
Transparent Access on Encrypted Data Distributed

over Multiple Cloud Infrastructures

Luca Ferretti, Michele Colajanni, and Mirco Marchetti

University of Modena and Reggio Emilia

Modena, Italy

{luca.ferretti, michele.colajanni, mirco.marchetti}@unimore.it

Adriano Enrico Scaruffi

Doxee SpA

Modena, Italy

ascaruffi@doxee.com

Abstract—Using cloud infrastructures to store and backup
data is becoming a popular alternative that guarantees perfor-
mance and scalability at reasonable prices. However, standard
cloud solutions could raise some concerns about data confiden-
tiality and dependency on a single provider. We aim to address
these issues by using cloud storage of multiple cloud providers.
Our solution ciphers, partitions and replicates data among
multiple cloud architectures, thus augmenting availability and
confidentiality, and avoiding lock-in of one cloud provider. The
proposed model is implemented through open source software
that leverages data storage offered by multiple providers. This
prototype demonstrates the effectiveness of the geographically
distributed architecture in several real case scenarios.

Keywords- cloud; storage; encryption; file fystem; replication

I. INTRODUCTION

Cloud storage is an interesting alternative that allows

users to leverage huge size disk spaces characterized by

high availability and scalability at pay-per-use cost models.

However, when companies outsource their information to

the cloud, there are many concerns about data confidentiality

and complete dependency on one cloud provider. Issues such

as law restrictions [1], vendor lock-in and unavailability

cases causing service interruptions and data losses (e.g., [2])

are limiting a widespread adoption of cloud storage solu-

tions.

This paper proposes a novel architecture that aims to

augment data resiliency and confidentiality, and to avoid

possible lock-in related to one cloud provider. The idea is

to implement a virtual file system where data are encrypted,

replicated and disseminated among different cloud providers.

In such a way, there is no dependence on one provider, and

adopted encryption schemes are robust even against insider

attacks and colluding providers. Moreover, we consider it

important to provide users with a transparent encrypted

access to such virtual file system. Thanks to the proposed

standard file system interface, any application operating on

files can leverage the proposed architecture without software

modifications. In this paper, we demonstrate the efficacy of

the proposed architecture by running a relational database

on top of it.

Existing solutions [3]–[5] concerning data confidentiality,

integrity and replication for untrusted storage services do

not meet all requirements about encryption, replication and

transparency. For example, data replication is not considered

in [3]. Unlike our architecture based on the Infrastructure

as a Service (IaaS) paradigm, the system described in [4]

refers to the more sophisticated and expensive Storage as

a Service paradigm. This scheme transparently provides

customers with advanced techniques for elasticity, scalability

and availability, but it requires the implementation and

maintenance of dedicated drivers for each cloud storage

API, thus causing additional cloud lock-in problems. The

interesting solution proposed in [5] has two drawbacks: it

is not quite transparent to the customer because it requires

changes at the level of application logic; moreover, it is not

resistant against colluding cloud providers.

The proposed architecture guarantees data confidentiality

and integrity at rest, in motion and in use. To provide users

with complete confidentiality of outsourced data we adopt

encryption techniques and algorithms of proven security.

Data are replicated in a multi-tenant architecture built over

multiple cloud storage services. In this paper, we describe

the overall model, the details of the architecture components,

and the guidelines for its implementation.

The remaining part of this paper is structured as following.

Section II analyzes other solutions related to our proposal.

Section III describes the architectural model and the main

requirements. Section IV reports the internal details of the

proposed architecture and the main functionalities. Section V

presents an example of a relational database that can lever-

age the proposed architecture. A summary of the results is

reported in Section VI.

II. RELATED WORK

Data confidentiality on untrusted storage was initially

guaranteed by encrypted file systems (e.g., [3], [6]) that

allow a customer to encrypt all data stored in a cloud

IaaS. However, these solutions do not allow to slice and to

replicate data among several cloud providers as provided by

previous architectures including that proposed in this paper.

Some academic and commercial proposals guaranteeing

data confidentiality and integrity by using multi-tenant cloud

services are recently appearing. The solutions most related

to this paper are iDataGuard [4] and Depsky [5]

201Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

iDataGuard is a middleware that leverages the cloud

Storage as a Service paradigm. This approach differentiates

iDataGuard from our solution that is based on the standard

IaaS paradigm. Cloud storage services can take advantage of

several benefits with respect to IaaS, because they transpar-

ently provide customers with advanced API-based solutions

for elasticity, scalability and availability. These techniques

facilitate the low level implementation of iDataGuard, but

they require the software implementation and maintenance

of dedicated drivers for each specific cloud storage API. As

a consequence, this solution limits portability and reduces

the possibility of avoiding cloud provider lock-in. We should

also observe that iDataGuard does not transparently replicate

information among the cloud storage services, but data are

managed by users as distinct storage units.

Depsky [5] proposes an interesting storage architecture

that allows key-value access to data and guarantees data

consistency also in the worst case of Byzantine faults.

Depsky requires clients to access intermediate trusted com-

ponents that provide key distribution by means of a Shamir

secret sharing scheme [7]. This does not guarantee data

confidentiality in the case of colluding cloud providers.

Another problem is that applications based on Depsky re-

quire changes at the software level, because this architecture

comes with a non-standard interface for data management.

Other papers (e.g., [8], [9]) aiming to guarantee confi-

dentiality of information stored in untrusted storage servers

can avoid data encryption. For example, they guarantee k-

anonymity [10] by splitting sensitive data among multiple

subsets, each managed by an independent cloud provider.

Since data are not encrypted, each cloud can obtain some

information on a portion of data. Moreover, such techniques

require a complete awareness of the underlying data struc-

ture, that are against our main design requirement that the

proposed solution must be transparent to the applications. In

order to guarantee data confidentiality in the cloud database

paradigm, full homomorphic encryption [11] is described as

the final solution for single client computing scenarios [12].

In practice this approach is not yet feasible because of the

prohibitive computational costs on possible operations.

A different set of proposals are oriented to cloud database

services that differ from the architecture proposed in this

paper because of the logical software level, and lack of

transparency and portability. For example, some DBMS

engines provide users with advanced proprietary techniques

to encrypt data at storage level (e.g., Transparent Data

Encryption (TDE) [13]). These features can replace the

encryption layer of the proposed architectures, and can

improve performances thanks to data caching and selective

blocks retrieval. However TDE implementation is related

to some specific DBMS, and many database services do

not propose any similar solution. On the other hand, we

remark that the proposed architecture aims to be transparent

of any specific DBMS and cloud-related solution. Cloud

database as a service (e.g., [14]–[17]) is an interesting

alternative to support database in cloud infrastructures. They

have the advantage of executing database SQL computations

directly on the cloud infrastructure and to leverage intrinsic

scalability and reliability of a cloud provider. However, there

are no proposals that are oriented to federate databases

among multiple cloud providers.

III. MODEL OVERVIEW

An architecture guaranteeing maximum availability and

security on untrusted storage services should satisfy the

following main objectives.

• Confidentiality must be guaranteed for data at rest,

in motion an in use without any risk of information

leakage due to cloud insiders and collusive providers.

• Service availability must not depend on one cloud

provider.

• The proposed architectures should be transparent to the

supported applications in the broadest sense, that is, no

modifications must be required at the application level.

To satisfy all the previous objectives we propose the

architectural model that is represented in Figure 1.

Let us consider an application that executes some oper-

ations requiring accesses to data storage. This is a plain

data scenario where the application does not provide any

solutions to guarantee data confidentiality. The application

executes virtual data operations on a file system, as if it

were on local storage. As transparency is one of the main

objectives of the proposed architecture, our solution adopts

a standard file system interface that guarantees the required

level of transparency. In practice, data are not stored in

local devices nor in a local network environment as it

is usually done in private data centers. Instead, all data

are stored in multiple cloud infrastructures. Other main

logical components of the proposed architecture are the data

encryptor, the data slicer and the data replication modules.

The combination of all of them guarantees confidentiality,

availability and resiliency of data managed by the applica-

tion.

To give a high-level description of the architecture model,

we initially identify a trusted area and untrusted areas. The

trusted area is under the direct control of the data owner,

and can be accessed by only trusted third-party subjects.

Plain data must never access the untrusted area before being

encrypted. All security policies and decryption keys must be

managed by trusted parties.

Each application executes operations on plain data and

does not require any software modifications in order to

guarantee the correct execution of the security techniques

that our solution applies. It is the proposed architecture that

provides applications with a standard file system interface

allowing them to manage data as in local storage devices,

although data are really stored on several Infrastructures as

202Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 1. Architectural model.

a Service (IaaS) resources that are under the direct control

of multiple cloud providers.

Cloud IaaS is not the only choice to use cloud storage

because cloud providers offer also cloud storage as a service

solutions through high level APIs facilitating data manage-

ment. Our choice of preferring cloud IaaS instead of the

cloud storage as a service paradigm was motivated by the

following three reasons.

1) The IaaS paradigm allows us to directly manage

virtual machines and disk resources that are standard;

consequently, we can install and configure the best

solutions to satisfy the architectural requirements of

transparency and data confidentiality.

2) Cloud storage as a service requires data to be managed

through proprietary APIs. This may cause some forms

of cloud lock-in and may limit the portability of the

solutions.

3) Cloud storage as a service can transparently provide

advanced replication techniques to guarantee advanced

resiliency. However, these benefits can be achieved

also through the proposed architecture without any

additional reliance on non-standard cloud services.

In our proposal, plain data received from an application

are subjected to two types of manipulations:

• encryption to guarantee information confidentiality;

• distribution over multiple cloud infrastructures to in-

crease availability and avoid dependency on one

provider.

Slicing and replication reinforce security in the worst

case scenario of collusion between a cloud provider and an

internal (theoretically trusted) subject, because it prevents a

cloud provider from accessing the whole data set. Moreover,

they are useful to increase performance because they allow

the parallelization of some data operations, and reduce space

overhead caused by replication.

In the following Section IV we describe the details of the

architecture and outline its implementation.

IV. ARCHITECTURE

The paper proposes a novel architecture that allows clients

to leverage remote storage of multiple cloud providers.

While internally managed infrastructures allow data owner

to directly control data security policies, the cloud paradigm

has the advantage to reduce costs and augment scalability,

availability and resiliency. On the other hand, it opens user

concerns in terms of data confidentiality and dependency on

one provider.

We describe the implementation of the architectural model

described in Figure 1 by referring to the architecture repre-

sented in Figure 2. A possible alternative based on a broker

implementation is outlined in Figure 5.

Users applications transparently execute data operations

on a logical file system, that is implemented by the interface

layer of the proposed solution. Data replication strategies

over multiple cloud storage servers are implemented by the

secure data management (SDM) component. It guarantees

that all data are stored in the infrastructures of at least two

cloud providers (high reliability), and no provider owns all

data (high confidentiality).

The Secure Data Management (SDM) represents the core

of the proposed architecture that is typically implemented

on an intermediate server. This proxy executes encryption

and data distribution schemes over all application data,

making use of multiple cloud providers to store encrypted

encrypted data. The main modules of the SDM component

are represented in Figure 3 and described below.

203Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 2. Architecture based on clients and cloud providers.

A. The file system interface implements a logical

standard layer to the client applications.

B. The cache manager uses local storage to cache

previously accessed data.

C. The disk encryptor implements well known en-

cryption algorithms, such as AES [18], guarantee-

ing data confidentiality.

D. The distributed file system operates slice and repli-

cation policies on user data over multiple cloud

providers. The possible alternatives and details are

presented below.

E. The virtual private network guarantees confiden-

tiality on untrusted channels of communication by

encrypting all data in transit and authentication

schemes for the cloud services.

Plain data of the user applications flow through the

software modules of the intermediate proxy that fulfills all

main requirements described in Section III. The most visible

interface for the client applications is a logical file system.

When stored data are accessed or modified by a client appli-

cation, the logical file system searches for a hit in its local

cache. If no match is found, then the request is forwarded to

the underlying SDM modules. The performance benefits of

caching strategies in geographically remote cloud storages

is of paramount importance as evidenced in [19].

The encryption module transparently encrypts all data

received from the logical file system. We use a software

block mapping device that maintains a unique correspon-

dence between an underlying encrypted storage and a logical

interface to an unencrypted virtual device. In this version of

our architecture, we use Dm-Crypt [20] that is a valid block

mapper solution integrated in modern Linux kernels.

The underlying encrypted data are stored in the dis-

tributed file system (DFS) that replicates data among multi-

ple cloud services. Since cloud IaaS services are commonly

accessed by a global IP address as a remote host, any DFS

Figure 3. Software modules of the Secure Data Management (SDM)
component.

can be used without any modifications. GlusterFS [21] is

the chosen DFS satisfying our requirements. It installs and

configures software components at the local side (clients)

and at the remote cloud side (servers). Different file systems

can operate different slicing and replication policies by using

data at different system levels, such as blocks, files, volumes.

The proposed architecture does not restrict the use of any

specific policy, but our implementation choice (GlusterFS)

distributes data at the file level, and guarantees integrity of

data though hashing algorithms.

A virtual private network (VPN) adds a further level

of confidentiality. It is not strictly necessary and it can be

204Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 4. Network configuration of the multiple cloud storages.

avoided when performance becomes an issue. Through the

VPN we can also configure the distributed cloud storages as

if they were in a local network. Administrators can configure

the network of cloud services by using common secure

network mechanisms, such as firewalls, subnets and virtual

LANs. OpenVPN [22], which is our choice for the present

version of the software, is deployed at the local (server) and

cloud sides (clients).

Benefits given by the use of the distributed file system

and the virtual private network are represented in Figure 4.

Each cloud IaaS is identified by the global IP address, and

the VPN allows the configuration of a virtual network among

the cloud services and the host that executes our software

solution. Hence, we can associate each cloud service with a

local network address. In the represented scheme, G cloud

storage are grouped in N sets. Each group of clouds n

has Mn members, such that
∑

N

n=1
Mn = G. Clouds of

the same set share the same subnet in the VPN network

and are configured on a striping replication configuration.

The striping configuration avoids that one cloud provider

can manage the entire data set. The different subnets are

configured in a mirror replication to increase availability

and to break dependency on a single cloud provider. We

notice that the possibility of using groups of different sizes

is allowed only if the distributed file system can administrate

data striping independently for each replicated data. Using

groups of different sizes can be useful to balance data among

infrastructures with different resource capabilities (we de-

pend on network bandwidth and storage) and respective

costs.

It is also important to specify that the proposed architec-

tural solution can be deployed through a third party broker

that implements the SDM components. This alternative has

the great advantage of avoiding that a customer company

must manage the complexity of the SDM, and additional

secure infrastructures. This alternative is represented in Fig-

ure 5 and outlined below. In such a case, clients communi-

cate with the broker proxy gateway through standard Internet

protocols. The broker can be a different company that has

direct contacts and contracts with multiple cloud providers.

It implements the entire virtual file system and, thanks to

Figure 6. Example of a DBMS deployed over a cloud infrastructure.

an intermediate proxy server, it provides a storage service

to the users. The trade-off of this alternative configuration

should be clear: the customer can benefit from a simplified

interface that avoids any implementation complexity; on the

other hand, the broker must be a trusted subject.

V. USAGE SCENARIO

A relational database (DBMS) is a typical application that

can take advantage of the proposed architecture. We initially

consider an existing scenario, represented in Figure 6, where

the database engine is deployed in a local environment, while

the data storage is moved to a storage service related to a

cloud provider. In a similar architecture, the data owner can

take advantage of scalability and adequate resilience, but it

does not have any guarantees about confidentiality of data

stored to an external cloud service. Moreover, availability

and data accessibility depend on one cloud provider that

must be trusted by the data owner. While this scenario could

be acceptable for some private customers using a cloud

storage to backup non-critical information, most companies

require additional guarantees about confidentiality and avail-

ability before outsourcing data.

Thanks to the proposed architecture we can guarantee that

data stored in the cloud is confidential, and that a cloud

provider cannot prevent the data owner from accessing its

data. We show the configuration related to the broker-less

solution in Figure 7.

Clients execute database operations to the local DBMS

engine that is connected to the interface of the secure

file system to manage data to/from the cloud storages.

In this example, we use four cloud providers, where two

groups of two clouds are internally organized in a striping

configuration, and two groups are configured in a mirroring

configuration. Each cloud provides us with an infrastructure

as a service paradigm (IaaS), where we can install the

distributed file system servers and the virtual private network

clients. The encryption layer encrypts all data that are sent

by the DBMS, and decrypts all requested data by imposing

the database storage in the virtual space created by the device

mapper. The distributed file system guarantees that no cloud

providers can store the entire data set, because each of them

205Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 5. Architecture based on clients, third party broker and cloud providers.

Figure 7. Example of a DBMS deployed over multiple cloud infrastructures (local manager).

has at most half of the entire data set, and all data are stored

in at least two cloud providers.

The virtual private network allows us to guarantee security

over the access to the clouds, and to configure the replication

as if it were in a local area network. As described in

Section IV, the clouds that are configured in a striping

distribution share the same subnet.

It is important to observe that all tools of the deployed

DBMS engine can be used as in a full local environment.

Users access policies can be managed as in a standard

unencrypted database architecture, because encrypted data

are transparently managed by the DBMS engine through the

file system interface of the proposed solution. We highlight

that this configuration performance can benefit of the DBMS

engine caching policies, in addition to the caching mecha-

nisms provided by our architecture (see Section IV).

In this example, the DBMS engine is implemented in

PostgreSQL [23], that is a well-known open-source rela-

tional database. It can be deployed in the proposed architec-

ture because it stores data in a standard directory that can

be redirected to the file system interface of the proposed

solution. Moreover, it allows us to leverage caching policies

that are aware of the structure of the database and of the

queries.

VI. CONCLUSIONS

This paper proposes a novel architecture to leverage

multiple cloud storage services while guaranteeing data

confidentiality and avoiding customer dependency on one

cloud provider.

Data confidentiality is guaranteed by means of classical

encryption schemes; data are replicated among several cloud

providers through striping and mirroring techniques. Strip-

ing increases performance and data protection, because it

prevents that one cloud provider stores the whole data set.

The proposed architecture is transparent to the application

206Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

layer, as it provides the client with a standard file system

interface.

We demonstrate how the proposed architecture can be

implemented through open source software components.

Moreover, we show that it is suitable to support any kind

of applications working on storage service; in this paper, we

consider the complex case of a relational database, but other

applications are supported as well. This work was focused

on the feasibility of the proposal, while performance tests for

different workload models and network latencies represent

an ongoing work.

REFERENCES

[1] W. Jansen and T. Grance, “Guidelines on security and privacy
in public cloud computing,” NIST special publication, pp.
800–144, 2011.

[2] The New York Times, “Amazon’s trou-
ble raises cloud computing doubts,”
http://www.nytimes.com/2011/04/23/technology/23cloud.html,
March 2013.

[3] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and
K. Fu, “Plutus: Scalable secure file sharing on untrusted
storage,” in Proceedings of the 2nd USENIX Conference on
File and Storage Technologies, vol. 42, 2003, pp. 29–42.

[4] R. Jammalamadaka, R. Gamboni, S. Mehrotra, K. Seamons,
and N. Venkatasubramanian, “Idataguard: middleware provid-
ing a secure network drive interface to untrusted internet data
storage,” in Proceedings of the 11th international conference
on Extending database technology: Advances in database
technology. ACM, 2008.

[5] A. Bessani, M. Correia, B. Quaresma, F. André, and P. Sousa,
“Depsky: dependable and secure storage in a cloud-of-
clouds,” in Proceedings of the 6th conference on Computer
systems. ACM, 2011, pp. 31–46.

[6] E. Zadok, I. Badulescu, and A. Shender, “Cryptfs: A stackable
vnode level encryption file system,” Citeseer, Tech. Rep.,
1998.

[7] A. Shamir, “How to share a secret,” Communications of the
ACM, vol. 22, no. 11, pp. 612–613, 1979.

[8] V. Ciriani, S. D. C. Di Vimercati, S. Foresti, S. Jajodia,
S. Paraboschi, and P. Samarati, “Keep a few: Outsourcing data
while maintaining confidentiality,” in Proceedings of the 14th
European Symposium on Research in Computer Security.
Springer, 2009, pp. 440–455.

[9] P. Samarati, “Protecting respondents identities in microdata
release,” IEEE Transactions on Knowledge and Data Engi-
neering, vol. 13, no. 6, pp. 1010–1027, 2001.

[10] L. Sweeney, “k-anonymity: A model for protecting pri-
vacy,” International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, vol. 10, no. 05, pp. 557–570,
2002.

[11] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D.
dissertation, Stanford University, 2009.

[12] M. Van Dijk and A. Juels, “On the impossibility of cryp-
tography alone for privacy-preserving cloud computing,” in
Proceedings of the 5th USENIX conference on Hot topics in
security. USENIX Association, 2010, pp. 1–8.

[13] Oracle corporation, “Oracle advanced security,”
http://www.oracle.com/technetwork/database/options/advanced-
security, March 2013.

[14] H. Hacigumus, B. Iyer, and S. Mehrotra, “Providing database
as a service,” in Proceedings. of the 18th International Con-
ference on Data Engineering. IEEE, 2002, pp. 29–38.

[15] L. Ferretti, M. Colajanni, and M. Marchetti, “Supporting
security and consistency for cloud database,” in Proceedings
of the 4th International Symposium on Cyberspace Safety and
Security. Springer, 2012, pp. 179–193.

[16] H. Hacigümüş, B. Iyer, C. Li, and S. Mehrotra, “Executing sql
over encrypted data in the database-service-provider model,”
in Proceedings of the 2002 ACM SIGMOD international
conference on Management of data. ACM, 2002, pp. 216–
227.

[17] R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan,
“Cryptdb: protecting confidentiality with encrypted query
processing,” in Proceedings of the 23rd ACM Symposium
on Operating Systems Principles. ACM, 2011, pp. 85–100.

[18] J. Daemen and V. Rijmen, The design of Rijndael: AES-the
advanced encryption standard. Springer, 2002.

[19] M. Vrable, S. Savage, and G. M. Voelker, “Bluesky: A cloud-
backed file system for the enterprise,” in Proceedings of
FAST, 2012, pp. 237–250.

[20] Dm-Crypt, “Linux kernel device-mapper crypto target,”
http://code.google.com/p/cryptsetup/wiki/DMCrypt, March
2013.

[21] GlusterFS, “Open source, distributed file system,”
http://www.gluster.org, March 2013.

[22] OpenVPN, “Open source vpn,” http://openvpn.net, March
2013.

[23] The PostgreSQL Global Development Group, “Postgresql,”
http://code.google.com/p/cryptsetup/wiki/DMCrypt, March
2013.

207Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

