
Securing the Grid using Virtualization

The ViSaG Model

Pierre Kuonen, Valentin Clément, Frédéric Bapst
University of Applied Sciences Western Switzerland, HES-SO//Fribourg

Fribourg, Switzerland
Emails: {pierre.kuonen, frederic.bapst}@hefr.ch, clementval@gmail.com

Abstract—Security in large distributed computing
infrastructures, peer-to-peer, or clouds, remains an important
issue and probably a strong obstacle for a lot of potential users
of these types of computing infrastructures. In this paper, we
propose an architecture for large scale distributed
infrastructures guaranteeing confidentiality and integrity of
both the computation and the host computer. Our approach is
based on the use of virtualization and we introduce the notion
of confidence link to safely execute programs. We implemented
and tested this approach using the POP-C++ tool, which is a
comprehensive object-oriented system to develop applications
in large decentralized distributed computing infrastructures.

Keywords-virtualization; security in large distributed system;
grid middleware.

I. INTRODUCTION

Today, more and more applications require having
punctually access to significant computing power. The
purchasing of High Performance Computing (HPC)
hardware is really profitable only in case of frequent usage.
There are several alternatives to purchasing HPC hardware.
The two most popular are Clouds [11] and Grids [12]. Even
if these two approaches are not totally identical, they share at
least one difficulty, which is the fact that the user has to trust
the resources provider. In the case of Grid infrastructures,
this problem is complemented by the fact that the resource
provider also has to trust the user to be sure that running
user’s tasks will not harm his own resources. This paper will
focus on how, by using virtualization, we can guarantee
confidentiality and integrity of computing and resource for
the user and the resources provider in decentralized
distributed computing environments, such as Grid systems.

The main questions we intend to answer are:
• How to ensure the integrity of the user's data and the

user's calculations?

• How to ensure the integrity of the host machine?

• How to ensure the confidentiality of the
communications?

• How to safely use machines belonging to different
private networks in the presence of firewalls?

• How to ensure that different users sharing the same
computing resource cannot interfere between each
other?

Last, but not least, we want to provide these features
while minimizing the loss of performances.

We propose an abstract vision of a secure decentralized
distributed computing environment. This vision is based on
the notion of confidence links. It has been implemented in
the ViSaG project (ViSaG stands for: Virtual Safe Grid),
which is presented in this paper.

The rest of this paper is organized as follows: Section II
details the main security issues we want to address with the
ViSaG project. Section III presents the ViSaG model and
Section IV presents the POP-C++ model, which has been
used to implement the ViSaG model. Section V details the
implementation of the ViSaG model using the POP-C++
middleware and Section VI presents the results we have
obtained. Finally, Section VII concludes this paper.

II. CURRENT SECURITY ISSUES IN GRID COMPUTING

As mentioned in the introduction, there are several
security issues in current Grid middleware systems that must
be addressed. These issues are detailed below.

A. How to ensure the integrity of the user's data and the
user's calculations

When a user submits a computation on a remote machine
he must be sure that the owner of the remote resource cannot
interfere with his computation, or, at least, if there is
interference the user must be aware of it.

B. How to ensure the integrity of the host machine

Consider a user of the Grid willing to provide his
computing resources to the infrastructure. As this user does
not have a strong control on who will execute a job on his
resources, he wants that the middleware guarantees him that
the executed jobs cannot access unauthorized resources,
cannot harm his resources, and cannot use more resources
than he agreed to allocate to them.

C. How to ensure the confidentiality of the
communications

We want to secure communications between nodes. First,
we want to prevent communications from being seen by any
other person/system and also we do not want that anyone
could intercept and modify the transmitted data.

49Copyright (c) IARIA, 2014. ISBN: 978-1-61208-338-4

CLOUD COMPUTING 2014 : The Fifth International Conference on Cloud Computing, GRIDs, and Virtualization

D. How to safely use machines belonging to different
private networks (presence of firewalls)

One of the most difficult security problems when
deploying decentralized Grid middleware is due to the
presence of private networks protected by firewalls. Indeed,
most of the time available resources in an institution, which
could be part of a Grid, are resources located on private
networks protected by firewalls. The question is: how to
make these resources available without creating dangerous
security holes in the firewalls.

E. How to ensure that different users using the same
computing resource cannot interfere between each other

We also have to ensure that a user of a remote resource
cannot harm processes of other users on the same remote
resource.

Usage of virtual machines in conjunction with Grids to
address security issues has been already proposed in several
papers, one of the first being [3]. Santhanam et al. [5]
propose four scenarios to deploy virtual machines on Grid.
None of these four scenarios exactly corresponds to our
approach, even if the fourth is the closest. Smith et al. [6]
propose a Grid environment enabling users to safely install
and use custom software on demand using an image creation
station to create user-specific virtual machines. Keahey et al.
[4] focus on creating, configuring and managing execution
environments. The authors show how dynamic virtual
environments can be modeled as Grid services, thus allowing
a client to create, configure and manage remote execution
environments. In all these papers, the problem of deploying
virtual machines in a Grid is addressed in a general way,
although Santhanam et al. [5] have used Condor to test their
scenarios. Our approach is different because the model we
propose is closely related to an execution scheme based on
the paradigm of distributed object-oriented programming.
The proposed solution is specifically designed to solve the
problems associated with this model such as the creation and
destruction of the remote object (process) and passing remote
objects as parameters of remote methods.

III. THE V ISAG MODEL

Unlike most existing Grid middleware, the approach
proposed in the ViSaG project is based on the fundamental
assumption that a Grid infrastructure is a fully decentralized
system, which, in a sense, is close the peer-to-peer (P2P)
network concept. At the hardware level, a computing Grid is
composed of an unknown, but large, number of computer
owning computing resources. None of the computers in the
Grid has a global view of the overall infrastructure. Each
computer only knows a very limited number of neighbors to
which it is directly connected by two-way confidence links.
A confidence link is a bidirectional channel that allows two
computers located at both ends of the link to communicate
safely at any time. How the confidence links are established
is not part of the ViSaG model, but is a hypothesis which
defines our vision of a computing Grid. However, we can
give as an example of a confidence link, an SSH channel
between two computers whose system managers, or users,

have manually exchanged their public keys. The set of all
computers together with all the confidence links form a
connected graph, we call it a trusted network, whose nodes
are computers and edges are the confidence links. In the
remainder of this document, when no confusion is possible,
we often use the terms nodes and links, respectively, to
designate computers and confidence links. Although,
usually, computers are volatile resources, we will not address
this aspect in this paper, where we made the assumption that,
during the execution of a given program, computers
participating to this execution do not fail. Finally, we assume
that the confidence links are reliable.

Figure 1 illustrates a computing Grid, as defined above,
where confidence links have been realized using SSH
(Secure Shell [10]) tunnels.

In the ViSaG execution model, computing resources are
requested on the fly during execution of the application.
Obtainment of requested resources is achieved through the
usage of a resource discovery algorithm which runs on every
node and only uses confidence links. Usually, this algorithm
is a variant of the flooding algorithms Details of this
algorithm are not part of the model, but is an implementation
issue. When a node, we call it the originator, needs a new
computing resource, it issues a request, which will be
handled by the resource discovery algorithm.

When the requested computing resource, provided by a
node we will call the target, has been found, the originator of
the request must contact the target to launch the computation
and possibly communicate with it during the computation.
For the originator, one possibility would be to communicate
with the target by following confidence links. This option is,
obviously, very inefficient because it exaggeratedly loads all
intermediary nodes which have to route all messages. This is
especially true when, during computation, nodes must
exchange large data as is often the case in HPC applications.
A better solution would be for the originator, to contact the
target directly. Unfortunately, it is likely that the originator
does not have a direct link (a confidence link) with the target
and, in addition, the target does not necessarily desire to
create a direct confidence link with the originator.
Nevertheless, as the request reached him following
confidence links, the target could accept to launch a virtual

Figure 1. A trusted network using SSH tunnels.

50Copyright (c) IARIA, 2014. ISBN: 978-1-61208-338-4

CLOUD COMPUTING 2014 : The Fifth International Conference on Cloud Computing, GRIDs, and Virtualization

machine to provide the necessary computing resources for
the originator. The virtual machine will act as a sand box for
the execution of the remote process. If the virtual machine is
not permeable, this will guarantee that the executing node
(the target) cannot be damaged by the execution of the
remote process and that the computation made by the process
cannot be biased by the node which hosts the computation
(the target). To summarize, we can make the following
statement:

The security of this execution model is only limited by the
security offered by the virtual machine and the security
offered by the confidence links.

This is the very basic idea of the ViSaG model. The
implementation of such a model raises numerous problems
that we are going to address in the next sections.

IV. THE POP-C++ EXECUTION MODEL

A Grid computing infrastructure not only consists in
hardware but also requires the presence of a middleware
which provides services and tools to develop and to run
applications on the Grid. Therefore, before presenting how
the ViSaG model has been implemented we need to know
which Grid middleware our implementation is based on. The
ViSaG model, as presented in the previous section, has been
implemented in the POP-C++ Grid middleware [1]. In order
to achieve this task we had to adapt to the execution model
of POP-C++, which is briefly presented below. For more
information of the POP-C++ tool please visit the POP-C++
web site: http://gridgroup.hefr.ch/popc.

The POP-C++ tool implements the POP programming
model first introduced by Dr. Tuan Anh Nguyen in his PhD
thesis [2]. The POP programming model is based on the very
simple idea that objects are suitable structures to distribute
data and executable codes over heterogeneous distributed
hardware and to make them interact between each other.

The object oriented paradigm has unified the concept of
module and type to create the new concept of class. The next
step introduced by the POP model is to unify the concept of
class with the concept of task (or process). This is realized by
adding to traditional “sequential” classes a new type of
classes: the parallel class. By instantiating parallel classes
we are able to create a new category of objects we call
parallel objects. Parallel objects are objects that can be
remotely executed. They coexist and cooperate with
traditional sequential objects during the application
execution.

POP-C++ is a comprehensive object-oriented framework
implementing the POP model as a minimal extension of the
C++ programming language. It consists of a programming
suite (language, compiler) and a run-time providing the
necessary services to run POP-C++ applications.

In the POP-C++ execution model, when a new parallel
object is created, the node which required the creation of the
parallel object contacts the POP middleware running locally
to ask for a new computing resource for this parallel object.
To find this new computing resource, the POP middleware
launches the resource discovery service available in the POP-
C++ middleware. This service will contact all the neighbors

of the node thanks to its confidence links, to ask for
computing resources. Then the request is propagated through
the network by following confidence links. When the request
reaches a node which is able to provide the requested
computing resource, it answers the originator of the request
by following back the confidence links. The originator of the
request chooses, between all the positive answers it received,
the resource it wants to use to create the parallel object and
remotely launch the execution of the parallel object inside a
virtual machine. In order to be able to use the procedure
presented above with the POP-C++ runtime, we had to
design a dedicated architecture for the nodes of the Grid.
This architecture is presented in the next section.

V. IMPLEMENTATION

A. Node architecture

In the presented implementation, a node is a computer
running a virtualization platform, or hypervisor. On this
platform, two or more virtual machines are deployed. The
first virtual machine, called the administrator virtual
machine (or in short: Admin-VM) is used to run the
POP-C++ runtime. The other virtual machines are the
worker virtual machines (or in short: Worker-VM). They are
used by the Admin-VM to run parallel objects. The Admin-
VM is connected to its direct neighbors in the Grid by the
confidence links. The latter are implemented using SSH
tunnels. Figure 2 illustrates this architecture.

One of the first questions we have to answer is how many
Worker-VMs do we launch on a specific node. In other
words, do we launch all parallel objects in the same Worker-
VM, or do we launch one Worker-VM for each parallel
object allocated to this node? In order to guarantee isolation
between applications (see sub-section II.E) we decided to
allocate Worker-VM on an application basis: for a given
node, parallel objects belonging to the same application (the
same POP-C++ program running instance) are executed in
the same Worker-VM. This choice implies that we are able
to identify applications. For this purpose, we have to
generate a unique application identifier, called AppUID, for
each POP-C++ program launched in the Grid. As we are in a
fully decentralized environment, to guarantee unicity of the
identifier we have based it on the IP address of the node
where the program is launched, the Unix process ID as well
as on the clock. This AppUID is added to all requests to
allow identifying parallel objects belonging to the same
POP-C++ program.

Figure 2. Architecture of a node in the ViSaG model implementation

51Copyright (c) IARIA, 2014. ISBN: 978-1-61208-338-4

CLOUD COMPUTING 2014 : The Fifth International Conference on Cloud Computing, GRIDs, and Virtualization

When the Admin-VM launches a Worker-VM to provide
a computing resource for the execution of a parallel object, it
must ensure that the node that originates the request is able
to safely contact this Worker-VM, i.e., is able to establish an
SSH tunnel. This is realized through a key exchange process
which is detailed below.

B. Key exchange process

There are two main situations where the POP-C++
middleware needs to exchange keys between virtual
machines. The first one is, as mentioned above, when a new
Worker-VM is launched, and the second is when the
reference of a parallel object is sent to another parallel
object. Indeed, as POP-C++ is based on the C++
programming language, it is possible to pass the reference of
a parallel object as parameter of a method of another parallel
object. As a consequence, these two parallel objects, possibly
running on different nodes, must be able to communicate.

Let us first consider the situation where a new Worker-
VM is launched by the Admin-VM. This operation is the
consequence of a resource discovery request sent by a node
that asked for the creation of a new parallel object. This
request contains, among other information, the public key
(rPuK) and the IP address (rIP) of the node that sent the
request. The Admin-VM launches the Worker-VM and
passes it the rPuK and the rIP address. The newly launched
Worker-VM generates a new pair of private/public keys and
sends its lPuK and lIP to the originator of the request along
the confidence links. At this stage, both the originator of the
request and the newly launched Worker-VM, have both

PuKs and therefore are able to establish an SSH tunnel
between them. This keys exchange process is illustrated on
Figure 3.

The second situation we have to consider is when a
parallel object running on the virtual machine VMa sends the
reference of a parallel object running on a virtual machine
VMb to a third parallel object running on a virtual machine
VMc. This situation is illustrated on Figure 4. In such a
situation, the POP-C++ middleware must ensure that VMb
and VMc can establish an SSH tunnel.

When this situation occurs, we necessarily have an object
running on VMa calling a method of an object running on
VMc. Thus, the first thing to do is to add the PuK and the IP
address of VMb in the message sent by VMa to VMc. This
does not increase the number of messages but just slightly
increases the size of the message sent to execute a remote
method call. Next, along the confidence links, VMc sends its
PuK to VMb. Now VMb and VMa can establish an SSH
tunnel.

We claim that the proposed infrastructure solves four of
the issues mentioned in Section II, namely, issues A, B, C
and E.

The integrity of the user’s data and the user’s calculation
(issue A) as well as the integrity of the host machine (issue
B) are guaranteed by the isolation the virtual machine
provides between the host machines and the remotely
executed process. The confidentiality of the communications
(issue C) is guaranteed by the SSH tunnels. Finally, as each
application is executed in a different virtual machine, we
guarantee that different users using the same computing
resources cannot interfere between each other (issue E).

The last issue to solve (issue D) is to be able to safely use
machines belonging to different private networks in presence
of firewalls. Indeed the nodes belonging to a same Grid are
not necessarily in the same administrative domain and can be

Figure 5. Example of a Grid including a private network
protected by a firewall

Figure 4. Passing a parallel object reference.

Figure 3. Creation of a parallel object.

52Copyright (c) IARIA, 2014. ISBN: 978-1-61208-338-4

CLOUD COMPUTING 2014 : The Fifth International Conference on Cloud Computing, GRIDs, and Virtualization

separated by firewalls managed by different authorities. Our
goal is to enable these nodes to belong to the same Grid and
to be able to safely run parallel objects without opening
security holes in firewalls.

Figure 5 shows a situation where three nodes (A, B and
C) are in a private network separated from the rest of the
Grid by a firewall. If at least one node of the Grid belonging
to the private network (node B on Figure 5) creates at least
one confidence link with one node located on the other side
of the firewall (node D on Figure 5); then, it is possible to
make this private network part of a Grid located outside of
the private network. To achieve this goal we have to follow
the following procedure. Suppose that a node X, located
somewhere in the Grid but outside the private network,
launches a request for resources. By following confidence
links, this query can reach nodes located in the private
network (thanks to the confidence link B-D). If a node inside
the private network, let’s say node A, agrees to carry out this
execution, it must establish a communication with the node
X. To achieve this, the Admin-VM of node A will launch a
virtual machine (a Worker-VM) and will configure it with
the public key of X contained in the request launched by
node X. The Worker-VM creates a pair of public/private
keys and transmits its public key to its Admin-VM. The
latter transmits, by following the confidence links, this public
key to the Worker-VM of the node X. Then, node X can
establish an SSH tunnel with the Worker-VM started on
node A. Now, node X and node A which are not in the same
private network can safely directly communicate.

To be able to realize this communication, the firewall
must be configured in the following way:

• It must allow the permanent SSH tunnel between
nodes B and D.

• It must allow temporary establishment of an SSH
tunnel between any node outside the local network
and any Worker-VM launched by any Admin-VM
inside the local network.

We claim that this configuration of a firewall is perfectly
acceptable and does not create security holes if the
administrator of the private network follows the following
recommendations. First, the node D, which in a sense acts as
a bridge toward outside the private network, must be under
the control of the administrator of the private network. The
Admin-VM running on this node must only run the minimal
services required by the POP-C++ middleware. In our case,
the SSH services with node B and the few fixed neighbors it
will manually establish a confidence link with. Second, when
installing the POP-C++ middleware in the private network,
the administrator must take the following precaution. As the
POP-C++ middleware creates and launches virtual machines,
a good policy is to reserve a set of well-defined IP addresses
only for this purpose and then to open, in the firewall, the
SSH service only for this set of IP addresses. This will
guarantee that the nodes external to the private network can
only access, through SSH, Worker-VMs handled by the
POP-C++ middleware. Of course, we make the assumption
that the POP-C++ middleware itself is not malicious.

The middleware must ensure that when the execution of a
POP-C++ program terminates, all Worker-VMs allocated to
this program are deleted (or reset), to ensure that all links
established during the program execution are destroyed.

VI. TESTS

To demonstrate the feasibility of the ViSaG model, we
have developed a prototype integrated with the POP-C++
middleware. This prototype uses the VMware ESXi
hypervisor [8] to manage virtual machines.

The virtual machine management layer can start, stop,
revert, and clone virtual machines. It also allows to exchange
SSH PKI and to get the IP address of a virtual machine. All
these operations are performed thanks to the libvirt library
[9] and the proprietary VMWare VIX API. As much as
possible, we used libvirt to be compatible with different
hypervisor virtualization platforms. Unfortunately, not all
desired features were available, so we had to partially rely on
the proprietary VIX API for a few key features such as
cloning virtual machines and information gathering.

The SSH tunneling management is independent of any
API because it uses the installed version of SSH to initiate
and manage SSH tunnel. In our infrastructure, the installed
version was OpenSSH running on Ubuntu 10.04 operating
system.

To test our model and our prototype, we have deployed a
Grid on two different sites. The first site was the “Ecole
d’ingénieurs et d’architectes” in the city of Fribourg in
Switzerland and the second was “Haute école du paysage,
d'ingénierie et d'architecture” in the city of Geneva in
Switzerland. These two sites were connected only by Internet
and therefore, the security was a key point. More important,
the two sites have totally different administrative network
management, as required to make the test significant.

We have been able to run several distributed applications
written with POP-C++ between the two sites in a transparent
way for the users. The performance loss was acceptable; the
main slowdown is due to the startup of the virtual machines.

VII. CONCLUSION AND PERSPECTIVES

This paper addressed the security issues in the context of
a fully decentralized Grid infrastructure. Grid consumers,
system managers, local users of a shared resource, network
administrators, etc., are different actors involved in
distributed computing, and as such they need security
guarantees to accept taking part in a Grid infrastructure. Our
solution takes advantage of virtualization as an isolation
means, and on public key cryptography.

The existing POP-C++ Grid middleware is taken as the
illustration of the decentralized Grid paradigm.

POP-C++ offers "parallel objects" as a programming
model that essentially hides the complexity of the Grid
aspects (local vs remote access, heterogeneous machines,
resource discovery, etc.). On top of this architecture, and
with no further constraint on the developer, our new
implementation adds the wrapping of the parallel objects
within virtual machines, as well as secure communications
via SSH tunneling. Combining those two features brings a

53Copyright (c) IARIA, 2014. ISBN: 978-1-61208-338-4

CLOUD COMPUTING 2014 : The Fifth International Conference on Cloud Computing, GRIDs, and Virtualization

convincing answer to the security issues in decentralized
Grids. Two levels of activities in the Grid are distinguished:

• Setup: to join a grid returns to configure and start a
dedicated virtual machine (VM-Admin), which
manages the POP-C++ services. The setup phase
establishes connections to other nodes of the Grid;
those confidence links ensure the connectivity of the
Grid. The Admin-VM never executes user code
itself, but has control over a pool of virtual machines
for the user jobs. The setup is considered as a local
event (it does not need to stop the Grid), and it
typically involves a manual intervention of a user
responsible of the Grid installation.

• Grid computing: when a POP-C++ user program is
launched, the Admin-VMs communicate to
distribute the jobs on the available resources; when it
accepts a job, an Admin-VM wraps that job in a
virtual machine (Worker-VM) that will be devoted
to that running instance of the Grid program. The
necessary encrypted connections with other Worker-
VMs are automatically established, as our system
takes care of conveying the needed public keys from
node to node.

Thus launching a program on the Grid causes the start of
several virtual machines that will be dedicated to this
computation, with the appropriate communication topology.
When the distributed program terminates, no trace of its
execution remain (the involved virtual machines are reset
before being recycled).

Our prototype has been implemented with ESXi virtual
machines, but the code relies on libvirt, so that porting to
another virtualization technology is greatly simplified.

The value of virtualization as a companion of Grid
technology has been shown for many years. In a centralized
Grid architecture, using virtual machines instead of physical
systems can for instance greatly simplify Grid
reconfiguration or load balancing. In the decentralized
approach that we advocate, virtual machines are used as an
isolation wrapper for pieces of distributed computing, a
means to guarantee an appropriate security level.

In the course of our work, we identified several issues
that need to be further investigated:

• It would be interesting to bring the current version
based on ESXi on another virtualization software
(hypervisor). The ideal candidate should provide the
same level of isolation, but lightweight VMs
management operations (start, stop, resume, revert,
clone, etc.).

• A potential issue is about ensuring that the different
VMs can benefit from system updates.

• Concerning the VMs installation, it would be worth
to define precisely what capabilities have to be
included in the OS equipment. In fact this leds to a
concept of a "harmless Worker-VM", i.e., a virtual
machines that somehow are restricted to compute
and communicate with other harmless Worker-VMs

only, and that are unable to cause any damage in the
hosting environment (in particular no other network
traffic).

• In our system, one hypothesis about security is that
the POP-C++ installation is safe; we should study
how this can be guaranteed and verified by the
different Grid nodes.

ACKNOWLEDGMENT

The ViSaG project has been funded by the University of
Applied Sciences Western Switzerland (HES-SO), project
No.24247.

REFERENCES
[1] T. A. Nguyen and P. Kuonen, “Programming the Grid with

POP-C++”, in Future Generation Computer Systems (FGCS),
N.H. Elsevier, vol. 23, iss. 1, Jan. 2007, pp. 23-30.

[2] T. A. Nguyen, An object-oriented model for adaptive high-
performance computing on the computational Grid. PhD
Thesis no 3079, EPFL, Switzerland, 2004.

[3] R. J. Figueiredo, P. A. Dinda, and J. A. B. Fortes, “A Case for
Grid Computing on Virtual Machines”, in International
Conference on Distributed Computing Systems, May 2003,
pp. 550-555.

[4] K. Keahey, K. Doering, and I. Foster, “From Sandbox to
Playground: Dynamic Virtual Environments in the Grid”, in
Proceedings of the 5th IEEE/ACM international Workshop on
Grid Computing, Nov. 2004, pp. 34-42.

[5] S. Santhanam, P. Elango, A. Arpaci-Dusseau, and M. Livny,
“Deploying Virtual Machines as Sandboxes for the Grid”, in
Conference on Real, Large Distributed Systems - Volume 2,
Dec. 2005, San Francisco, CA, pp. 7-12.

[6] M. Smith, M. Schmidt, N. Fallenbeck, T. Dörnemann, C.
Schridde and B. Freisleben, “Secure on-demand grid
computing” in Future Generation Computer Systems, Volume
25 Issue 3, March, 2009, Pages 315-325.

[7] M. Smith et al., “Secure on-demand grid computing”, in
Future Generation Computer Systems archive, vol. 25, no. 3
March 2009, pp. 315-325.

[8] http://www.vmware.com [retrieved: March, 2014].
[9] http://libvirt.org/ [retrieved: March, 2014].
[10] http://en.wikipedia.org/wiki/Secure_Shell [retrieved: March,

2014].
[11] Michael Miller, “Cloud Computing: Web-Based Applications

That Change the Way You Work and Collaborate Online”,
Que Publishing Company 2008, ISBN:0789738031

[12] Ian Foster, Carl Kesselman, “The Grid 2: Blueprint for a New
Computing Infrastructure”, Morgan Kaufmann Publishers Inc.
San Francisco, CA, USA 2003, ISBN:1558609334

54Copyright (c) IARIA, 2014. ISBN: 978-1-61208-338-4

CLOUD COMPUTING 2014 : The Fifth International Conference on Cloud Computing, GRIDs, and Virtualization

