
Deploying a Multipoint Control Unit in the Cloud: Opportunities and Challenges

Álvaro Alonso, Pedro Rodrı́guez, Joaquı́n Salvachúa, Javier Cerviño
Departamento de Ingenierı́a de Sistemas Telemáticos

Universidad Politécnica de Madrid

Madrid, Spain

{aalonsog, prodriguez, jsalvachua, jcervino}@dit.upm.es

Abstract—A Multipoint Control Unit (MCU) is a software
component that manages different aspects of multimedia systems:
mixing, forwarding, recording or transcoding media streams. This
paper shows how Cloud infrastructures offer new opportunities
to MCUs in a range of scenarios, scaling to a variable number
of users. However, this deployment also implies some important
challenges that need to be solved, considering the MCU function-
alities and the common scenarios in which it will be used. These
challenges are related to up and down scalability, geographic
distribution of the users and the MCU system profiling. We
provide an overview of the most effective solutions to face them
and the characterization of a previously developed MCU in
two videoconference scenarios. A Cloud-based MCU provides
important advantages to take into account and the challenges
we detected are already solved in similar environments making
its deployment a promising research area.

Keywords—Cloud Computing; MCU; multimedia.

I. INTRODUCTION

Multimedia systems have gained a relevant role within
software applications and services in the Internet over the
recent years. Thus, we daily use multimedia applications, like
video streaming or video recording. Some of these applications
have strong real time requirements, such as videoconference
or multiplayer online games.

In this type of applications we need to interconnect two
or more users that will exchange some resources like video,
audio or data. Moreover, this exchange can be made in real
time. Frequently, and specially when there are more than
two users, is necessary an intermediate device that manages
the communication between the users and the exchange of
the resources. The name of this component is Multipoint
Control Unit (MCU) and its function is to coordinate the
distribution of audio, video, and data streams amongst the
multiple participants in a multimedia session [1].

Due to MCU’s characteristics, it is possible to convert a
mesh topology of connection in a star topology. This way
the MCU acts as a central device forwarding the multimedia
streams among the participants in the session. However, it can
make some additional task that frequently reduces the compute
requirements of the devices in the final user. Also it adds
interesting features due to the fact of all data is going to go
through the MCU, allowing several operations that can provide
advanced services often requested in multiconferencing and
collaborative multimedia applications:

• Broadcasting: this is the basic operation of the MCU,
by which it sends a stream from a publisher to
multiple subscribers. These subscribers receive this

stream once and the publisher only sends it once to
the MCU, saving bandwidth in its network interface
at the expense of the MCU, which has usually better
network performance.

• Transcoding: the use of a more advanced MCU able
to mix and transcode media streams can pave the way
to solving the heterogeneity of devices and access
networks. By transcoding streams into different bit-
rates and sizes, the communication can be adapted to
diverse network conditions and screen sizes optimiz-
ing the use of network and CPU in the clients at the
expense of the MCU. This is also useful in a gateway
scenario where media streams have to be translated.

• Composing: by generating a single video or audio
stream from the available inputs, the MCU can reduce
the amount of CPU overhead and control needed to
participate in a multiuser multimedia system when
needed.

• Recording: the MCU is receiving all the streams
present in the session and, as stated in the previous
point, is able to generate a composed stream by
combining them. If a recording of the session is
required, the MCU can store that stream for future
reproductions.

All these features normally require a high computation
level in the device where the MCU is running. The computer
usually needs high level of memory and CPU power. However,
these capabilities may change dynamically with the variations
in the number of users or the different scenarios of the
applications. The requirements of this type of devices blend
very well with the Cloud Computing model because, according
to the NIST definition [2], it provides characteristics like On-
demand self-service, Broad network access, Resource pooling,
Rapid elasticity and Measured service.

In the next section we analyse the opportunities and advan-
tages that, according to these characteristics, the deployment
of an MCU in the cloud offers. However, it implies important
challenges that we describe in Section III, presenting also the
most effective solutions to them. Finally, Section IV describes
the conclusions as well as the future lines of work.

II. OPPORTUNITIES

In this section we will review the main advantages of
running an MCU on Cloud Computing systems. An MCU
component may require different computing characteristics
depending on the number of participants, session conditions

173Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization



(recording, forwarding, transcoding or composing), and the
physical location of the participants.

Furthermore, these conditions of operability may vary
dynamically during the session. Thus, we will demonstrate the
benefits of deploying the MCU in a cloud scenario, where the
session can be adapted easily and dynamically to variations on
this type of conditions according to the particular requirements
in each moment.

The cloud model defined by NIST and its essential char-
acteristics illustrates these advantages and help us to better
understand them:

• On-demand self-service: Users can provision com-
puting capabilities (CPU, network, storage, etc.) as
needed.

• Broad network access: Those capabilities are available
over the network in different locations and are served
through standard mechanisms.

• Resource pooling: The cloud follows a multi-tenant
model, assigning resources to different users.

• Rapid elasticity: Capabilities can be provisioned and
released automatically to scale to user demand.

• Measured service: Resources are automatically con-
trolled, monitored and reported by metering systems.

Below we explain how these features provide new oppor-
tunites to MCU-based communications in these scenarios.

A. Scale to user demand

Multimedia systems offer their users the possibility of
joining a conference before and during the session. They could
also leave the session while it is running. Depending on the
type of session this variability could be high.

A high number of users usually means more bandwidth,
memory and CPU consumption. In other words, an MCU
would demand more capabilities from its computing infras-
tructure.

In a traditional environment the provider should previously
provision its own physical machines to tackle with the high
peaks of demand. However, this solution implies more idle
resources when the user demand is low.

In a cloud environment the multimedia provider could
dynamically provision and release virtual machines on de-
mand. This is usually done by turning on and off those virtual
machines depending on the resources needed, according to the
participants in the session.

This could also be achieved by dynamically increasing
the performance of virtual machines. We could, for example,
increase the CPU and memory capacity of a running virtual
machine. We could also improve the network performance of
these machines by changing their size. For example, Amazon
EC2 [3] offers different network performance depending on
the size of its virtual machines.

Transcoder Broadcaster Mixer 

API 

VM 1 

Connection Manager 

Recorder 

API 

VM 2 

Connection 
Manager 

Streams from clients Streams to clients 

Fig. 1: Example of two MCUs performing different tasks.

B. Scale to scenario requirements

MCU operation also depends on the type of session it runs,
and it could perform a variety of tasks: forwarding, recording,
mixing (composing) and transcoding. Each of these features
requires different computation capacities.

A basic MCU device only forwards streams from one
participant to others and requires low levels of computation.
However, the required level of memory and CPU increases
considerably if the MCU performs the other advanced tasks.
These additional features may change during a session depend-
ing on different factors: number of users, size of available and
generated videos, codecs, etc.

For example, a high number of users usually forces the
MCU to compose a single video from the others. Besides, in
scenarios where clients connect from different type of devices,
the MCU will transcode video and audio to adapt to their
different CPU and bandwidth requirements. Finally, the MCU
could record the entire session or part of it, including all
individual videos, a subset of them, or a composed video.

Virtualized environments of cloud systems help the MCU
to adapt to the varying requirements of such features. As in
the previous case, we could turn on a new machine when more
CPU is needed and later turn it off when this need decreases.
Moreover, we could vary the capabilities of a specific virtual
machine on the fly, by increasing or decreasing its memory,
CPU, number of cores, etc. This would allow our MCU to
adapt faster to variations on the scenario requirements.

Another workaround offered by the cloud is to configure
different types of virtual machines depending on the features
that they will perform. In the example in Figure 1 a machine
responsible for broadcasting flows will consume a lot of CPU
and memory. On the other hand, a machine responsible for
recording a videoconference session consumes low memory
and CPU if it receives a single flow with the whole composition
of the session.

Summarizing, a cloud-hosted MCU component could eas-
ily and dynamically manage the configuration of different
types of machines, adapting it to all scenarios. Thus, in a cloud
environment we could provide an adaptive multimedia service,
which efficiently uses the available resources, reducing costs
while improving overall performance in every scenario.

174Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization



Fig. 2: Example of MCUs interconnection in a global multimedia session.

C. Geographic flexibility

Another critical factor in real time applications that directly
affects user experience is the latency of packets that travel be-
tween peers. This latency usually depends on the geographical
distance between them, and we should reduce it to achieve the
lowest possible latency. In multimedia scenarios all streams are
sent or received from the MCU and the geographic location
becomes crucial for decreasing latency.

Thanks to a cloud-based system we can run MCU devices
in different geographic locations, connecting each one with the
users that are using the service in each region. For example,
at the time of writing this paper, Amazon EC2 provides data
centers in North Virginia, Oregon, North California, Ireland,
Singapore, Tokyo, Sydney and São Paulo, while Rackspace [4]
owns data centers at Texas, Illinois, Vancouver, Hong Kong,
London and Slough, UK.

These cloud providers also allow to interconnect MCUs
in different regions, so we could even offer sessions around
the world, by connecting users to the closest MCUs and
interconnecting all the MCUs in the same session. An example
of this scenario is shown in Figure 2.

III. CHALLENGES

As seen in the previous section, the deployment of a
software-based MCU in the cloud can bring several key
advantages to multimedia service providers. The increased
efficiency in terms of hardware requirements together with the
flexibility in terms of geography and the possibility to adapt
the solution to different scenarios encourages the move to the
cloud. However, to make the most of the cloud and make
the most of its advantages its important to design the system
accordingly and take into account the target of the deployment.

Furthermore, we will propose strategies to scale up and
down in the cloud that differ from more general approaches
such as the one seen in [5].

This section analyses the challenges posed by the optimal
adaptation of an MCU to the cloud.

A. Characterizing the system

Characterizing the MCU’s performance is the first step
towards its efficient deployment in the cloud. Depending on

the task (recording, transcoding...) to be performed by a given
MCU, the hardware and bandwidth requirements vary signifi-
cantly. By measuring the performance in a known environment,
we can approximate the tier of the instance or the amount
of CPU, RAM and bandwidth that is going to be needed
when deploying in the cloud. For instance, transcoding needs
considerably more CPU power than just forwarding packets.
In order to optimise the deployment, we have to quantify this
type of characteristics.

Once a complete characterization of the system is made,
it is interesting to find correlations between the pure technical
resources and the more high-level, application based ones. For
example, in a web environment this would mean assessing the
increase of CPU usage for each concurrent request of a given
type. In the videoconferencing world, the number concurrent
users is the typical unit that shows the capabilities when it
comes to capacity of a system. Furthermore, we can group
these users in different conferences that coexist in the same
MCU. We will call this conferences ’rooms’. The number of
users in each room is usually limited to a fixed number in
videoconferencing systems.

Finding a correlation between the hardware resources
needed and the number of users and rooms in a system can
simplify the work we are going to do in the next subsections,
scaling the system up and down. Knowing the incidence of
each new user combined with continuously monitoring the
resources consumed by a deployed instance we can react
effectively to changes in demand. Of course, this implies
measuring the incidence of each user in the cloud instances.

However, there is still a further challenge imposed by the
deployment of a known system in the cloud. There is plenty of
literature [6][7] on the possible interferences between different
virtual machines running on the same host as well as possible
ways to characterize the problem [8]. For the purpose of
this paper we will assume that the deviation caused by these
interferences will not be big enough to invalidate the per-user
estimations.

As an example of this type of characterization we will
show and comment a real case of MCU deployed in Amazon
EC2. We have used an MCU designed by us for WebRTC [9]
compatible systems [10][11]. For the characterization we have
designed two scenarios that are the most common in videocon-
ference systems: a real time video streaming and a multiuser
videoconference. On both systems we have monitored the CPU
and memory usage and the bandwidth (incoming and outgoing)
consumption in the MCU computer during the experiment.

In the first scenario, live streaming, one of the clients
is publishing its media stream (audio and video) in the
session and subscriber clients are gradually added to view
the published stream. As we can see in Figure 3 the CPU
usage in the MCU increases linearly with the increase of
the number of users subscribed to the streaming. This occurs
because WebRTC standard uses SRTP [12] for the packet
transmission implying that the MCU has to unprotect and
protect each packet in order to make the retransmission from
the publisher to each subscriber. We can observe that the
inbound bandwidth consumption is constant during all the
session and the outbound increases linearly because of for each
new client connected is necessary to make a retransmission

175Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

10

20

30

40

50

Users

%

(a) CPU Usage

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

100

200

300

400

500

Users

kB
/s

 

 
Inbound Bandwidth
Outbound Bandwidth

(b) Bandwidth Consumption

Fig. 3: Use of resources in the MCU when the number of users increases in a live streaming

more. About the memory used by the MCU it increases also
linearly but with a minimum variation during the experiment
(just a ten of MBytes). Finally note that in sometimes during
the test a descent is registered in the results (when user
number 8 and 13 connects). We can notice that this anomaly
is associated with a decrease of the inbound traffic so we can
deduce that it is doubt to a small bug of performance in the
publishing client computer, which is also running in a Amazon
EC2 virtual machine.

In the second scenario, multi user videoconference, each
user that connects to the service publishes its media stream
and subscribes to all the streams published previously. We
have established a limit of 6 users because this is usually
the maximum number of users in a standard videoconference
room. In Figure 3 we can observe that in this case the inbound
bandwidth consumption increases linearly with the increase of
users in the room doubt to the fact of each new user publish
its own stream to the room. However, the outbound bandwidth
and the CPU usage increase exponentially because of for each
new user the MCU has to forward the new stream to all the
rest of users. Therefore the number of outgoing flows increases
following the equation N = n(n−1), where n is the number of
users in the room. The memory usage also varies exponentially
but like in the first case the variation is irrelevant.

B. Scaling up

When the currently provisioned resources reach their limit,
we should able to take advantage of the cloud to keep providing
service as seamlessly as possible for the users. In order to do
that there are two main types of scalability: horizontal and
vertical.

To scale horizontally means to add new servers to the
existing pool of resources while scaling vertically is to upgrade
the already running servers on the fly.

When it comes to an MCU, both methods have its uses. If
the new resources are required to make some additional task in
the session like, for example, recording a videoconference talk,
the horizontal scalability may be a better solution. However, if
the resources are needed because of an increase of the number
of users in a determined session the easiest solution may be to
add more capabilities to the same computer already managing
that session. However, it has to be kept in mind that vertical

scalability is not present in all cloud platforms and not all
operative systems allow for it.

With the exception of some very specific cases that we
will explain later, the fact of have all the participants in a
session in the same MCU implies facilities in the forwarding
and composing of the media streams. As discussed in the next
subsection this is especially critical if a scale down is necessary
during a session.

So an important challenge in the case of scaling up is the
decision of which type of scalability is better to choose when
an increase of the resources in the MCU module is needed.

Both types of scaling involve a latency caused by, either
starting a new machine or modifying the existing one. In order
to have a satisfactory user experience, this has to be taken into
account so no interruptions take place in the communications.
This problem can be avoided by anticipating the rise in demand
whenever it is possible and react accordingly.

A first approach is to use algorithms to, based on a mon-
itoring of the system, calculate when it is in a limit situation
and this way anticipate the necessity for resources starting new
machines or adding more capabilities to the existing. The MCU
must monitor at all times the state of the system by the analysis
of the different factors studied above. If we have been able to
establish the limits of the system and the correlation with the
number of users and rooms it should be quite straightforward
to react whenever the deployed system is reaching its peak.

The result would be a set of thresholds that would define
when to add more processing power to the system. This
is similar to setting elasticity rules that define the system
scalability, an example of this type of approach can be seen
in [13].

We can go one step further by use predictive models to
anticipate the changes in the requirements of the MCU based
on the analysis of previous data. With these type of models
we can analyse behaviour patterns of the system to predict the
activity that will be in a determined moment. These patterns
may be obtained in two main ways. The most effective way
is to obtain it from the previous behaviour of the own system.
However, if it is not possible we can use the patterns from the
behaviour of similar systems.

A good starting point is [14] where this problem is ad-

176Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization



1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

Users

%

(a) CPU Usage

1 2 3 4 5 6
0

200

400

600

800

Users

kB
/s

 

 
Inbound Bandwidth
Outbound Bandwidth

(b) Bandwidth Consumption

Fig. 4: Use of resources in the MCU when the number of users increases in a videoconference

dressed by an algorithm that predicts resource usage by using
pattern matching.

C. Scaling down

In the same way that during a session may be necessary
to increase the available resources, it may also occur that at
any given time, the demand peak has ended and we have
provisioned more resources than needed. As discussed in
previous subsection, there are different ways to increase the
computation level of an MCU module. In scale down case
we can make the reverse operations to reduce the resources
dedicated to the MCU.

Therefore the scaling down presents a similar challenge
than scaling up. When we detect that the demand has gone
down and we have allocated more resources than necessary
we must select the closer to optimal way to reduce them. We
can reduce the capabilities of the running computers or shut
down one of more of them.

But moreover in this case the second option presents
additional difficulties. It must be taken into account that the
computer that we are going to turn off most probably is
performing tasks that we must distribute between the rest of
computers. Such redistribution is not a trivial issue.

A client participating in a session is sending and receiving
several multimedia streams to and from an MCU. If this
computer is going to be shut down, it is necessary to forward
the traffic and it should be done in a transparent way to the
user. Moreover, to optimise the use of the resources, a full
redistribution of the clients and the rooms on the system may
be in order.

A possible solution to this problem, shown in Figure 5, is
to include a proxy between the clients and the MCU module.
When a machine is going to shut down the proxy begins to
duplicate the streams between the old and new MCU. When
all the streams are prepared the proxy changes the sending and
receiving to the client from the old MCU to the new and in
this moment the old MCU can be turned off.

D. Geographic distribution

With the flexibility provided by geographically distributed
cloud providers comes the challenge of optimally placing the

MCU instances in order to get the best service as possible.
While the decision might be trivial when all users are located
in the same continent or cloud provider’s zone, deciding how
to react when users are located in distant places can greatly
determine the quality of the session.

When making the decision must be taking into account
the number of users in each geographical region but also the
quality of their connections. To characterize the links between
different regions is interesting to do measures of bandwidth,
jitter, packet loss or Round Trip Time (RTT). By testing the
connection of each user to the different regions of the cloud
we can decide where it will perform better.

As seen in [15] the network connections between Amazon
instances in different regions perform better than the average
internet connection. We should also take this into account when
designing and deploying the system.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we have analysed the main opportunities that
the deployment of an MCU component offers in a cloud-based
infrastructure. As we have been seen, this alternative provides
interesting advantages to multimedia and real time systems
with high or variable number of users because these systems
usually work in scenarios in which flexibility and scalability
are required. However, the deployment is not an easy task and
its performance presents also important challenges that need
to be solved.

We have also discussed some possible alternatives to face
these challenges. The first step is to characterize the system in
order to establish relationships between the number of users
and the task that the MCU will realize with the technical
requirements of the computers. We have presented an example
of these measures in two videoconference scenarios and an
overview of the existing solutions to the challenges that
the scalability (up and down) presents and the geographic
distribution of the MCUs.

The conclusion of our work is that the Cloud provides
important advantages and that the challenges we detected are
already solved in similar environments, so the deployment
of MCUs in the Cloud is a promising research area. Our
future work is to further analyse these solutions in multimedia
scenarios and apply them to real services.

177Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization



Proxies 

Clients 

MCU MCU MCU 

Fig. 5: Proxies forwarding traffic to MCUs.

Finally, we will apply prediction models and algorithms
to our open source webRTC project, named Lynckia [16],
in order to research the best way to achieve a scalable and
flexible real time communication provider. We will also study
the performance of the media proxy that will manage the
forwarding of media streams when the systems need to scale
down.

REFERENCES

[1] M. Willebeek-LeMair, D. Kandlur, and Z.-Y. Shae, “On multipoint
control units for videoconferencing,” in Local Computer Networks,
1994. Proceedings., 19th Conference, 1994, pp. 356 – 364.

[2] P. Mell and T. Grance, “The NIST Definition of Cloud Comput-
ing,” http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
[retrieved: March, 2013], 2009.

[3] Amazon AWS. http://aws.amazon.com [retrieved: March, 2013].

[4] Rackspace. http://www.rackspace.com [retrieved: March, 2013].

[5] L. M. Vaquero, L. Rodero-Merino, and R. Buyya, “Dynamically scaling
applications in the cloud,” SIGCOMM Comput. Commun. Rev. vol 41,
num 1, January 2011, pp. 45 –52.

[6] O. Tickoo, R. Iyer, R. Illikkal, and D. Newell, “Modeling virtual
machine performance: challenges and approaches,” SIGMETRICS Per-
form. Eval. Rev. January, 2010, vol. 37, no. 3, pp. 55 – 60.

[7] Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen, and C. Pu, “An
analysis of performance interference effects in virtual environments,” in
Performance Analysis of Systems Software, 2007. ISPASS 2007. IEEE
International Symposium, April 2007.

[8] A. V. Do, J. Chen, C. Wang, Y. C. Lee, A. Zomaya, and B. B. Zhou,
“Profiling applications for virtual machine placement in clouds,” in
Cloud Computing (CLOUD), 2011 IEEE International Conference on,
July 2011, pp. 660 –667.

[9] A. Bergkvist, D. C. Burnett, C. Jennings, and A. Narayanan, “Webrtc
1.0: Real-time communication between browsers,” W3C,” Working
Draft WD, August 2012, http://www.w3.org/TR/webrtc/ [retrieved:
March, 2013].

[10] S. Loreto and S. Romano, “Real-time communications in the web:
Issues, achievements, and ongoing standardization efforts, september-
october, 2012,” Internet Computing, IEEE, vol. 16, no. 5, pp. 68 –73.

[11] P. Rodrı́guez, J. Cervino, I. Trajkovska, and J. Salvachúa, “Advanced
videoconferencing services based on webrtc,” IADIS International
Conferences Web Based Communities and Social Media 2012 and
Collaborative Technologies 2012, pp. 180–184.

[12] M. Baugher, D. McGrew, M. Naslund, E. Carrara, and K. Norrman,
“The secure real-time transport protocol (srtp),” Internet Engineering
Task Force, March 2004, updated by RFC 5506.

[13] F. Galán, A. Sampaio, L. Rodero-Merino, I. Loy, V. Gil, and L. M. Va-
quero, “Service specification in cloud environments based on extensions
to open standards,” in Proceedings of the Fourth International ICST

Conference on COMmunication System softWAre and middlewaRE,
ser. COMSWARE ’09, New York, NY, USA, 2009, pp. 19:1–19:12.

[14] E. Caron, F. Desprez, and A. Muresan, “Forecasting for grid and cloud
computing on-demand resources based on pattern matching,” in Cloud
Computing Technology and Science (CloudCom), 2010 IEEE Second
International Conference, December 2010, pp. 456 – 463.

[15] J. Cervino, P. Rodriguez, I. Trajkovska, A. Mozo, and J. Salvachua,
“Testing a cloud provider network for hybrid p2p and cloud streaming
architectures,” in Cloud Computing (CLOUD), 2011 IEEE International
Conference, July 2011, pp. 356 –363.

[16] Lynckia. Open Source WebRTC Communications Platform.
http://www.lynckia.com [retrieved: March, 2013].

178Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization


