
A RESTful Approach for a Cloud Gateway

Chang Ho Yun, Jong Won Park, Hae Sun Jung,

Yong Woo LEE

School of Electrical & Computer Engineering

The Ubiquitous-City (Smart City) Consortium, the

University of Seoul

Seoul, South Korea

{touch011, comics77, banyasun, ywlee}@uos.ac.kr

Haeng Jin Jang

Korea Institute of Science and Technology Information

Seoul, South Korea

hjjang@kisti.re.kr

Abstract— Polar research is active nowadays since it gives us

many kinds of information about global climate change so that

we can respond to it more properly. We found that the

research can have much benefit by using a data farm approach,

which gives high performance computing power without limit.

Here, we are interested in providing more convenient and

useful interface to use the high performance computing power

in the polar research. This paper presents a cloud gateway,

that is, a science research gateway which supports cloud and

grid computing in a unique REST architecture. It provides

facilities and interfaces which enable polar researchers to do

computer supported remote collaborative work as well as to

use data farms.

Keywords-Cloud Computing; Grid Computig; REST; Web

Service; Science Gateway; Polar Research.

I. INTRODUCTION

Recently, the change of global climates has emerged as a
global agenda [1]. It has attracted much attention so far and
would do so more and more in future. Korea has been doing
polar research to cope with the problem as well as many
other useful issues which are global issues nowadays. Cloud
computing and Grid computing can significantly help the
polar research experts. We develop a scientific research
gateway, called as Cloud Gateway, which enables the polar
research experts to use the technologies with easiness and
efficiency.

The Cloud Gateway also provides a collaboration
environment for the various kind of polar research. Polar
researchers can do computer supported cooperative work and
share data among interesting research groups beyond
geographical gaps and regardless of different working times.
The management of polar metadata can be easy and efficient
with it.

The Cloud Gateway consists of three tiers - Infrastructure
Tier, Processing Tier and Presentation Tier - to support the
distributed environment. It uses RESTful Web services [2]
for the data transmission and service request between each
tier. Also, it collects, processes and provides many kinds of
information such as Portable Batch System (PBS) accounting
information, information of file system, CPU information
and slave node information to users.

The Cloud Gateway was designed to meet the following
two requirements. Firstly, it should support geographically
scattered multiple computing facilities such as clusters, web
servers, databases, etc. through integrated service. Secondly,
the service should be provided in a user-transparent way.
That is, it should enable polar researchers to use the
computing resources without pushing them to know any
detailed knowledge of the underlying technologies of the
Cloud Gateway.

The Cloud Gateway also has the following three
distinctive factors. Firstly, it has three-tier architectures as
explained before. Secondly, it uses REST technologies so
that users can access geographically scattered multiple
computing facilities through a single interface as explained
before. Thirdly, the web portal is used as the user access
point to the Cloud Gateway in order to meet the user
transparency requirement.

The outline of the paper is organized as follows: Section
2 investigates related works. Section 3 outlines the design of
the Cloud Gateway. Section 4 explains how it was
implemented. Finally, Section 5 gives conclusions and our
plan to the future works.

II. RELATED WORKDS

Currently existing science gateways usually provide high
end resources to a community of users, scientists, and
engineers through web-based graphical interface [3]. A
common approach in the previous generation was to adopt
the JSR 168 portlet component model and WSDL/SOAP
style web services.

The TeraGrid User Portal serves as a launch pad for new
users and a control panel for current users by integrating
TeraGrid Resource Provider, services, and information into a
single web interface serving a national community of
computational researchers [4][5].

The Linked Environments for Atmospheric Discovery
(LEAD) Portal is a science application portal which was
designed to enable effective use of Grid resources in
exploring mesoscale meteorological phenomena [6].

WLCG provides graduate and accurate verification of
performance of hardware resources such as CPU, storage,
and network. It also provides the middleware services for

56Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

Grid projects and the LHC experiment-specific software
applications [7].

PolarGrid portal added current social networking
techniques to a typical science gateway model to enable a
scientific collaboration [8]. It uses a RESTful Web-service
and Web 2.0 technologies. However, it just uses them for
user interface, not for managing computing resources.

World Wide Web was usually chosen as preferred
infrastructure. Thus, most initiatives adopted Web
technologies such as CORBA (Common Object Request
Broker Architecture) [9], OLE/DCOM [10], SOAP (Simple
Object Access Protocol), etc. Especially, SOAP is the de
facto standard in current science gateways.

REST is widely used because of its simplicity and
lightweight [11]. McFaddin et. al. [12] and Christensen [13]
proposed RESTful service for mobile environments. Volkel
[14] proposed RESTful wiki architecture. Twitter [15],
Flickr [16], Amazon Simple Storage Service (Amazon S3)
[17], Amazon Elastic Compute Cloud (Amazon EC2) [18],
and others provide a REST application programming
interface (API) to their users. However, the RESTful
approach has been seldom applied to the management of
science gateways. Contrastingly, our Cloud Gateway
provides RESTful Web services to manage it.

III. ARCHITECTURE

Our Cloud Gateway uses the three tier Architecture and
RESTful Web service technologies in order to support a
distributed computing environment. There, technologies of
Java platform was used in order to make the Cloud Gateway
be independent of computing platform.

Figure 1. The architecture of the Cloud Gateway.

Figure 1 shows the architecture of the Cloud Gateway.
The tier 1 of the Cloud Gateway is the Cloud Gateway Agent.
The Cloud Gateway Agent is installed on PBS Clusters. It’s
role is to communicates with the Cloud Gateway Manager. It
collects information of CPU, file system, accounting, etc. in
the PBS system and passes an asynchronous message to the
Cloud Gateway Manager when accounting information is

updated. The tier 2 of the Cloud Gateway is the Cloud
Gateway Manager. It does logical processing. It determines
whether the data exist in the metadata database or not. If the
data does not exist, then it collects the data from the Cloud
Gateway Agent when the Cloud Gateway Portal requests
information of accounting or file system. The Cloud
Gateway Portal shows information of accounting and system
resources in the PBS clusters through graph or table. It
provides interface to manage the file system of each node.
Because the Cloud Gateway uses 3 tier architecture, users
can easily manage the scatted resources in cloud computing
environments and/or grid computing environments. Figure 2
shows the operational concept of our three-tier architecture
that can manage multiple clusters.

Figure 2. The multiple cluster management of the Cloud Gateway.

A. Cloud Gateway Agent

The Cloud Gateway Agent gives RESTful web service
and is installed on the master node of the PBS cluster system.
The components of the Cloud Gateway Agent are the
Management Backend, the Management Agent and the
Asynchronous Event Sender.

The Management Backend provides a management
interface to the Management Agent and the Asynchronous
Event Sender. It returns proper responses such as the CPU
information, the file system information, the accounting
information and the detail information of slave nodes of the
PBS system to the Management Agent according to requests
from the Management Agent. The Asynchronous Event
Sender receives an event from the Management Backend and
sends a notification of the event to the Asynchronous Event
Acquirer of the Cloud Gateway Manager. And, it also sends
the request message when the Cloud Gateway Agent is
added to the Cloud Gateway Manager in a first time. The
Management Frontend returns the response according to
requests of the Management Client of the Cloud Gateway
Manager through RESTful web service interface. The
resource managed by the Cloud Gateway Agent can be
accessed through HTTP methods such as GET, POST, PUT,
and DELETE.

Figure 3 shows RESTful web service interface of the
Cloud Gateway Agent. It consists of the ci (Common
Information) and the pi (PBS Information).

57Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 3. RESTful web service interface of the Cloud Gateway Agent.

B. Cloud Gateway Manager

The components of the Cloud Gateway Manager are the
Frontend, the Management Broker, the Management Client,
The Asynchronous Event Acquirer, the Metadata Manager,
the Data Visualizer, the Metadata Database and the Image
Server.

The Frontend provides a RESTful web service-based
interface for the Cloud Gateway Portal. It receives requests
from the Cloud Gateway Portal, passes them to the
Management Broker, and returns responses. Figure 4 shows
the RESTful web service interface of the Frontend. It can
also be accessed through HTTP methods such as GET,
POST, PUT, and DELETE.

The Management Broker is accessible by the Frontend
and the Asynchronous Event Acquirer and provides them
with the response according to the request from them. It
manages the agents, obtains monitoring information from the
Metadata Manager and the Management Client. The
Management Broker cannot access other tiers and the Meta
database and uses the Management Client to access other
tiers. The Metadata Manager accesses the Meta database.

The Management Client and the Asynchronous Event
Acquirer communicate with the Cloud Gateway Agent. They
do not do any logical behaviors and pass the event to the
Management Broker. The Management Client requests the
necessary data such as the status of PBS slave nodes to the
Cloud Gateway Agent which uses them to perform the
service of the Management Broker.

The Asynchronous Event Acquirer receives the
asynchronous event from the Asynchronous Event Sender of
the Cloud Gateway Agent. The Metadata Manager can only
access the Metadata Database. The Data Visualizer processes
images for collaboration among polar researchers. These
images are stored in the Image server. In request of the
Cloud Gateway Portal, they are provided through the
Frontend.

Figure 4. REST web service interface of the Cloud Gateway Manager.

C. Cloud Gateway Portal

The Cloud Gateway Portal is a user transparent web
portal. Its components are the REST Facade, the Job
Running Status, the Storage Capacity and the File
Management. The Cloud Gateway Portal uses
Springframework and Ajax/Javascript.

The REST Façade manages the requests and the
responses from the Cloud Gateway Portal to the Cloud
Gateway Manager. The Job Running Status requests
accounting information of PBS cluster using the REST
Façade, translates the response to contents such as the chart
and the table and shows them. The Storage Capacity
component requests the storage and the file system
information of PBS cluster using the REST Façade,
translates the response to contents such as the chart and the
table and shows them. The File Management requests the
information of the file systems in PBS cluster using the
REST Façade, help download and upload and modify the
files.

IV. IMPLEMENTATION

We implemented the Cloud Gateway on a Linux system
using Java language. However, the Cloud Gateway Manager
and the Cloud Gateway Portal can be installed on any
operating system with Java and Tomcat. MySQL was used
as the Metadata database. We used the Restlet package [19]
to build the RESTful Web services. Jnotify package [20] was
used to monitor PBS accounting as a tool [21] for the Cloud
Gateway Agent.

The operations of the Cloud Gateway can be one of the
following three types. First, the response result for request
from the Cloud Gateway Portal exists in the Metadata
Database of the Cloud Gateway Manager. Second, it does
not exist in the Cloud Gateway Manager, so the Cloud
Gateway Manager queries the request to the Cloud Gateway
Agent. Third, the Cloud Gateway Agent sends the
notification of changing the status of the PBS cluster to the
Cloud Gateway Manager.

58Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 5. The processing of Job accounting.

An example of the first type is shown in Figure 5. When
the user requests job accounting information, the REST
Façade of Cloud Gateway Portal requests URL of
“/monitoring/report/jobcount” to the RESTful web service
interface of the Frontend of the Cloud Gateway Manager.
Then, the Frontend sends the message to the Management
Broker and the Management Broker analyses the request.
Because the Management Broker can find response result in
the Metadata Database, the Management Broker collects
accounting information by using the Metadata Manager and
returns the result to the REST Façade through Frontend.

Figure 6. The processing of qnodes request.

An example of the second type is shown in Figure 6.
When the user requests the information of slave nodes in
PBS cluster, the REST Façade requests the URL of
“/realtime/qnodes” to the RESTful web service of the
Frontend of the Cloud Gateway Manager. The Frontend
sends the request to the Management Broker and the
Management Broker analyses it. Because the data are not in
the metadata database, the Management Broker requests the
URL of “/agnetinfo/pi/qnodes” to the Management Frontend
of the Cloud Gateway Agent through the Management Client.
The Management Frontend sends the received request to the
Management Backend and the Management Backend queries
the request to PBS cluster. The result of the query is returned
to the Management Client through the Management Frontend.
The Management Client sends it to the Management Broker.
The Management Broker returns the result to the REST
Façade of the Cloud Gateway Portal.

Figure 7. The processing of asynchronous event.

An example of the third type is the asynchronous event in

the Management Backend. The Management Backend of the
Cloud Gateway Agent monitors the accounting logs of PBS
cluster. If the logs are found to be changed, then the
Management Backend sends the asynchronous event to the
Asynchronous Event Acquirer through the Asynchronous
Sender. The Asynchronous Event Acquirer sends the event
to the Management Broker. The Management Broker
analyses it and checks the need to update the Metadata
database. If the Metadata Database is needed to be updated,
then the Management Broker requests the data to the
Management Frontend of the Cloud Gateway Agent through
the Management Client. The Management Frontend returns
the result that is acquired from the Management Backend.
Then the Management Client sends the result to the
Management Broker. Now the Management Broker updates

59Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

the Metadata Database using them through the Metadata
Management.

Figure 8, 9, and 10 show the snapshot of job running
status, the snapshot of job status, the snapshot of file
management respectively.

Figure 8. The snapshot of job running status.

Figure 9. The snapshot of job status.

Figure 10. The snapshot of file management.

V. CONCLUSION

This paper proposed our cloud gateway model and its
RESTful approach in order to support cloud computing, Grid
computing, computer supported collaboration, etc. for the
polar research. The Cloud Gateway uses the three tier
architecture to provide the RESTful web service. Therefore,
users can access geographically scattered multiple
computing facilities such as clusters, web servers and
databases through a single interface easily, efficiently and
user-transparently. The future works are planned to add
analysis tools for geospatial query components and
visualization components.

ACKNOWLEDGMENT

This study was supported by the Ministry of Education,
Science and Technology in Korea and KISTI (Korea
Institute of Science and Technology Information). This study
was also supported by the Seoul Research and Business
Development Program, Smart (Ubiquitous) City Consortium
(10561) and Seoul Grid Center. This work was also
supported by the 2011 research fund of the University of
Seoul (Yong Woo LEE : the corresponding author).

REFERENCES

[1] M. Kok, W. Vermeulen, A. Faaij, and D. Jager, Global Warming and

Social Innovation: The Challenge of a Climate Neutral Society,
Earthscan Publications Ltd, 2002.

[2] R. T. Fielding. Architectural Styles and the Design of Network-based
Software Architectures, doctoral dissertation, 2000.

[3] N. Wilkins-Diehr, D. Gannon, G. Klimeck, S. Oster, and S.
Pamidighantam, “TeraGrid Science Gateways and Their Impact on
Science,” IEEE Computer, vol. 41, Nov. 2008, pp. 32-41, doi:
10.1109/MC.2008.470.

[4] M. Dahan, E. Roberts, and J. Boisseau, “TeraGrid User Portal v1.0:
Architecture, Design, and Technologies,” Proc. International
Workshop on Grid Computing Environments, Nov. 2006.

[5] J. Basney, V. Welch, and N. Wilkins-Diehr, “TeraGrid Science
Gateway AAAA Model: implementation and lessons learned,” Proc.
The 2010 TeraGrid Conference, Aug. 2010, pp. 1-6, doi:
10.1145/1838574.1838576.

[6] M. Christie and S. Marru, “The LEAD Portal: a TeraGrid gateway
and application service architecture,” Concurrency and Computation:
Practice and Experience, vol. 19, Apr. 2007, pp. 767-781, doi:
10.1002/cpe.1084.

[7] D. Bonacorsi and T. Ferrari, “WLCG Service Challenges and Tiered
architecture in the LHC era,” IFAE 2006, pp. 365-368,
doi:10.1007/978-88-470-0530-3_68.

[8] Z. (G.) Guo, R. Singh, and M. Pierce, “Building the PolarGrid Portal
Using Web 2.0 and OpenSocial,” Proc. The fifth Grid Computing
Environments Workshop, 2009, article no.5, doi:
10.1145/1658260.1658267.

[9] Object Management Group, Inc, Cobra [retrieved: Mar. 2013],
http://www.corba.org/

[10] Microsoft, DCOM [retrieved: Mar. 2013], http://www.microsoft
.com/COM/

[11] C. Pautasso, O. Zimmermann, and F. Leymann, “Restful web services
vs. “big” web services: making the right architectural decision,” Proc.
The 17th international conference on World Wide Web (WWW 08),
2008, pp. 805-814, doi: 10.1145/1367497.1367606.

60Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

[12] S. McFaddin, D. Coffman, J. H. Han, H. K. Jang, J. H. Kim, J. K. Lee,
M. C. Lee, Y. S. Moon, C. Narayanaswami, Y. S. Paik, J. W. Park,
and D. Soroker, “Modeling and Managing Mobile Commerce Spaces
Using RESTful Data Services,” Proc. The Ninth International
Conference on Mobile Data Management (MDM 08), Apr. 2008, pp.
81-89, doi: 10.1109/MDM.2008.38.

[13] J. H. Christensen, “Using RESTful web-services and cloud
computing to create next generation mobile applications,” Proc. The
24th ACM SIGPLAN conference companion on Object oriented
programming systems languages and applications (OOPSLA 09),
2009, pp. 627-634, doi:10.1145/1639950.1639958.

[14] M. Volkel, “Semwiki: a restful distributed wiki architecture,” Proc.
The 2006 international symposium on Wikis (WikiSym 06), 2006, pp.
141-142, doi:10.1145/1149453.1149486.

[15] Twitter, Twitter REST API [retrieved: Mar. 2013],
https://dev.twitter.com/docs/api

[16] Yahoo, flickr REST API [retrieved: Mar. 2013],
http://www.flickr.com/services/api/response.rest.html

[17] Amazon, Amazon Simple Storage Service REST API [retrieved: Mar.
2013], http://docs.amazonwebservices.com/AmazonS3/latest/API/
APIRhest.html

[18] Amazon, Amazon Elastic Compute Cloud REST API [retrieved: Mar.
2013], http://docs.amazonwebservices.com/AWSEC2/latest/APIRefe
rence/Welcome.html

[19] Noelios Technologies, Restlet [retrieved: Mar. 2013],
http://www.restlet.org.

[20] O. Yadan, jnotify [retrieved: Mar. 2013],
http://jnotify.sourceforge.net/

[21] R. Mach, PBS XML Accounting Toolkit [retrieved: Mar. 2013],
http://pbsaccounting.sourceforge.net/

61Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

