
Digital Signature as a Cloud-based Service

Wojciech Kinastowski
Institute of Control and Information Engineering

Poznan University of Technology
Poznan, Poland

wojtek@kinastowski.pl

Abstract—Cloud-based digital signature can be seen as a model
for reliable, convenient, on-demand network access to security
infrastructure that performs cryptographic operatio ns of
digital signature. This study proposes a protocol for data
exchange between signer and signing-enabled cloud
environment in the cloud-based digital signature model. It also
covers performance results and implementation notes of Signer
entity.

Keywords-Digital Signature; Cloud Computing; Cryptography.

I. INTRODUCTION

Recently, cloud has become a new paradigm for
delivering computing as a utility. Although the theory behind
cloud computing is based on decades of the existing
technologies and research, enthusiastic response from
developers and widespread acceptance among users confirms
that cloud computing is here to stay and likely to play an
even more important role as a concept in many fields of
information technology, including encryption. Defining
cloud computing as a “model for enabling ubiquitous,
convenient, on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or
service provider interaction” [1], and digital signature as “the
result of a cryptographic transformation of data which, when
properly implemented, provides the services of: origin
authentication, data integrity and signer non-repudiation” [2],
cloud-based digital signature can be seen as a model for
reliable, convenient, on-demand network access to security
infrastructure that performs cryptographic operations of
digital signatures.

The main difference between a standard digital signature
system and a cloud-based one is that, while the first operates
in the “close” environment of a personal computer and
plugged-in dedicated devices (microchip card and card
reader), the cloud-based system involves network data
exchange between signer and signing-enabled cloud
environment. This paper proposes a protocol for this data
exchange and, as a result, outlines Software as a Service
(SaaS) cloud that performs digital signature.

The paper is organized as follows. Section 2 describes
some basic requirements for cloud-based digital signature
system. Next, in Section 3, the protocol's entities and data
flow are analyzed. Section 4 details each step in the protocol.
Section 5 is based on the implementation of Signer entity

and covers performance results and implementation notes.
Finally, the related work and motivation for future work are
discussed at the end of the paper.

II. REQUIREMENTS

Requirements for cloud-based digital signature protocol
are associated with the demands for newly designed public-
key cryptosystems reported in the literature [4,5,6].

A. Security

Security of cloud-based digital signature system simply
refers to the protection of user’s private key from being
retrieved and/or used without authorization. Each time the
private key is restored in the cloud it can be extracted and
used outside the system (attack on key). Other threats are
related to unauthorized use of the private key inside the
system, which may be affected by a modification of data sent
for signing (attack on data) or being impersonated online
(impersonation attack).

Considering the source of risk to the system’s security,
we can identify two main groups of threats. The system can
be compromised by vulnerabilities in supporting software
(including operating system, web browser, web server,
database server etc.). This kind of threats can be called
indirect because they are not related to the process of cloud
signature itself. The affected system may disclose
confidential data or allow unauthorized modification to data
flow. The ability to protect the system against indirect threats
is obviously limited. Therefore, when designing a secure
cloud signature system, it is necessary to analyze the effects
of a successful attack using vulnerability in supporting
software. In such a case, security of user’s private keys must
be preserved.

The other group of risks is directly related to
vulnerabilities in the system’s protocols and procedures
(direct threats). They may occur in each component of the
system and at each stage of the process. In contrast to the
indirect risks, a successful attack using the features and
characteristics of the protocols and procedures of designed
system results in disruption of the signature process and
often allows an attacker to compromise private keys restored
in the cloud. Therefore, a secure cloud signature system must
prove its resistance to direct threats.

When analyzing security of centralized cloud signature
system, all the involved protocols and procedures need to be
examined to understand the scope of potential attacks. When
only a single private key can be compromised, we are talking

68Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

about local-scope threats. The attacks which threaten all
private keys and any signing process are considered global-
scope.

B. Usability

ISO [23] defines usability as "the extent to which a
product can be used by specified users to achieve specified
goals with effectiveness, efficiency, and satisfaction in a
specified context of use” (ISO 9241-11:1998). The emphasis
placed on this requirement stems from the belief that current
systems do not correspond with modern standards of
usability (well known from electronic payment systems and
e-banking) and that high usability is always at odds with the
requirement of high security level [3,7].

A radical method of achieving high usability is to
eliminate dedicated devices for digital signature (microchip
cards, card readers) and propose data e-signing as in-cloud
service. By transferring processing logic to infrastructure
provider (cloud) and providing a simple access interface, the
process of digital signature can be reduced to standard
authentication and secure data transfer.

C. Cross-platform and integration capabilities

In order for any kind of digital system to be considered
cross-platform, it must be able to operate in any hardware
and software configuration. Dedicated hardware in
conventional digital signing solutions impose mandatory
system requirements. It makes porting the system to new
platform (e.g., mobile devices) very complicated. It also
makes it difficult to integrate digital signing services with
other electronic services.

Providing an interface for digital signature services
through standard network protocols has multi-platform
capabilities at both the hardware and software level. Transfer
of processing logic to cloud also offers great opportunities
for integration with other electronic services residing in the
cloud.

III. PROTOCOL BASICS

We can identify four basic protocol entities:

A. Signer

Signer (User) is the client for signature service, whose
private key is restored in the cloud in digital signing process.
Considering the complexity of the digital signature process,
the system requirements for signer are minimal. They
encompass a mobile device with an active SIM card (e.g.,
phone) and a device with Internet access (e.g., Internet
enabled PC with modern web browser). These very basic
requirements allow processing regardless of hardware and
software platforms. For the mobile device, it means
flexibility in terms of architecture and operating system as
well as services offered by the mobile operator. For the
Internet enabled device, there are no operating system and
web browser restrictions. Nevertheless, there are computing
power and web browser supported technologies issues
related to client-side cryptographic operations. This is
discussed in Section 5.

The concept of moving processing to the cloud eliminates
the need for dedicated hardware and software. Signer does
not have to deal with a microchip card, a card reader and pre-
installed software.

B. Issuer

Issuer is an entity that owns or creates data signed by
Signer in digital signing process. In this paper, the most basic
model is presented, which assumes that Issuer and Signer are
the same user. However, it should be noted that more
complex models with separation of these roles can be
presented. Regardless of role separation, issuing data is also
characterized by “cloud-based processing logic”. Thus, the
system requirement remains the same for both Signer and
Issuer.

C. Proxy

Proxy provides the interface for the digital signature
service in cloud. The device consists of a single server or a
group of servers with software that supports HTTP
communications protocol (web server), database
management system and dedicated applications. The role of
proxy server is reduced to managing and monitoring user
access to a hardware security module (HSM) where
cryptographic operations of cloud-based digital signature are
implemented. Process management includes user’s
authentication as well as collecting and formatting data sent
to the HSM. Proxy also performs monitoring and logging
system events.

D. Hardware Security Module (HSM)

HSM is a device with built-in secure cryptoprocessor
dedicated to managing cryptographic keys and carrying out
cryptographic operations of cloud-based digital signature.
The HSM certified by NIST [24] is considered tamper-
resistant, which is why the environment of this protocol
entity is assumed secure in both the logical and physical
layer.

As mentioned earlier, the basic model of cloud-based
signature service assumes that Signer signs data he owns.
The model describes the interaction of three entities
(Signer/Issuer, Proxy and HSM). Signer/Issuer and Proxy
communicate with HTTP protocol. In order to provide a
higher level of security, this communication should be made
over a secure TLS channel. HSM can be connected to
Proxy as a built-in device (e.g., PCI device) or reside as a
standalone cryptoserver. The detailed configuration of cloud
environment (Proxy and HSM) is beyond the scope of this
paper.

IV. PROTOCOL DETAILS

User, in addition to unique identifier �name� and
password �pass�, has a mobile phone with active SIM card
and corresponding phone number. This device is used to
receive text messages, sent from the signing system,
containing the value of one-time password (OTP).

Each user is assigned an asymmetric public-private key
pair (kpub

user
, kprv

user) representing electronic signature keys. Key

69Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

kprv
user is used to digitally sign data, which is why its protection

is critical from a security point of view.
Hardware security module maintains its own asymmetric

key pair (kpub
hsm

, kprv
hsm

) , symmetric key K, the value of
OTPsecret for the one-time password generation algorithms
and implements the following:

• Gen - password-based key derivation function [8],
• Symenc, Symdec - encryption and decryption

algorithm of symmetric cipher working in
Authenticated Encryption (AE) mode [9,10],

• Asym - asymmetric cipher,
• Sign

Asym
 - digital signature algorithm,

• GenOTP - one-time passwords generator [11,12].

Proxy stores k�
user

 necessary to restore the user's private key:

 k�
user

=	Sym
K

enc(Sym
Gen�pass�
enc 	kprv

user
) (1)

In order to sign a document (doc), the following steps are
performed:
1. User connects to the Proxy and pre-authenticates. In

order to keep the protocol as simple as possible, Signer
uses only one password in the system. Although the pre-
authentication process is used mainly for phone number
identification, it uses the same password that secures
users private key. That’s why security requirements for
this process should be relaxed, for example, by using
collision-rich functions [7]. Another idea is to allow
clients to pre-authenticate to servers using zero-
knowledge proofs.

2. The server identifies the phone number of the
authenticated user and initiates the process of providing
one-time code OTP.

3. The user downloads the software, necessary for protocol
communication, as a dynamic website. Using the
supplied implementation of algorithms User generates:

 doc� = Sym
Gen(pass||OTP)

enc (doc) (2)

 pass� = Asym
kpub

hsm(pass) (3)

 and sends (login, pass, doc�) to Proxy.
4. Proxy forwards (pass, doc�) dataset received from user

together with k�
user

 suitable for an authenticated user to
the security module (HSM).

5. HSM restores:

 pass=Asym
Kprv

hsm(pass�) (4)

 OTP=GenOTP(k�
user

 || OTPsecret) (5)

 doc=Sym
Gen(pass||OTP)

dec (doc�) (6)

 kprv
user

= Sym
Gen�pass�
dec (Sym

K

dec(k�
user

)) (7)

As the algorithm Sym���operates in AE mode, operation
(6) confirms the integrity and authenticity of the
document and verifies the one-time password. Similarly,
operation (7) also authenticates User by verifying (pass).

6. Security module (HSM) signs a document using the
user's private key kprv

user

 docsign= Sign
kprv

user(doc) (8)

Fig. 1 depicts a detailed view of the protocol flow by
describing the sequence of actions in a process. The key
features can be summarized as follows:

• Independent proofs. Security of the user's private
key relies on two independent proofs of identity:
something the user has (registered SIM card and the
phone receiving one-time passwords) and something
the user knows (password).

• 'Sole control'. The private key remains under the
user’s 'sole control'. Key data is encrypted with
password known only by Signer. It is impossible to
restore even by the service provider. The only person
who can do that is Signer. The concept of 'sole
control' is discussed in detail in [14].

• Security functions in HSM. All main security
functions are moved to a secure environment of
Hardware Security Module. Outside the HSM
private keys and data to be signed are always
encrypted. Verification of independent proofs
(password and one-time password) is also
implemented in HSM by using a symmetric cipher in
AE mode.

• High usability level. From Signer’s point of view
digital signature process has been reduced to
standard authentication and secure data transfer (see
Fig. 1). Signer does not need any dedicated devices
for digital signature.

• Event logging. Proxy can be used as an event logger
in the system, which meets the requirement to
include generating digital signature into the security
process of public key infrastructure (PKI) pointed
out in [6].

V. SIGNER ENTITY IMPLEMENTATION NOTES

As mentioned earlier, there are some implementation
issues related to client-side cryptographic operations that
must be analyzed in order to estimate the additional
computational overhead of the proposed protocol when
comparing to basic server-side digital signature protocol,
with no client-side encryption (e.g., one proposed in [16]).

First of all, the client-side cryptographic operations,
performed in step 3 of the protocol, are executed
transparently in browser environment and will probably be
implemented in JavaScript. Most web programmers agree
that the biggest challenge in web design lies in dealing with
the variety of browsers. While the majority of active page
elements are reliably rendered in most browsers, each
browser has its own quirks when it comes to the
implementation of JavaScript engine. This might cause

70Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

different overhead for the same machine when performing
cryptographic computation in different browsers. Secondly,
client-side data encryption requires loading local files. Such
feature is not supported by older browsers. A standard way
to interact with local files was introduced in HTML5
specification, so an up-to-date, HTML5-enabled browser is
required to interact in the protocol. Although this entails
additional restrictions, the need to use an up-to-date browser
also meets the security requirements mentioned in Section 3.

Further notes are based on Signer entity implementation,
prepared as dynamic HTML page with SJCL library for
cryptography in JavaScript [20]. For asymmetric encryption
256-bit ElGamal ECC was used. Symmetric encryption is
performed with 128-bit AES in CCM mode. Table I shows
the average execution time for step 3 (see Section 4) for
different sizes in different browsers.

It has been observed that performing symmetric
encryption on larger files causes browser to freeze. This
behavior is unacceptable in terms of usability. To avoid this,
larger files should be split into smaller parts and encrypted
separately. When choosing the size of file splitter the
following factors must be taken into consideration. Still,
encryption of large file parts might cause the browser to
freeze on older machines. Small file parts increase the
number of iterations in encryption loop, which influences
overall performance.

Table II shows the average execution time of encrypting
10 MB file with different splitter size. The test was
performed on two different computers with high and low
computing power, respectively.

In addition to computation overhead, there is also the
additional download size of required scripts. Using well-
known optimization techniques this size can be reduced to
approximately 50kB, which is negligible from the user’s
point of view.

VI. RELATED WORK

A secure digital signature creation environment, based on
mobile devices and smart cards, is defined and analyzed by
A. Mana et al. [15]. Storing private key on signer's SIM card
is proposed by H. Rossnagel [16]. A more server-side
approach with encrypted private keys is presented by M.
Centner et al. [17]. The same authors in [18] designed a
digital signature service based on smartcard-reader
middleware as a Java applet. A proof-of-concept prototype
of this approach has been implemented as a web-based
signing service. A signing scheme for thin clients, with
server based processing is presented by Y. Lei et al. [13]. J.
Anderson et al. [7] proposes a protocol, which allows users
to store secrets, such as private keys, in the cloud, using the
services of several key recovery agents.

On-going work on novel signing service schemes is also
related to European Commission's mandate M/460. The UE
standardization platform is prepared by two European
standardization organizations, CEN [25] and ETSI [26]. In
[19], the Commission indicates new perspectives and
challenges for the platform. Many of them (e.g., cross-border
compliance) can be implemented with cloud-based
processing logic.

TABLE I. AVERAGE EXECUTION TIME FOR DIFFERENT DOC SIZES IN
DIFFERENT BROWSERS

File
size

Execution time(ms)

Chrome Firefox IE

100kB 688 344 186

200kB 814 392 245

500kB 1186 559 422

1MB 1521 820 688

10MB 11183 5825 5188

20MB 23634 11564 9932

TABLE II. AVERAGE EXECUTION TIME FOR DIFFERENT DOC SIZES IN
DIFFERENT BROWSERS

Splitter size
Execution time(ms)

Computer 1 Computer 2

100kB 6246 15319

500kB 5955 14452

1MB 5884 13747

5MB 5673 freeze

Things to consider when moving digital signature model,

or, more general Public Key Infrastructure into cloud are
addressed by H. Kharche et al. [4]. Brown and Robinson [5]
show how existing security protocols (like TLS) can derive
from cloud computing. Important cloud-specific security
issues are also pointed out by R. Chow et al. [22].

VII. CONCLUSION AND FUTURE WORK

The proposed cloud-based digital signature protocol
meets the usability and cross-platform requirements laid
down in Section 2. Although the protocol was designed
taking into account the security requirements, future studies
are required in order to prove its security.

As the proposed protocol is mainly focused on signer-
cloud communication, further studies are require to show
how such digital signature model can exploit cloud benefits.
Moreover, the protocol can be extended to handle more
complex models (e.g., with Signer and Issuer role
separation). Advanced digital signature services can be also
developed based on the proposed protocol (e.g., Forward-
Time Public Key proposed in [21]).

The cloud-based digital signature can also be analyzed
for compliance with law and regulations of the qualified
electronic signature. When it comes to EU regulations,
similar studies are presented by M. Centner et al. [17].

REFERENCES
[1] P. Mella and T. Grance, “The NIST Definition of Cloud Computing”.

Special Publication 800-145, NIST, Sep. 2011.

[2] Security requirements for cryptographic modules, FIPS PUB 140-2,
NIST, Dec. 2002.

[3] D. Davis, “Compliance Defects in Public-Key Cryptography”, Proc.
6th Usenix Security Symp., Jul. 1996, pp.171-178.

71Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

[4] H. Kharche and D. S. Chouhan, “Building Trust In Cloud Using
Public Key Infrastructure -A step towards cloud trust”, International
Journal of Advanced Computer Science and Applications, vol. 3, no.
3, Mar. 2012, pp. 26-31.

[5] J. Brown and P. Robinson, “PKI Reborn in the Cloud”, conference
slides, RSA Conference Europe, Oct. 2011,
http://365.rsaconference.com/docs/DOC-3037 [retrieved: March
2013].

[6] C. Ellison and B. Schneier, “Ten Risks of PKI: What You're not
Being Told about Public Key Infrastructure”, Computer Security
Journal, vol. 16, no. 1, 2000, pp. 1–7.

[7] J. Anderson, F. Stajano, “On Storing Private Keys 'In the Cloud'
Extended Abstract”, unpublished,
http://www.cl.cam.ac.uk/~jra40/publications/2010-SPW-key-
storage.pdf [retrieved: March 2013].

[8] B. Kaliski, “PKCS #5: Password-Based Cryptography Specification
Version 2.0”, RFC 2898, IETF, Sep. 2000.

[9] D. Whiting, R. Housley, and N. Ferguson, “Counter with CBC-MAC
(CCM)”, RFC 3610, IETF, Sep. 2003.

[10] P. Rogaway, M. Bellare, J. Black, and T. Krovetz, “OCB: A Block-
Cipher Mode of Operation for Efficient Authenticated Encryption”,
ACM Transactions on Information and System Security (TISSEC),
vol. 6, no. 3, Feb. 2003, pp. 365-403.

[11] D. M'Raihi, S. Machani, M. Pei, and J. Rydell, “TOTP: Time-Based
One-Time Password Algorithm”, RFC 6238, IETF, May 2011.

[12] D. M'Raihi, M. Bellare, F. Hoornaert, D. Naccache, and O. Ranen,
“HOTP: An HMAC-Based One-Time Password Algorithm”, RFC
4226, IETF, Dec. 2005.

[13] Y. Lei, D. Chen, and Z. Jiang, “Generating Digital Signatures on
Mobile Devices”, Proc. 18th International Conference on Advanced
Information Networking and Applications, Mar. 2004, pp. 532-536.

[14] Public Statement on Server Based Signature Services (Forum of
European Supervisory Authorities for Electronic Signatures), Forum
of European Supervisory Authorities for Electronic Signatures
(FESA), October 2005, http://www.fesa.eu/public-
documents/PublicStatement-ServerBasedSignatureServices-
20051027.pdf [retrieved: March 2013].

[15] A. Mana and S. Matamoros, “Practical Mobile Digital Signatures”,
Prec. EC-WEB '02 Proceedings of the Third International Conference
on E-Commerce and Web Technologies, Sep. 2002 ,pp.224-233.

[16] H. Rossnagel, “Mobile Qualified Electronic Signatures and
Certification on Demand”, Proc. 1st European PKI Workshop
Research and Applications, Jun. 2004, pp.274-286.

[17] M. Centner, C. Orthacker, and C. Kittl, “Qualified Mobile Server
Signature”, Proc. 25th International Information Security Conference,
Sep. 2010, pp. 103-111.

[18] M. Centner, C. Orthacker and W. Bauer, “Minimal-footprint
Middleware for the Creation of Qualified Signatures”, Proc. WEBIST
2010 International Conference on Web Information Systems and
Technologies, Apr. 2010, pp. 64-69.

[19] Proposal for a regulation of the European Parliament and of the
Council on electronic identification and trust services for electronic
transactions in the internal market, Commision staff working paper,
Jun. 2012.

[20] E. Stark, M. Hamburg, and D. Boneh, “Symmetric cryptography in
javascript”, Proc. ACSAC '09 Annual Computer Security
Applications Conference, Dec. 2009, pp.373-381.

[21] J. Riordan and B. Schneier, “Environmental Key Generation towards
Clueless Agents. Mobile Agents and Security”, G. Vigna, ed.,
Springer-Verlag, 1998, pp. 15-24.

[22] R. Chow, P. Golle, M. Jakobsson, E. Shi, J. Staddon, R. Masuoka,
and J. Molina, “Controlling data in the cloud: outsourcing,
computation without outsourcing control”, Proc. 2009 ACM
workshop on Cloud computing security, Nov. 2009, pp.85-90

[23] International Organization for Standardization, http://www.iso.org
[retrieved: March 2013]

[24] National Institute of Standards and Technology, http://www.nist.gov
[retrieved: March 2013]

[25] European Committee for Standardization, http://www.cen.eu
[retrieved: March 2013].

[26] European Telecommunications Standards Institute,
http://www.etsi.org [retrieved: March 2013].

Figure 1. UML activity diagram for cloud-based digital signature protocol.

72Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

