
SLA Template Filtering: A Faceted Approach

Katerina Stamou, Verena Kantere and Jean-Henry Morin
Institute of Services Science, University of Geneva - HEC, Switzerland
Email: aikaterini.stamou, verena.kantere, jean-henry.morin @unige.ch

Abstract—With the commoditization of cloud computing,
more and more companies prefer to outsource IT resources
into virtual infrastructures. Service Level Agreements (SLAs)
can be helpful to make the right investment decision. A
SLA template represents the pre-agreed SLA state. A service
provider proposes the SLA content and submits the template
to a marketplace for customer consideration. Customers use
SLA template views as ”What You See Is What You Get”
(WYSIWIG) snapshots prior to service selection and before
agreement initialization. The paper proposes a filtering frame-
work that is based on a faceted approach and that uses SLA
templates to guide marketplace customers through available
services. The framework design is presented along with the
data-model of SLA templates. We report the results from
testing the faceted filtering with two different SLA storage
approaches and evaluate their appropriateness for the web
application layer.

Keywords-cloud marketplaces; SLA templates; SLA modu-
larity; faceted filtering; document database.

I. INTRODUCTION

A Service Level Agreement (SLA) accurately depicts how
a service is going to be provisioned. Its explicit definition
is necessary for both providers and consumers to measure
and assess actual consumption of resources during service
execution. The SLA description allows customers to have
a clear idea before service commitment on how resources
will be served. Hence SLAs can be helpful to make more
informed investment decisions. Customers of service mar-
ketplaces can use SLA templates as ”What You See Is What
You Get” (WYSIWIG) snapshots when they navigate through
available offers. We consider a SLA snapshot as a high level
summary of a pre-agreed SLA.

Our discussion begins with the current role of SLAs
in cloud marketplaces and with research challenges whose
completion can advance the SLA utilization for IT services.
The paper continues with the presentation of our filtering
framework that uses the SLA template content to provide
a multi-faceted navigation tool for customers. We position
the framework within a service marketplace. A customer
can filter views of available offers according to provisioning
requirements. The goal of the faceted filtering is to gradually
lead a customer to a reduced service offer list that is in
accordance with customer requests, thus helping in the final
service selection activity.

We describe the SLA template data model and the filtering
framework design. Our analysis concentrates on how SLA

information is stored and managed by a marketplace to
help customers orient their navigation according to their
provisioning requirements. To examine the applicability of
the proposed framework, we simulate its operation using
two different data storage approaches and evaluate their
appropriateness for the web marketplace setting.

The paper is organized as follows: in Section II we
formalize our problem setting and elaborate on SLA research
challenges that we consider towards a large scale reality of
efficient SLA content manipulation. Section III presents the
data model for SLA templates, their construction process,
the design of the filtering framework and the proposed
database schemas. Section IV describes our experimentation
and reports on preliminary results. Section V acknowledges
related scientific work that tries to answer relevant research
questions around SLA manipulation. The paper concludes
with on-going work.

II. PROBLEM FORMALIZATION

A. SLA and SLA template role in cloud markets

In the following, the terms ’SLA template’ and ’service
offer’ are used interchangeably. A Service Level Agreement
(SLA) identifies the exact measurement and enables the
auditing of described resource parameter values. The SLA
definition provides an explicit view on how the provisioning
of a service is planned. It also indicates precise bounds of
service levels that a provider can supply.

Providers use SLAs during service execution to monitor
service measurable attributes. Currently, SLAs hardly appear
in cloud marketplaces. Promotion of IT offers to customers
relies primarily on high-level service descriptions. The role
of SLAs is peripheral and they are often materialized by
documents of ”terms-and-conditions” that typically do not
involve functional service aspects.

In the literature, a SLA template represents a pre-
instantiated agreement that is submitted by a service provider
to a marketplace for customer consideration. The SLA
template describes the agreement content that a provider is
willing to accept during communications with customers.
Thus a template describes precisely a provider’s resource
availability and provisioning plan. To decide which provi-
sioning is more suitable for their needs, customers review
SLA templates as service offers and proceed with either
agreement initialization or negotiation with one or more
providers.

122Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

We consider SLA templates as dynamic information that
is updated at frequent time intervals. A marketplace or
equivalently a service aggregator platform can use such
templates as customer drivers for service selection since
SLA templates enclose all details on how services are to be
provisioned. SLA templates can be efficiently manipulated
given that they follow a modular structure. Template content
modularity allows viewing service offer sections as facets.

According to [10], a facet represents a category of ordered
information data. It may contain flat or hierarchical informa-
tion and can be divided into subcategories or sub-hierarchies.
Moreover, a facet is described by attributes. In [10] the
authors analyze how they have used hierarchical faceted
categories (HFC) to organize the information structure of a
navigational interface [5] for large data collections. Faceted
navigation is a design pattern that enables flexible browsing
through a web interface. Big market vendors have employed
this pattern as it allows friendly navigation through multiple
data hierarchies simultaneously. The ordering of information
in multi-hierarchies makes the faceted-navigation pattern
suitable to use with SLA templates also, since the native
SLA structure is represented in the literature as a tree
hierarchy [2], [9]. Figure 1 illustrates a high-level overview
of the SLA schema proposed by [2].

In a SLA tree structure, facets represent SLA branches
that describe ordered aspects of provisioning details. Rep-
resentation of SLA facets can be combined with filters
to facilitate the customization of facet attributes. In addi-
tion, filters generate new SLA facets by following selected
traversing routes in the SLA tree path. Motivated by the
faceted navigation pattern and its noticeable suitability with
the SLA tree structure, we provide a framework that manip-
ulates modular SLA templates to enable service customer
navigation through available service offers.

Figure 1. SLA tree structure according to WS-Agreement specification

Prior to service selection and agreement initialization,
customers search through submitted offers to find services
that match their business needs. The goal of SLA faceted
filtering is to enable flexible service navigation that is
driven by customer (either users or automated processes)
provisioning requirements. The filtering process narrows
down service offer views to only desired ones that fulfill
requested provisioning parameters. A faceted navigation tool
should provide filters that help customers indicate their

service provisioning requirements according to existing offer
availability. Filtered navigation facilitates rapid traversing
between different offer views.

B. SLA manipulation challenges

In the scientific literature, SLAs are hardly viewed as
end user documents, but merely as automated processes
that assist the monitoring and scheduling of resources. In
contrast, cloud marketplaces treat SLAs as static documents
that do not allow for any processing. One challenge is to find
the right equilibrium between these two orthogonal aspects
and combine machine-readable with user friendly SLAs into
a uniform process that can be used by both backend systems
and front-end web services.

SLAs represent nested tree structures that include het-
erogeneous characteristics and are unbounded in terms of
length and content. In the cloud business setting, diver-
sified services are offered. Description characteristics and
provisioning guarantees vary considerably, even if they de-
scribe similar services in different contexts. Providers from
different business domains use customized terminology to
describe service parameters, metric functions and guaran-
tee definitions. Terms like ”availability”, ”throughput” or
”performance” are usually included in ambiguous ways in
service descriptions, which may be confusing for service
customers. Various vocabularies of provisioning terms rep-
resent a primary cause for SLA heterogeneity. On a wide
scale, SLA semantic and structural heterogeneity represents
a challenge because it complicates SLA template comparison
thus hindering any attempt to efficiently manipulate SLAs
in open marketplaces.

SLA formulation highly depends on resource availability.
Hence to manipulate SLA templates for customer interest,
we need to first ensure that the template content can be
updated dynamically. As the SLA depth is unbounded,
frequent updates may cause performance delays in the in-
formation exchange between customers and providers. Thus,
the storage schema of SLA templates represents a challenge.
On one hand, one may argue that since SLA templates
represent dynamic information objects, they should not be
stored at all. Instead, they should be kept in-memory for as
long as they are valid and then be immediately replaced. On
the other hand, a modular SLA data model allows to persist
SLA templates for longer time periods and to run frequent
content updates according to provider resource capacity and
provisioning availability. In this paper we work on the latter
aspect.

Viewed as a tree hierarchy, the SLA content may include
nested branching, which may lead to alternative information
content. A challenge for the manipulation of SLA templates
is to select a content structure that facilitates quick travers-
ing within nested information routes. A modular structure
provides independence between inner SLA components thus
helping the exploitation of finer grained information. Mod-

123Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

ularity allows for categorization of SLA parts and indicates
data management structures that may apply for diverse types
of SLA formats.

SLA content heterogeneity addresses issues that deal with
scientific opportunities for data management, information
retrieval and language processing research. In addition,
it highlights the need for SLA standardization. Currently,
SLA formalization is not supported by a standard to allow
classification of key performance indicators (KPIs) or to
mandate inclusion of specific functions per business domain.

The scientific computing community has primarily used
the WSLA [9] and WS-Agreement [2] language speci-
fications to express SLAs. The GRAAP working group
proposed the WS-Agreement specification [2] as a language
and a protocol to conduct SLAs. The WSLA [9] language
specification has been proposed by IBM research on utility
computing. Both approaches denote SLA language seman-
tics in XML notation. According to [9], a SLA complements
a service description. Moreover, both specifications suggest
the use of customer and provider templates for the exchange
of counter offers in the process of agreeing on service levels.

III. FILTERED NAVIGATION AND TEMPLATE REPOSITORY

We propose a filtering process that is different from
direct comparison and exchange of SLA templates. The
process uses provider templates to construct filters, based
on which customers express their provisioning preferences.
The outcome of the filtering process does not represent the
final selection decision of a customer, but rather a subset of
available service offers that satisfy the imposed filters.

We assume homogeneity of template structure with re-
spect to the ordering of sections and terms as proposed by
[2]. Filters are created according to SLA facets. The fol-
lowing paragraphs describe the SLA template construction,
the design of the filtering framework and the SLA template
storage schema.

A. SLA template construction

[2], [9] propose that a SLA consists of three primary
sections:
(i) service description,

(ii) guarantees or obligations and
(iii) an informative section regarding involved parties and/or

the provisioned service
[2] names the latter section SLA context. To construct SLA

templates, we follow the WS-Agreement guidelines, but
express the template content in JSON [8] notation. The SLA
template construction steps can be summarized as following:

1) Parse XML sample into JSON
2) Use (1) to create SLA template data model
3) Create database schema according to (2)
4) Retrieve service descriptions from marketplace
5) Order data from (4) into service types
6) Create fictional information, order according to (5)

7) Shuffle information from (5) and (6) into randomly
generated data lists

8) Load (7) into CSV files
9) Load (8) into database
The native WS-Agreement format comes in XML nota-

tion. Hence we initially parse a WS-Agreement template
sample from XML to JSON. We use the JSON sample to
create the data model for our SLA templates. From the native
WS-Agreement specification, we employ the proposed sec-
tions of guarantees, description terms and agreement context,
but order them accordingly to address the filtering need for
modularity. Moreover, we extend the context section that
we refer to as non-obligation attributes, and add information
regarding the provider infrastructure and the customer data-
storage location. We keep the service description joined with
associated metrics and guarantees. Furthermore, we add a
separate section for guarantees that apply to the overall
service and that may or may not be measurable. We use this
section to include customer monitoring options and provider
obligations that indicate QoS bounds, e.g., service helpdesk
availability. Customers typically need to be aware of such
options before service commitment. Figure 2 illustrates the
deduced SLA data model that we use to create the database
schema for our templates.

The proposed SLA data model exploits information gran-
ularity by categorizing data into distinct SLA modules.
This ordering allows for isolation of internal SLA root
components, without depriving their inner depth in terms of
nested branching. Nesting within a SLA template module
depends on the information content. For example, non-
obligation terms do not contain additional branches and
remain consistent for all templates, regardless of service
type. Service description and associated guarantees expand
to multiple branches. The depth-level of nesting is of interest
as it affects the template storage schema and hence the
filtering flow process. Moreover, the suggested data model
allows expanding the SLA content into distinct themes.
Figure 2 depicts SLA data modularity with the letter N to
indicate granularity of themes.

Figure 2. SLA data-model

Following, we retrieve information of service descriptions
from the Amazon WS marketplace [1]. In particular, we
derive service profiles that relate to storage, network and
virtual machines. We order this information into nested

124Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

lists according to service type. Wherever necessary, we re-
formulate the retrieved data and complete them with ficti-
tious information to cover the content of our SLA template.

We iteratively call a Python process to generate lists
whose elements are assigned randomly from the classifica-
tion of ordered data. We intentionally apply variations in
the nesting depth of lists. Generated data are not skewed.
Still, we aknowledge that in real market conditions services
do not share the same level of popularity, thus customer
preference. The Python process loads the generated data lists
into comma separated value (CSV) files and from there to
the database management system (DBMS) in use.

In this manner we create template sets for all three derived
service profiles. Generated templates follow the proposed
SLA data model, but differ in depth level and content. The
template construction procedure simulates provider submis-
sions of service offers into a cloud marketplace.

B. Filtered navigation through service offers

Figure 3 illustrates our proposed filtering framework. The
framework design consists of two layers. One tier depicts all
possible combinations of cloud stack layer [4], service type
and offer validity as a three dimensional Cartesian coordi-
nate system. The other tier presents the proposed SLA tree as
a cube, where cubic sides indicate root-facets of filtering and
service offer views. The cube selection is indicative of the
proposed data model because a template may contain up to
n SLA root-themes. The multidimensional structure depicts
the inner-depth volume and interconnections of nested SLA
information.

Figure 3. SLA filtering framework

Parameter combinations from the two filtering tiers indi-
cate navigation and filtering options. For the suggested cubic
representation, we point out the following entry-points:

(a) Select a combination of cloud stack layer, service
type and time interval. We take into account inter-
dependencies that may exist between cloud stack layer
and service type, since several services are mapped to
a single cloud layer.

(b) Select (a) and combine with filtering of non-obligation
attributes.

(c) Filter only non-obligation attributes.
(d) Select (a) and combine with filtering of high-level

service description terms.
(e) Select (a) and combine with filtering of overall guar-

antee parameters.
(f) Filter only overall guarantees.
The selection of entry-points designates one or more

conditional queries that are processed transparently from
customer actions, on the backend. The instantly returned
result facilitates further navigation from a refined subset of
existing offers, where deeper-level filtering options are pro-
vided. The navigation process gradually leads to a minimal
set of preferred service offers that satisfy provisioning re-
quirements according to submission of customer parameters.
The method can be also deployed as an incremental process,
where the system keeps track of customer selections on each
step and accordingly regulates the flow of results.

The inherent modularity of the proposed SLA data model
and its representation as a multidimensional structure allows
for quick and selective navigation through designated nested
information. At any point the navigation route can change
by either selecting a different combination of SLA facet
or by re-arranging filter values. The approach provides
flexibility to navigate through available service offers from
the provisioning aspect that a customer is mostly interested
in.

Thus a customer may directly navigate through service
profile attributes and associated provisioning guarantees
by selecting the type of service and by filtering initial
parameters from the description category. Alternatively, a
customer may first look into non-obligation attributes if, for
example, there is a provider or a data-location preference.
Moreover, a customer may simply search for particular
guarantee attributes that are irrelevant of service type.

Entry navigation and filtering points can be extended
accordingly to the SLA structure branches or respectively
SLA facets. Special facets can be introduced to illustrate
provisioning guarantees that deal with service provider and
customer concerns about, for example, energy efficiency or
environmental impact.

C. SLA template storage

Filters in faceted navigation translate customer choices
into conditional queries. In this work, we consider and
experiment the faceted filtering with two different data
management approaches.

In one case, SLA templates are stored and manipulated
in a relational DBMS. Service offer information is kept into
distinct tables and at a granular level of detail according
to the template data model. In [2] a unique identifier (uid),
located into the SLA context section, accompanies every
SLA template. To resemble this relationship in the relational

125Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

database schema, we set a uid as the primary key (PK) of the
non-obligation attributes table. Similar to [2], this PK acts
as a reference key for the identification and matching of
any incoming template. Moreover, the uid serves as foreign
key (FK) to service description and overall guarantees tables
that are associated with a specific template instance. This
relationship resembles the native SLA tree structure of [2].
Figure 4 shows the relational database schema of our design.

Figure 4. SLA template - relational database schema

To illustrate inner content branching, the PK of the service
description table acts as a FK to associated rows of metric
and guarantee tables. Similarly, the overall guarantees table
is associated to metrics and function definitions for the
measurement of referenced guarantees. In this order, the
relational schema offers an alternative to the native XML
structure proposed by [2]. This database design achieves the
necessary granularity in terms of parameter details to allow
for conditional queries on term and metric values.

We express and manipulate SLA templates using the
JSON format. This choice was driven by our objective to
test faceted filtering with a structured query language of
a relational database and with a NoSQL data processing
system, which in this work represents a document database.
Since SLAs are machine-readable documents, a NoSQL
DBMS may prove suitable for the marketplace scenario that
typically operates over HTTP.

The document database design follows a nested dictionary
structure. Compared to the relational schema, document
collections represent tables and respectively documents rep-
resent records (table rows). The database design looks a
lot like the relational one, but SLA templates are stored
as nested documents. Although, schema conformance is
not a pre-requisite for a document database, every stored
document follows a generic SLA template structure and
accurately corresponds to the information stored in the
relational database. Figure 5 illustrates the NoSQL schema
design.

Every stored document is accompanied by a unique iden-
tifier and embeds dictionaries (or sub-documents) to map FK

Figure 5. SLA template - document database schema

relationships from the relational database to the document
schema. Each document contains one dictionary that holds
non-obligation service attributes and one or more dictio-
naries to present service description parameters and overall
guarantees. Similar to the relational model, description terms
and overall guarantees enclose associated service attributes
and respectively metrics, which in turn embed additional
nested information.

IV. EXPERIMENTATION

A. Filtering simulation setup

We simulate the faceted filtering operation using the entry
navigation-points analyzed in Section III. We assume that
an IT marketplace provides SLA faceted navigation as an
interaction tool for customers to submit their criteria and
guide their browsing of service offers through provisioning
requirements. We emulate customer instances and the SLA
faceted filtering in a client - server architecture. Our goal is
to measure the server response time to incoming customer
requests and the scalability of the filtering operation as the
number of simultaneous requests increase.

We setup the simulation environment on a 24-processor
computing machine. The model of each processor is Intel
Xeon and every processor runs at 2.50 GHz. The computing
machine includes 128GB of RAM and operates on Ubuntu
12.04, Linux version 3.2.0. We deploy the Tornado web
server [14] that is natively written in Python, to represent
the server side of the simulated environment.

Filtering is accomplished by simultaneous processing of
queries and our tests target the parallel handling of client
requests. We prepare multithreaded Python scripts that use
data from SLA facet attributes, generate random parame-
ter values and pass them as HTTP GET requests to the
web server. Randomly generated parameters simulate the
customer filtering input. We keep the values of generated
parameters within the value range of existing SLOs and
description terms. This configuration does not guarantee that
customer requests are always satisfied, because every incom-
ing request submits a diverse number of SLA requirement
values, whose combinations may not map to an existing SLA
offer.

126Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

In every run the server receives parameter values from
each incoming HTTP request, generates a conditional state-
ment and sends it for processing to a DBMS. A server
process reads the returned result set from the DBMS and
updates the customer view with matching available offers.
The server handles client requests with the help of common
gateway interface (CGI) Python scripts, which are multi-
threaded to assist the concurrent request serving.

SLA templates are submitted and updated on-demand,
transparently from customer activities. Section III describes
the process of creating our SLA templates and loading their
content into a DBMS. In our simulation the marketplace uses
a centralized data repository for the SLA template storage.
Our datasets are derived from the stored template content.

We use MySQL DBMS [13] for the relational database
and MongoDB [12] for the document database. Both DBMS
are deployed on the same machine as Tornado to reduce
TCP communication overhead. Measurements are derived
from testing with each database separately. Each table in
the MySQL database is loaded with approximately 150,000
records. In MongoDB this number amounts to 35,000 doc-
uments with an average document size of 1289.44 kb.

B. Experimental setup

The experimentation simulates the process of sending
and handling concurrent client requests and returning the
results over HTTP. The entry points that we introduced in
Section III designate the main use cases of our testing.
Every entry point represents a number of query parameter
values that are passed to the server and from there to the re-
spective database. Incoming parameters represent SLA facet
attributes. Their number depends from the facet type and its
nesting depth. We range incoming submissions between 2,
10 and 20 parameters.

We start from the upper, more generic, tier of the filtering
framework (Figure 3) and submit 2 parameters to represent
an initial choice of service type and offer expiration time. We
gradually combine filtering attributes from both framework
layers and reach nested template information. Our testing
deals with different customer use cases. We simulate the
case, where a customer has a provider and a data storage
location preference and hence filters only attributes of the
non-obligation facet, which in our case represents a submis-
sion of 5 up to 10 parameters.

We also consider a customer, who wants to look into
service offers with specific description characteristics and
explicit guarantee values. The customer selects a desired
service type and filters attributes of the service description
facet. Submission to the server ranges from 10 up to 20
parameters. We use the same parameter range to deal with
the submission of overall guarantee criteria and to combine
filtering attributes from different SLA facets.

We run the same number of experiments for both
databases and categorize them in three test suites. In the

first test set we measure the total time of the faceted filtering
operation over HTTP. The total time starts from the point a
client request reaches the server up to the point the server
returns the result to the client. Timings include HTTP and
backend processing overhead.

The second test suite includes faceted filtering runs that
are processed locally on the machine where the server
and the two databases reside to avoid additional network
overhead. The third test suite is also based on local runs, but
measurements combine the query processing from filtering
and database updates. We prepare an extra set of update
statements for both databases to measure their potential over-
head on the filtering operation. In each run update queries
are processed in parallel to filtering requests and account for
an extra 10% of workload on the total database processing.
Local communication between server and DBMS is achieved
via Unix sockets for the MySQL database and over localhost
for MongoDB.

Queries in each DBMS are similar in terms of number
and type of conditions, but the values of conditional pa-
rameters are randomly generated for every query. For the
MySQL case, conditional queries take the form of SELECT
statements, where the number of conditions varies according
to the incoming parameters. For MongoDB queries are
represented in binary JSON (BSON) format. The MongoDB
alternative for SELECT statements is the formation of
queries with the find() method. For every filtering point,
we repeat the same test for 10 runs and take the average
time from their accumulation. We also gradually increase
the number of submitted HTTP requests. We begin with 100
simultaneous requests and reach up to 100,000 concurrent
requests for both MySQL and MongoDB.

C. Observations and evaluation of results

The graph in Figure 6 shows the results for both MySQL
and MongoDB from running with 2, 10 and 20 requested
parameters over HTTP. The y-axis represents the average
total time for each performed run and the x-axis indicates
the gradually increased number of incoming requests that the
web server receives. The average time is close to constant
for both MySQL and MongoDB. Derived curves for all runs
are fitted to highlight the small range of fluctuactions in the
query processing results.

The filtering operation over HTTP takes approximately
1.87 seconds less for queries that are processed in MongoDB
compared to the average time in MySQL. This approximate
time difference prevails for all HTTP runs regardless of the
number of incoming requests or the number of simultane-
ously processed queries. The difference can be justified by
the fact that when MongoDB retrieves a document from
a collection, the whole document is loaded into memory
along with any embedded dictionaries. Thus, retrieving
information from any nested dictionary comes at a minimal
cost as soon as the root document is loaded into memory.

127Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 6. Average total filtering processing time over HTTP: MySQL and
MongoDB

The embedding feature of MongoDB provides an alternative
for MySQL JOINS [12].

Figures 7 and 8 present the results from the locally
executed test sets. The average query processing time for
MySQL is illustrated in Figure 7 and for MongoDB in
Figure 8. For both graphs the y-axis represents the average
query processing time in seconds and the x-axis the gradual
increase in the number of submitted queries.

Figure 7. Average query processing time MySQL via UNIX sockets

The average query processing time for local faceted filter-
ing (both SELECT and find() statements) is almost constant
and in fact identical (0.16 seconds average) for both DBMS.
The only exception is the MySQL SELECT query with 2
conditions, where the average time is nearly 0.38 seconds
more than the SELECT queries with 10, 20 conditions and
the respective find() statements in MongoDB. In both graphs,
the curves that illustrate the average query processing time
of the local faceted filtering are fitted to designate the small
fluctuation range of the result set.

Figures 7 and 8 also illustrate the results from local
runs that combine updates and faceted filtering. For both
DBMS, updates are executed in randomly selected tables
(respectively collections) and with randomly generated con-
ditions. Updates affect multiple records of one or more tables
(collections) but not those, where the SELECT/find() query
operates. For both databases the results from the mixed

Figure 8. Average query execution time MongoDB over localhost

processing are not linear due to the random factor that affects
the volume of updates. Compared to local faceted filtering,
the cost of the update operation for MongoDB is negligible.
For MySQL the cost is nearly constant at 0.57 seconds, with
the exception of the SELECT statement with 2 conditions.

Our overall testing indicates that possibly a NoSQL
approach like the MongoDB DBMS fits better for the web
scenario, where SLA offers are manipulated over HTTP.
In the local running mode, both DBMS share comparable
performance. Still, the combination of updates with SELECT
statements appears to be more expensive for MySQL than
for MongoDB.

V. RELATED WORK

In [3], the authors propose an approach for automated
matching of customer and provider templates by discover-
ing semantically equivalent SLA parameters. The authors
highlight that the absence of SLA standardization inevitably
leads to variations in the definition of semantically related
terms. They use a machine learning methodology to illus-
trate their matching comparison. The authors assume the
existence of a knowledge repository that is responsible for
managing incoming SLA templates and template mappings.
As their work is focused on the comparison of SLA terms
from diverse templates, the authors do not go into detail
about the repository structure or the exposure of SLA
parameters through a web interface.

In [11], a decision-support framework is proposed to assist
the selection of infrastructure resources and the migration
of services from local to virtual platforms. Although the ap-
proach is not explicitly directed towards SLA manipulation,
the decision-support operation uses service attributes that are
derived from provisioning parameters. The authors do not
deal with customer navigation in a marketplace, but assume
submission of service requirements by potential customers.
Service attributes are structured in hierarchies. The authors
apply the decision-support framework into a realistic use
case to prototype the filtering of customer requirements on
available service parameters. Still, they do not elaborate on
how retrieved information is either stored or managed.

128Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

The work described in [6], [7] is a motivating schema for
SLA-aware service-oriented infrastructures. In the proposed
architecture, customer-provider interaction takes place over
a service registry. The model can be extended to current
conditions of service provisioning. SLA templates in the
form of service offers are included in marketplaces and
customers select services according to their provisioning
preferences. A marketplace can then expose SLA offers in
the same way a registry exposes service descriptions.

VI. CONCLUSIONS & ON-GOING WORK

The scope of the presented work has been to promote SLA
aspects from post-agreement monitoring instruments to pre-
agreement manipulation objects. SLA templates represent
pre-initialized agreements and describe provisioning plans
of service providers. We presented our SLA data model that
assumes structure homogeneity and is based on the WS-
Agreement language specification. Our data model supports
modularity of internal components as this feature enables
the extraction of SLA facets by categorizing information
into distinct themes.

We described how we constructed SLA templates and
used them with a faceted filtering framework that enables
customers to browse through available services according
to their provisioning requirements. Service customers utilize
facet attributes as filters to express their objectives and to get
views of preferred provisioning arrangements. We demon-
strated use cases of filtering according to facet preferences
that customers would like to be aware of before service com-
mitment. The approach can be extended to include additional
filtering criteria that influence provisioning expectations and
are derived from non-SLA related objectives (e.g., risk,
security, energy efficiency).

For the filtering experimentation we used two different
DBMS approaches, a relational one represented by MySQL
and a document one represented by MongoDB. We assumed
that customer requests arrive concurrently and need to be
served immediately. Both databases share their tradeoffs.
MySQL is a seasoned DBMS, possibly suitable for back-
end processing of SLA data. MongoDB represents a new
product that appears to more efficient in terms of query
processing time on web operations. Our results indicate
that the MongoDB approach seems more suitable for SLA
manipulation on the HTTP layer, where client requests reach
the web server in large-scale mode and need to be handled
simultaneously.

We continue the refinement of the SLA data model and the
filtering framework experimentation with alternate modes of
template persistence. An alternative to the NoSQL document
approach is a database system that supports the Resource
Description Framework (RDF) data structure. RDF encoding
enables the representation of information in a graph form,
where connections between nodes indicate semantic rela-
tionships. This attribute is of particular interest for SLAs, as

it supports the classification of SLA modules and promotes
the creation of semantic vocabularies that can be associated
in a distributed sharing mode.

Our next challenge is to extend the filtering framework
into a recommendation mechanism that provides customer-
tailored SLA suggestions by using a given user profile. The
filtering framework can be considered as a pre-requisite of
the recommendation system because it provides a tool to
keep track of customer navigation behavior and filtering
preferences.

ACKNOWLEDGEMENT

This work is supported by the Swiss National Science
Foundation (SNSF), grant number 200021E-136316/1

REFERENCES

[1] “Amazon WS Marketplace,” accessed Sep. 2012, https://aws.
amazon.com/marketplace.

[2] A. Andrieux et al., “Web Services Agreement Specification
(WS-Agreement),” retrieved Oct. 2011, from http://www.ogf.
org/documents/GFD.192.pdf, Open Grid Forum, Grid Re-
source Allocation Agreement Protocol (GRAAP) Working
Group.

[3] C.Redl, I.Breskovic, I.Brandic, and S.Dustdar, “Automatic
SLA Matching and Provider Selection in Grid and Cloud
Computing Markets,” in Proc. of the 2012 ACM/IEEE 13th
International Conference on Grid Computing (GRID ’12).
IEEE Computer Society, 2012, pp. 85–94.

[4] Fang Liu et al., “SP 500-292 Cloud Computing Reference
Architecture,” retrieved Oct. 2011, from http://www.nist.gov/
manuscript-publication-search.cfm?pub id=909505, National
Institute of Standards and Technology (NIST), Sep 2011.

[5] “The Flamenco Search Interface Project,” accessed Oct. 2012,
http://flamenco.berkeley.edu.

[6] H.Ludwig, “WS-Agreement Concepts and Use of Agreement-
Based Service-Oriented Architectures,” IBM Research, Tech.
Rep., 2006.

[7] H.Ludwig, A.Dan, and R.Kearney, “Cremona: an architecture
and library for creation and monitoring of WS-agreements,” in
Proc. of the 2nd International Conference on Service Oriented
Computing (ICSOC ’04). ACM, 2004, pp. 65–74.

[8] “JavaScript Object Notation,” accessed Aug. 2012, http://
www.json.org.

[9] H. Ludwig, A. Keller, A. Dan, R. King, and R. Franck, “Web
Service Level Agreement (WSLA) Language Specification,”
retrieved Oct. 2011, from http://www.research.ibm.com/, IBM
Corporation, Tech. Rep., Jan 2003.

[10] M.A.Hearst, “Clustering versus faceted categories for infor-
mation exploration,” Commun. ACM, vol. 49, no. 4, pp. 59–
61, Apr. 2006.

129Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

[11] M.Menzel and R.Ranjan, “CloudGenius: decision support for
web server cloud migration,” in Proceedings of the 21st
international conference on World Wide Web (WWW ’12).
ACM, 2012, pp. 979–988.

[12] “MongoDB manual,” accessed Sep. 2012, http://docs.
mongodb.org/manual.

[13] “MySQL,” accessed Sep. 2006, http://www.mysql.com.

[14] “Tornado web server,” retrieved Sep. 2012, from http://www.
tornadoweb.org.

130Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

