (VM) or by different VMs. Inter-Process 
Communication is not needed, with the exception of the 
beginning and the end of the runs, where some master node 
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must distribute the set of input values to computing nodes 
and, subsequently, collect their results. 

2) Category 2: Single Run of a Parallel Code 
The decisive question in this case is how much IPC is 

needed in the considered code, because IPC is the bottleneck 
in a cloud compared to a parallel computer or a multi-core 
CPU. Fortunately, if the code is data parallel and not 
function parallel then IPC is mostly moderate. Most solvers 
for partial differential equations, for example, belong to data 
parallel class. However, if the code is function parallel then 
standard clouds are not a good choice, because a high 
fraction of IPC and an intricate pattern of communication are 
normally present. Only a significant improvement of the 
cloud’s inter-core and/or inter-VM bandwidth and latency 
could help, which is suggested in the next section. 

3) Category 3: Multiple Runs of a Parallel Code 
This is the combination of the two cases discussed above, 

which means that respective problems and prerequisites are 
also combined. To avoid slowdowns, either cloud nodes 
must be upgraded as described below or the scheduler must 
be modified and the cloud’s IPC must be made more 
effective. A code written for a parallel computer with 
specific features should be executed on a machine in a cloud 
with the same properties, if possible. However, OpenStack 
does not guarantee that a specific real machine is indeed 
chosen for a given VM. Therefore, changes must be made to 
address this shortcoming as well. 

IV. METHODS OF INCREASING CLOUD PERFORMANCE 

The method set proposed in this paper can be divided 
into two categories of hardware and software changes. 

A. Hardware Changes 

In OpenStack, it is a common practice that heterogeneous 
computers are configured to be computing or storage nodes, 
together with a controller node. These nodes and the 
controller are coupled on ISO layers 1 and 2 by a Gigabit 
Ethernet switch. Optionally, a VLAN can also be 
established. The hardware proposed here uses a 10 Gigabit 
switch and proper network cards in 10 Gigabit Ethernet or 
Infiniband technology in a way that a Beowulf cluster comes 
into existence. Beowulf cluster implies that homogenous 
computers are coupled with identical network interfaces and 
with high-speed switches, such that deterministic latency and 
bandwidth are achieved on ISO layers 1 and 2. Additionally, 
the TCP/IP protocol set has to be abandoned, because it is 
slow and non-deterministic and because a Beowulf cluster is 
not world-wide and distributed but localized in a computing 
center. As a consequence, most of the TCP/IP features are 
not needed. However, in order to maintain compatibility with 
existing MPI and OpenMP implementations, the Berkeley 
socket API must be preserved. This is possible by employing 
the commercially available “VMA Messaging Accelerator 
Protocol” [28] from Mellanox. It provides the Berkeley API 
but bypasses the TCP/IP protocol stack and writes user data 
directly into the Mellanox network cards and reads input 
from them without much protocol overhead. So, changes in 
the user codes are not needed. 

1) Unnecessary TCP/IP functions in Beowulf cluster 
Data transmission errors are practically excluded in the 

described cluster, because of the relatively short distances 
between switches and nodes. As a consequence, the 
automatic packet retransmission of TCP is not needed. 
Additionally, the TCP sliding window protocol is 
unnecessary, because all network interfaces are identical and 
have the same speed and buffer sizes. Furthermore, the 
packet reorder function of TCP is also not needed, because 
only point-to-point connections without routers exist. No 
packet that is sent later can arrive earlier. Additionally, IP 
packet segmentation and reassembly is also not necessary, 
because there is the same LAN technology in usage 
everywhere, without differences in maximum frame size. 
Finally, IP routing is not useful here, because there is no 
router but switches in the cluster. As a consequence, nearly 
all functions of the TCP/IP stack can be dismissed, as it is 
done by the VMA messaging accelerator, which boosts 
bandwidth and drastically reduces latency. 

2) Bandwidth and latency improvements 
Mellanox claims that their accelerator reduces latency on a 

10 Gigabit Ethernet to 1.6 µs between two sending and 
receiving Berkeley socket APIs in case of 12 bytes payload 
per frame. This is significantly faster than via the Internet, 
but it means that the compute and storage nodes of the cloud 
are no longer part of the Internet. Only their controller node 
can stay connected. However, this is fully compatible with 
concepts used in OpenStack, which allows using floating IP 
addresses for compute and storage nodes that must overlap 
with publicly used addresses. Additionally, the network 
service of OpenStack can be exclusively localized in the 
controller node which has Internet connection. 

Suggestions could be made to fix bandwidth and latency 
issues with hardware devices such as fiber optic networking, 
ramdisks/SSDs, etc. The substitution of copper cables as 
computer interconnects by glass fiber optics can fix the 
bandwidth problem only if fiber speeds are significantly 
higher than 10 GB/s, which is the limit for copper. However, 
it will not fix the latency problem, because the electric/optic 
converters introduce additional delays and because the speed 
of light is similar in glass and in copper (about 0.75c). The 
replacement of hard drives in the cloud by SSDs could 
accelerate the throughput of some OpenStack services. But, 
as with the glass fiber solution, the cloud costs would 
significantly increase, which is not desirable in this case. 

3) Hardware scalability 
The hardware scalability, necessary to engage thousands 

of CPUs in one cluster, is achieved by a hierarchical cascade 
of layer 2 switches and by employing VLAN technology. 
This allows enlarging the spatial circumference of the cloud 
to several kilometers, which is sufficient to accommodate 
thousands of computers. There should be no problem with 
scalability, since Mellannox 10 Gigabit Ethernet switches are 
supported by OpenStack via using Mellanox plugins. 

B. Software Changes 

Software changes have to be made in the underlying 
operating system (Linux Ubuntu), in the OpenStack network 
service (Neutron) and its scheduler. 
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1) New operating system for OpenStack 
The first software change is to replace Linux host OS, on 

which OpenStack runs, by a Real-Time Linux such as the RT 
Preempt Patch [29] or Xenomai [30]. The reason for that is 
that standard Linux, such as Ubuntu, uses the Completely 
Fair Scheduler from Ingo Molnar, which does not allow 
prioritizing processes as real-time operating systems do. The 
selected RT OS is used not only as host OS for OpenStack, 
but also as guest OS for every VM. This gives users a precise 
control over which task is scheduled at which time. Such a 
feature is important when two user tasks want to exchange 
data at the same time, because of Inter-Process 
Communication. 

2) New OpenStack scheduler 
The Nova scheduler of OpenStack determines which 

physical compute node is allocated to which VM as soon as 
the VM is provisioned. This reflects a scheduling in space, 
but not in time, and is of static nature. An automatic live 
migration of VMs that periodically balances out the load 
between physical nodes does not exist in the Grizzly release. 
This is not favorable for HPC, because resources may 
become extremely overloaded. 

a) Periodic live migration 

Because of the fact that an RT OS was chosen for both, 
host and guest OS, it is possible to re-allocate VMs for load 
balancing, because Nova can be prioritized before user tasks 
and executed periodically. To achieve this, scheduling in 
host and guest OS must be synchronized, so that all 
schedulers act together. 

b) Gang scheduling 

Schedulers must schedule all sets of communicating 
VMs simultaneously, as soon as they are starting data 
exchange, so that they can send and receive information 
efficiently (Gang Scheduling). Otherwise, unnecessary 
waiting times would be the consequence, because 
rendezvous between senders and receivers cannot take place. 
In that case, sent data must be buffered until receivers are 
ready to proceed and receivers must wait until senders can 
send data, which is unfavorable for HPC. 

c) Advanced reservation 

Accessing a hard drive requires up to 10 µs until the 
searched record is found. Such I/O delays are unbearable for 
HPC, especially if they occur one after another in physical 
nodes that must communicate with each other. Advanced 
reservation, in this case, means that user code can be 
instrumented with an OpenStack call that is directed to the 
storage services, Cinder and Swift, and that read and cache 
or cache and write a whole data object in advance before the 
hard drive is ready. This allows hiding I/O latencies and thus 
improves communication latency. 

d) High priority scheduling 

Some system processes, such as Nova itself or the 
Mellanox messaging accelerator, must be scheduled before 
user tasks. Consequently, user tasks must be rescheduled for 
high priority system tasks. Priority scheduling is a standard 
feature of all RT OS. However, for the synchronous 
cooperation of host and guest schedulers, a software 

framework must be created that instructs all schedulers via a 
common API, that should also be available in Open Cloud 
Computing Interface (OCCI) [31], which is both, a protocol 
and an API for all kinds of management tasks. 

3) New OpenStack networking service 
VLANs are needed for a scalable Beowulf cluster to 

extend cable lengths and cascade switches. To make this 
possible, the OpenStack networking service must be 
enhanced with the following functions: 

 Generation of VLAN-IDs. 

 Creation of a mapping table “VLAN-ID – Port 
number” for every switch, according to the cluster 
topology used, so that each switch can forward a 
frame to correct destination. 

 Generation of IEEE 802.1Q Ethernet header tags at 
every switch input port and removal of these tags at 
every switch output port. This is needed for 
Ethernet interfaces that do not support VLAN tags. 

 Defining which method is used for assigning a 
specific frame to its VLAN. 

 Automatic setting of frame priorities. This is needed 
in cases when multiple frames collide at the same 
time at the same switch output, and a decision must 
be made by the switch which frame gets a passage 
first. This allows resolving conflicts in the transport 
system of the cloud under full control of the user 
code, thus avoiding speed up degradations. 

V. CONCLUSION AND FUTURE WORK 

The contribution of this paper is two-fold. In the first 
place, the possibility of effectively combining cloud 
computing, which by its very nature is not a very suitable 
environment for applications designed for HPC platforms, 
with High Performance Computing was examined. In the 
second place, a set of methods which, if followed and 
implemented, could make clouds more suitable for running 
HPC codes was proposed. 

By running OpenFoam as a benchmark for OpenStack, 
we found out that this cloud operating system is not well-
suited for OpenFoam, because it degrades performance with 
respect to a reference computer of the same capabilities that 
is outside of OpenStack. The results can be generalized to 
any cloud operating system, to any computational fluid 
dynamics codes and to any HPC codes in general. 

We plan to investigate why this happens. At the moment, 
we believe this happens because of potential overcommitting 
of physical resources by virtual ones, and by data exchanges 
needed between VMs running on two computers and 
between virtual cores running in the same VM, as soon as it 
takes place via TCP/IP. With TCP/IP, parallel computing 
mutates into distributed computing which results in code 
slow down. However, three use cases with different slow 
down factors could be identified, and measures could be 
given to repair this behavior. These measures are: 1) 
Abandon the internal functions of TCP/IP, but preserve its 
Berkeley socket API, because of the often used MPI library. 
2) Replace the distributed cloud by a Beowulf cluster and 
install OpenStack on it. 3) Replace guest and host operating 
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systems by real-time Linux. 4) Add a frame-work that 
schedules communicating VMs and cores synchronously. 5) 
Introduce disk I/O in advance for data objects to avoid 
unpredictable message latencies. 6) Add periodic live-
migration of VMs for load balancing between physical 
CPUs.  

Future work will be to investigate how much these 
measures can change the cloud's HPC efficiency under the 
boundary conditions of given user codes and cloud hardware. 

Our future efforts will concentrate on further analysis of 
the issues mentioned above and the propositions described in 
the previous section, experimenting with the results of 
running the simulation codes inside the cloud, and, finally, 
designing and implementing one or more of the proposed 
solutions from the method set. 
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