
Challenges with Tenant-Specific Cost Determination in Multi-Tenant Applications

Anna Schwanengel and Uwe Hohenstein

CT RTC ITP SYI-DE, Siemens AG
Munich, Germany

{anna.schwanengel.ext, uwe.hohenstein}@siemens.com

Abstract— One key element to make Software-as-a-Service
(SaaS) successful is so called multi-tenancy, which refers to
an architecture model where one software instance serves a
set of multiple clients of different organizations (tenants).
Hence, it reduces the number of application instances and, in
that way, operational costs in a Cloud. The problem SaaS
providers are faced within everyday’s business is how to
define a billing model that has the chance to make profit in a
public Cloud. Being profitable with SaaS, the art is to bill
tenants in such a way that covers the costs for resources for
the underlying PaaS/IaaS provider. This paper discusses
some challenges with metering the consumption of tenants as
a prerequisite for defining a profitable billing model.

Keywords - Software-as-a-Service; Multi-Tenancy; Billing;

Costs; Resource Utilization

I. INTRODUCTION

Since many years a paradigm shift how software is
delivered to customers occurs. It changed from installing
developed software applications at the customer in-house
and operating it on-premise, to a more consumer-based
model. Software became an on-demand service drawn
from the Internet, i.e., Software-as-a-Service (SaaS) [1].
SaaS is a delivery model that enables customers to rent
services without local installation and license costs.

In this context, multi-tenancy is a key element to
achieve a successful SaaS business, though not being the
guarantor for more revenue. Multi-tenancy means multiple
tenants from different organizations share a system
operated by one company. The respective application is
used by several tenants of a SaaS provider [2]. Thereby,
each tenant serves plenty of users who actually use the
software. A multi-tenant architecture postulates that the
application is able to partition its data and procedures
virtually. Each tenant gets a virtual instance, which can be
customized according to his wishes, running on the same
physical instance, while not being influenced or even
aware of the other tenants working concurrently.

In single-tenant systems, each tenant obtains its own
instance running the application (or database), which
reduces management efforts regarding the mapping of the
resources to each tenant. However, looking at the overall
efficiency, one can observe some drawbacks, as in a lot of
cases many server instances will be low utilized at most
time points [3]. This system utilization can be improved by
operating a multi-tenant service, where fewer instances are
used to serve tenants in a shared environment. Moreover,

operational costs can be saved when the SaaS provider
deploys an application on the PaaS or IaaS layer of a
Cloud provider. A SaaS provider pays for the resources his
SaaS application uses. That means being charged by CPU
time, number of transactions, database space etc. The more
payable resources are shared, the less costs an application
produces. One important aspect is to design the
architecture in a way that uses the resources efficiently [4].

In this paper, we focus on another economical problem
of SaaS providers, which has been paid less attention in
the research area. On the one hand, we have cost models
defined by IaaS/PaaS providers, a SaaS provider has to
pay for when running applications. But a SaaS provider
has also to define a billing model to charge his tenants for
application usage. Both models have to be balanced in a
way that SaaS providers obtain a suitable return of
investment and are able to make profit while having an
attractive billing model for tenants. The investment covers
both, the Cloud operational costs and costs for application
development or SaaS-enabling of existing applications.

We are approaching this aspect from a technical view.
A lot of billing methods have been discussed in the literat-
ure such as pay-as-you-go, pay-per-user, pay-per-feature,
or a fixed monthly fee [5]. All have in common that a SaaS
provider has to keep an overview over total costs and
tenant-specific costs in order to offer a profitable billing
model. Section II stresses this point and motivates the need
for tenant-specific metering of resource consumption.

We present challenges for SaaS providers to balance
outgoing costs for the underlying PaaS/IaaS provider and
ingoing revenue from the tenants. We choose Windows
Azure for this investigation because of its PaaS offering
that ships with a complete development and deployment
environment. There are no problems with product
licensing, as this is part of the platform and the cost model,
which makes the cost calculation easier – see Section III.

Section IV gives some insight into cost reasoning for
multi-tenancy within Azure. Section V discusses what
technical concepts of Azure can be used to monitor tenant-
specific resource consumption. A prerequisite, how tenants
can be identified, is explained in Section VI. Section VII
provides an overview of related work in the multi-tenancy
area before Section VIII concludes and names future work.

II. PROBLEM SPACE

It is commonly agreed that a well-economical SaaS
provider has to support multi-tenancy, i.e., giving tenants a
tailored, best-fitting application satisfying their specific

36Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

requirements by customization, while sharing as much
resources as possible to achieve higher capacity utilization.
Thereby, SaaS provider have to reflect upon easy imple-
mentation (as in single-tenant systems, where every tenant
holds its own application) and costs (which is more ad-
justed in multi-tenant systems serving all tenants by one
instance). That is in accord with economy of scale sharing
both the underpinning infrastructure as well as the hereon
running software. This point can also be seen in [6] and
[7], where several architectures are distinguished regarding
what is shared by tenants: the topmost web frontend,
middle tier application servers, and underlying database.
Nevertheless, when supporting all tenants by one instance
in a multi-tenant system, the question is how to charge
each tenant, while targeting at profit. Defining a billing
model is easy but how to monitor whether it is reasonable?

Several billing models have been proposed. Most of
them are post-paid models. Thereby the tenant receives a
bill and pays for usage periodically [8]. To invoice the
consumption costs, usage of each tenant is observed and
aggregated [9]. The safest method from a SaaS provider’s
perspective is to charge tenants the same pay-as-you-go
way as PaaS/IaaS providers do for their resources, i.e.,
OPEX are directly forwarded to tenants, plus an additional
charge. Such a model is very technical and not cost-
transparent for tenants. From a SaaS provider’s view, this
situation is complicated when several tenants are served by
one instance. Therefore, it is important to estimate or even
compute the resource costs (e.g., for consumed storage, or
CPU), in particular how many resources one tenant uses.
This implies the monitoring of each tenant and logging the
way they use the application. More precisely, it requires
observing the resource usage of the applications for each
tenant, and raising an invoice based on usage metrics.

Alternatively, billing models can be based upon factors
that are better understandable by tenants, like usage time.
The problems for SaaS providers remain the same, and the
Cloud cost model must be transformed to a billing model.

A SaaS provider can also charge its tenants by a fixed
rate, e.g., per month. However, it is difficult to predict the
costs a tenant’s usage will produce. Moreover, exhaustive
usage by one tenant could reduce the SaaS providers’
revenue, even to minus. On these grounds, a precise cost
control of each tenant can be used to throttle frequent users
to reduce this risk – if SLAs are defined accordingly.

In a pay-per-user billing model, users must be
registered and the number is then known. However, there
is again a risk of undercharging over-utilizing tenants.

Billing may also be conducted in a pre-paid method.
Pre-paid clients load a deposit onto their accounts previous
to any consumption. During the usage, this credit is
debited and in case of reaching a limit, the tenant has to
reload money for service use. Although the pre-paid model
sounds promising to SaaS providers offering profit-ability,
the post-paid model is more common. Anyway, one has to
check whether a tenant’s limit has been reached.

All this comes along with a big problem for the SaaS
provider: he has no clue whether his offering is profitable.
A detailed monitoring of costs produced by tenants is

necessary, independent of the billing method. Besides, cost
models of IaaS/PaaS providers are quite complex and take
technical parameters into account. This makes it not only
difficult to estimate the costs for a given application [10],
but also to derive costs for each tenant. The different cost
factors that PaaS/IaaS providers charge (which differ
enormously from provider to provider) make it difficult to
run a clear-cut course. Several systems (e.g., EC2) bill
according to a usage-of-instance charge and raise the price
additionally based on the absolute number of transferred
bytes and not adapted on duration or network activity [11].

Another aspect, which requires closer attention, is that
an overview of the total amount of used resources and
resulting costs is usually only given on a monthly basis.
With only getting a monthly bill from a PaaS/IaaS
provider with an aggregated cost report over the consumed
resource capacity for his tenants, a SaaS provider could not
get any detailed data about the cash accounting. Thus, a
SaaS provider could not counteract in time, when his
service is getting unprofitable by tenants with frequently
active users. There is a strong need for a tenant-specific
accurate cost model, which is required for:

• a consumption-based model that charges back
tenants for their consumed resources;

• a tenant-specific profit-making check, which
illustrates, whether the chosen business model for
one/all customer(s) is appropriate to make profit;

• a timely reaction in order to throttle frequent and
too expensive tenants; Throttling just at the end of
a month will be too late to compensate losses.

This paper deals with these challenges of estimating costs
on a per-tenant basis. In particular, costs have to be con-
ducted in an efficient manner that only means a minimal
amount of extra burden, to avoid latency and costs.

III. MICROSOFT AZURE AND ITS COST FACTORS

Since we base our investigation on a concrete PaaS
platform, Microsoft Azure, we here briefly present basic
concepts and the cost model of the Azure Cloud platform
according to the status quo when writing this paper [12].

Compute instances (VMs including equipment), called
Web and Worker Roles, are charged for the number of
hours they are deployed. As seen in Table I, there are
several instance categories: A small instance (default)
costs $0.12 per hour; the more powerful medium, large,
and extra large instances have twice the price as the
preceding category, i.e., an extra large instance is charged
for $0.96 per hour (i.e., factor 8 compared to a small
instance). The instance categories scale in a linear manner
with regard to equipment. That is, a medium instance (M)

TABLE I: PRICES FOR COMPUTE INSTANCES

 CPU RAM HDD
(GB)

MBps $ / h I/O
performance

XS Shared 768MB 20 5 0.04 Low

S 1,6GHz 1,7 GB 225 100 0.12 Moderate

M 2 x 3,5 GB 490 200 0.24 High

L 4 x 7 GB 1000 400 0.48 High

XL 8 x 14 GB 2040 800 0.96 High

37Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

has double of CPU, disk etc. than a small instance (S)
resulting in a double price. The exception is an extra small
instance (XS) category. The prices are taken on an hourly
basis. Even if a compute instance is used for only 5
seconds, a full hour has to be paid.

For Azure table, blob and queue storages, costs depend
on bandwidth, storage consumption and transactions.

Storage is billed based upon the average usage during a
billing period. If, e.g., 10 GB of storage are used for the
first half of a month and none for the second half, 5 GB of
storage are billed for average usage. Azure measures the
consumption at least once a day. Each GB of storage is
charged with $0.07. Please note that storage consumption
takes into account the physical storage, which consists not
only of raw data; the length of property names, and the
property data types also affect the size of actual data [13].

Any access to storage by transactions has to be paid:
100,000 transactions cost $0.01. Bulk operations, which
bundle inserts, count as one transaction.

The outbound transfer to the North America and
Europe regions is charged with $0.12 per outgoing GB, the
Asia Pacific Region is more expensive. It is important to
note that the transferred data has some typical XML
overhead according to the protocol. Data transfer is for
free within the same affinity group, e.g., for compute
instances that run in the same data center. All inbound data
transfers to the Azure Cloud are also at no charge.

The costs for an Azure SQL Database, a virtualized
SQL Server, are also based on monthly consumption. Up
to 100 MBs are charged with $4.995 a month. Up to 1 GB,
the overall price is $9.99. Any GB exceeding 1 GB costs
$3.996. Having reached 10 GB, the prices again decrease
to $1.996 per additional GB, and beyond 50 GB, a GB
costs only $0.999. This means, a 10 GB is charged with
$45.954: $9.99 for the first GB, and 9 * $3.996 for the
remaining 9 GB. Azure instance is charged monthly for
the number of databases and amount of data used a day.
Further charged services exist, e.g., for authentication by
Azure Access Control, but they are out of scope here.

These cost factors are important for SaaS providers to
determine the price for a deployed application in a rented
PaaS/IaaS environment. Knowing the precise costs for the
SaaS application is the core element when a SaaS provider
forms a billing model for its tenants. Only in this case, the
SaaS provider can create an economical billing method of
accounting with high profit.

IV. REASONING FOR MULTI-TENANCY

Multi-tenancy is often presented as a solution to make
profit or to deploy SaaS applications economically. The
statement is more or less generally accepted. Anyway, we
want to provide some calculations to show the effect of
multi-tenancy in case of Microsoft Azure.

At first, we consider storing data in an Azure SQL
Database. The costs are primarily based on storage
consumption. But there is no cost difference between
storage in one or in several databases, no matter whether
placed on one database server. Hence, there seems to be no
cost-benefit for sharing one database or server between

several tenants. Hence, a question is arising: Are several
databases (one per tenant) really more expensive than
keeping all tenants’ data in one large database?

First, pricing in Azure occurs in increments of 1 GB.
Thus, four 1.1 GB databases are charged with 4*2 = 8 GB,
i.e., 8 * $9.99 = $79.92 a month, while a single database of
4.4 GB is charged with 5 GB. Next, the storage price
decreases with the size. Assume there are 4 tenants with
databases à 3.1 GB, 4.3 GB, 38.3 GB, and 87.2 GB
respectively. The monthly storage costs for having for
each tenant a database of its own are:

3.1 GB: 1*$9.99 (1st GB) + 3*3.996 = $ 21.978
4.3 GB: 1*$9.99 (1st GB) + 4*3.996 = $ 25.974
38.3 GB: $45.954 (1st 10 GB) + 19*$1.996 = $ 83.878
87.2 GB: $125.874 (1st 50 GB) + 38*$0.999 = $163.836

This is in total $295.666. In contrast, a single database for
all the 132.9 GB costs

$125.874 (1st 50 GB) + 83*$0.999 = $208.791.

This means a 26% cost reduction of $87. However, that
rough comparison does not take into account that record
sizes increase slightly for the one-in-all database due to the
tenantID for distinguishing tenants. Keep also in mind that
there is a limitation of 150 GB per database, which hinders
putting a higher amount of tenants with larger storage
consumption in one database!

The constellation is similar for table storages, albeit,
the cost decrease is much lower: Here, 1 GB costs 7ct.
Any additional GB exceeding 1 TB is charged with 6.5ct.
Beyond 50 TB, the price is 6ct. Storing 10 TB in ten 1-TB
tables ($700) makes a difference to one 10-TB table
($655). This plays a role only for larger data volumes.

For compute instances, 12 ct per hour are charged for a
small instance, i.e., $1,051.20 per year. Saving instances
by sharing services is, therefore, reasonable. There is a real
cost difference when the provider could serve ten tenants
with one instance ($1,051.20) instead of giving each tenant
an instance of its own (10 * $1,051.20).

We are faced with an additional hard decision in
determining whether to rent a higher amount of less
capable computing instances or to take rather fewer high
performing instances. From the cost’s view point at a first
glance, it makes no difference whether a SaaS provider
rents four small (S) instances or one large (L) instance; the
SaaS provider has to pay the same price for the same
capacity. However, if additional instances are required,
due to heavy load by tenants or serving an increasing
number of new tenants, a SaaS provider has to add extra
instances. In this process, however, the type of instance
(XS, S etc.) is already determined at deployment of the
application. If applications are designed for L instances,
the SaaS provider has to start a further L instance, even
though a cheaper S instance would have been sufficient to
serve the additional tenants’ users. That will result in a less
profitable service provisioning and in less revenue.
Generally, constant system utilization is improbable and
high variations in service usage often occur [14].

38Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

V. CHALLENGES FOR TENANT-SPECIFIC COST

ESTIMATION

In Section II, we motivated why monitoring tenant-
specific consumption costs are useful. In this section, we
discuss the features Microsoft Azure provides to this end,
thereby concentrating on real multi-tenant systems with
tenants sharing instances. We give some insight in what
support is available, to what extent, and what is missing.

A SaaS provider has only some basic support by
Azure. He gets a bill once a month for the monthly
consumption of all cost factors: CPU time, storage,
database units, outgoing data transfer, and number of
transactions. Furthermore, there is a management API
giving access to the recent deployment including
information about the number of instances of what size
and the starting time. Enabling performance counters
allows for tracking aggregated usage for Blobs, Tables and
Queues [15]. Please note all this is consolidated for one
storage account; the limit is 5 for Azure subscribers. Hence
giving each tenant a subscription of his own is unfeasible.

The structure of this section follows the Azure cost
factors and distinguishes some multi-tenancy approaches.

A. Azure SQL Database

1) Each tenant obtains a physical DB of its own
In this case, the database size can easily be determined by
means of a SQL query using the dictionary information.
However, one important question remains: When should
be the consumed storage measured?

The cost model says that the storage consumption is
measured once a day by Azure, but the time point is
unknown, because Azure argues that the charge amortizes
during the month. However, the storage consumption
might vary a lot day by day and in fact within one day.
According to this, even if we periodically check the
consumption each day, we do not know when Azure is
measuring, and this is relevant for our bill. If we take the
values for the consumption at noon, the consumption
might be completely different to midnight; maybe this is
the time Azure measures our occupancy. To solve this
point, Azure’s internal measuring must be laid open.

In addition to the storage consumption, Azure also
charges for the outgoing data transfer. Outgoing means
leaving the data center. This cost fact can be ignored
unless the SaaS application offers tenants a direct access to
the database, which is albeit rather unusual, e.g., due to
isolation and security issues [16].

2) Tenants share a common database
If a common database is shared by multiple tenants, it is
more difficult to determine a tenant’s part of the database.
Assuming that each tenant is maintained by a unique
tenant identifier (tenantID), it is possible to count the
number of records in each table in order to get a rough
impression. Nevertheless, this number does not reflect the
storage consumption since the length of records might
vary from tenant to tenant. A more complex and time-
consuming query can sum up the length of all values.
Furthermore, the storage for indexes remains unknown.

Moreover, the same questions as above remain about
when to measure the numbers for database consumption;
we again do not have any information at which time point
Azure’s measurement takes place.

B. Azure Table Storage

The table storage usage is charged by outgoing data
transfer, memory usage, and the number of transactions.

1) Each tenant obtains a physical table set of its own
Unfortunately, there is no efficient way to measure the
physical table size. The management API does not yield
concrete measurements or consumption numbers, but only
a monthly summary for a complete storage account (with
several tables). To counteract this lack in tenant-specific
billing, some solutions are possible, even though problems
remain. First, tenant records can be counted, which means
accessing the complete table. This can raise transactional
costs, and performance impacts may occur. Besides, still
some uncertainly remains due to unknown record sizes.

A more efficient approach is to enumerate records
during insert. Then, we are able to ask for the latest record
by a timestamp-query; this is approximately the number of
records. However, we have no numbers for already deleted
records. More cost-intensive is to maintain two counters
for insert and delete operations, which doubles the
transactional costs. Nonetheless, the number of records is
only a rough estimation, and the problem how to compute
the specific record sizes still remains.

Consequently, there is a strong need to add further
tracing for tenant-specific storage actions. A modular
possibility may be to use aspect-orientation to intercept
operations [17], however, we are then only able to measure
accesses via the C# storage library, but cannot quantify
REST calls to the storage. A simpler form is to register
event handlers for inserts, which is a rather rudimentary,
limited mechanism. When implementing event handlers to
observe storing and deleting operations in the table
storage, the event handler requires the tenantID as a
prerequisite for enabling a tenant-specific billing. Anyway,
the best way is to add some kind of monitoring in the
application, whereby one important problem still remains:
When to measure the tenant’s consumption?

2) Tenants share a common table storage

In the case of tenants sharing a table, we find the same
problem as above. We have to query complete tables to
count records, now for one tenant. The counting can be
conducted more efficiently if the tenantID is taken as the

PartitionKey. Then, calculation can be done in one
partition, reducing search space and raising performance.

3) Transactions
Another cost factor is the number of transactions on the
table storage. Charging 100,000 transactions with 1ct
appear like micro-costs at a first glance. But investigations
show that transactions could be the dominating cost factor
in Azure [10]. Moreover, the term transaction must be
taken carefully. Every operation to the storage, even
asking for the list of tables, is considered as a transaction.
Some operations can be performed in bulks; each bulk is

39Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

then a transaction. And finally, each query is a transaction
whereby a continuation token is returned if the result is too
large or runs too long. Then, successive queries become
necessary, which are counted as transactions as well.

There exist performance counters (Azure storage
metrics) which however track only the number of trans-
actions for one storage account. This might be an efficient
way to compute the overall transactions on a daily basis,
but does not yield any tenant-specific information. Further,
tracking the number of transactions must again be done by
introducing specific tracing in order to get precise data.

4) Outgoing data transfer

The final cost factor is the outgoing data transfer (leaving
the data center). These costs are presumably irrelevant
unless queries on the table storage are directly performed
by tenants, which is rather unusual.

C. Blob and Queue Storage

Principles and techniques for handling cost aspects for
blobs and queues are quite similar to Azure table storage
and the same mechanisms as explained in B can be
applied. However, the queue storage consumption seems
to be irrelevant since queues will usually not keep large
amounts of data, unless there is some congestion in the
system. The dominant cost factor will be the transactions.

D. Compute Instances

In Azure, computing power is organized by means of
Web and Worker Roles, as described in Section III. The
major cost factor is the number of hours a role runs. Any
application can be distributed over several Web and
Worker Roles. Furthermore, an application can scale out
by setting up additional instances of an implemented role
to handle sporadic load peaks [14] with a load balancer.

The Azure management API yields some information
that can be used to monitor costs such as the size of a role
(S, M, L etc.), the number of instances for each role, their
status (running, suspended etc.), the starting time, etc. In
principal, it is enough to poll the data when the current
consumption is needed. However, we are not aware of
removed instances and roles since they silently disappear
from the report. In order to get notice of any decrease of
instances, it is necessary to poll periodically. Some
uncertainty remains as an instance can run only for one
minute, being charged with one hour. This event will
presumably get lost unless we check within that minute.

Generally, this data does not reveal any tenant-specific
information; it just shows values of the overall
consumption of a multi-tenant application. If there is a
relationship between Web/Worker Roles and tenants, such
a separation would be possible, however, thwarting
principles of multi-tenancy. To obtain tenant-specific
information, additional logging should monitor the number
of requests. This kind of data is available in performance
counters, but again only covers the whole application.

Please note, there is no obvious relationship between
VM operation costs and how much a tenant contributes to

these by measuring CPU time etc. Hence, these are only
rough indicators for a tenant’s portion of usage.

E. Further Notes

It is important to note that measurements themselves
could affect the costs. Consequently, there is a trade-off
between collecting precise data and being cost-efficient.
This basically concerns the frequency of periodical
measurements, the efficiency of queries etc.

VI. DETERMINING A TENANT

One important issue for the previous discussion is how
to extract a tenant, which uses the application, from the
service URL. The following discussion summarizes
relevant aspects. Thereby, we investigate four ways of
defining SaaS URLs [18] and how to extract a tenant.

A. Using a General URL

A SaaS provider may offer a general URL in the
manner of http://www.SaaSprovider.com. Each tenant has
to register all of his users for the specific services with
user and password; particularly, each user obtains a unique
tenant identifier (tenantID). The assumption is that each
user is exclusively associated with a single tenant. Using a
service such as http://www.SaaSprovider.com/Service1, a
tenant’s user has to log in with his credentials. A central
component is then able to determine the user’s tenantID.
While this implementation is rather simple, several
fundamental problems are obvious in this approach.

At first, the service itself must be generic and
unbranded until the user has logged in. Similarly, a tenant-
specific customization can only take place after login.
Before login, the service can only be general due to the
unknown tenantID. As a direct consequence, it is difficult
to have more than one identity provider (such as an own
Active Directory). The identity provider cannot be known
before the tenant is known. But in most cases, tenants want
to specify the identity provider fitting to their
infrastructure. Next, it is immediately visible that the user
is accessing a multi-tenant application because the URL
does not contain the tenant. Furthermore, there is no way
to allow for anonymous users that have no account and
consequently no relationship with a tenant. Hence, SaaS
providers are restricted to supporting all solvent users.
Finally, a user cannot have a relationship with more than
one tenant unless they have different credentials.

To sum it up, although a tenant can easily be identified
by picking up the login credentials of the users, this
approach has some drawbacks and is unsatisfying. For that
reason, we consider further possibilities as following.

B. Tenant Parameter in the URL

As an alternative to the first approach for URL design,
the URL can per default contain the tenant’s name as an
identifier in two different ways, for instance:

• http:// www.SaaSprovider.com /tenant1

• http:// www.SaaSprovider.com?t=tenant1
Now, the application knows immediately who the
accessing tenant is, and customization can take place for a

40Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

tenant just as various identity providers are possible for
authentication. Furthermore, we can observe the advantage
that anonymous users are possible as they do not depend
on an identifiable relationship to a tenant. Additionally,
users can have accounts with more than one tenant,
because their access is scoped by tenant.

Unfortunately, there are still some problems. At first, it
is still obvious that this approach is a multi-tenant
application, because the URL specifies a host
SaaSprovider that has no meaning to the user. That is why
the user cannot deduce the service, which he actually
wants to use, from the given URL. Next, both of the above
provided URLs are difficult to guess, i.e., users will be
unable to find the application by means of ‘URL surfing’.
If the user just haphazardly tries out random URLs such as
www.tenant1.com/service1 or http://service1.tenant1.com,
he will never score a hit, because the service is URL-
invisible. It is to note that the URL is an important part of
a company’s brand. Having URLs such as http://www.
SaaSprovider.com/tenant1 with someone else’s host name
in a URL (here SaaSprovider.com) is only a “second
class” branding and insufficient for big companies.

However, identifying a tenant with an ID in the URL is
possible by extracting the tenant’s name by means of
ASP.NET MVC URL Routing.

C. Tenant in a Sub-Domain

A better approach is to embed the tenant identifier
(tenantID) in the URL as a sub-domain: http://tenant1.
SaaSprovider.com. Moreover, it is possible to apply a
DNS alias to redirect the URL to www.SaaSprovider.com.
Advantages of this proposal are obvious: It is still possible
to identify every single tenant, whilst the URL is branded
since the tenant name, tenant1, appears directly within the
URL, and it is now less obvious that tenant1 is one of
many tenants that are using the application. The URL can
be found out with URL guessing and by trial and error.

Even the technical challenge of extracting tenants from
the URLs can be solved, since the tenant is passed with the
HTTP request in the Host Header, albeit it is more
complicated.

D. Tenant in a Domain

Finally, a tenant may use its domain, e.g., http://www.
tenant1.com. The URL can be mapped to www.SaaS
provider.com in the tenant’s DNS configuration. Here, the
tenant can be identified by using the Request.Url C# class.

In summary, it can be stated that tenant identification is
possible for all four approaches; this is the basis for our
considerations to realize tenant-specific billing. However,
the approaches are characterized by different quality and
accordingly efforts and costs. This has to be considered
when deciding how to conduct tenant identification.

VII. RELATED WORK

A lot of research is done in the field of multi-tenancy,
where also traditional aspects of distributed computing
remain important. Fehling et al. come up with prospects
for the optimization of multi-tenants by the distribution of

the tenants regarding Quality of Service [18]. Additionally,
security and privacy issues should also be regarded for
multi-tenancy. To this end, Jensen et al. present an
overview of technical security problems [20]. Besides,
requirements for efficient multi-tenancy regarding
performance or isolation are explored by Guo et al. They
present a design and implementation framework to support
multi-tenant services [2]. Since multi-tenancy is linked to
large client amounts, economic concerns raise importance,
too, as providers need to operate with high profit to remain
competitive. To reduce overall resource consumptions in
multi-tenant environments, [21] introduces a method for
implementing cost-efficient multi-tenancy by optimized
tenant placement. Also [22] puts values of utilization and
performance models in genetic algorithms to reduce there-
by costs, albeit, they do not concern tenant-specific billing.

Other researchers consider solutions to implement
cost-efficient multi-tenancy, looking at the infrastructure,
middleware and application tier, which all can be shared
among tenants [23][24]. However, for fault-tolerance, one
still needs an existence of the same application on different
instances – regardless of the particular tier. So, if an
application transparently moves to another instance, this
must be traced and considered in the bill to fit a tenant-
specific pricing. This problem is not considered there.

In general, providers bill their tenants in different
models. The most common pricing models are either the
tenants paying a fixed monthly fee, or in a pay-per-use
model, where the tenant only pays for the resources he had
used, or even the resources may be charged usage-based
[25]. With multi-tenancy, SaaS providers’ profit may be
increased, but on the other hand, one has to monitor each
tenant resource usage and relate this to his monthly bill.
Therefore, Cheng et al. set up a monitoring framework to
trace tenants’ allocations at runtime and to observe the
performance of each tenant based on the individual SLAs
[26]. However, they do not provide a tenant billing model.

Bezemer and Zaidman, discuss, based on existing
single-tenant applications, another aspect of costs
associated with multi-tenant applications: maintenance
efforts. The recurrence of maintenance tasks (e.g., patches
or updates) raise operating costs and show the demand of
exact planning of maintenance costs, which must be
apportioned among the tenants [27][28].

Nevertheless, the profitable aspects for the SaaS
providers are researched insufficiently in the field of multi-
tenancy. Reflections about their balancing act between
making revenue through tenants’ charges and paying for
the tenants’ used capacity at the PaaS/IaaS provider are
extremely understudied until now. Therefore, we came up
with an overview of the remaining challenges for the SaaS
providers, which want to offer their services to multiple
tenants in an economical business model.

VIII. CONCLUSION

In order to save costs and run economical businesses,
SaaS providers rely on multi-tenancy, albeit it is no recipe
for more revenue. By building multi-tenant applications, a
SaaS provider can support multiple tenants from different

41Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

organizations with shared instances, being simultaneously
used. This and a better utilization by tenants through re-use
may lead to higher revenue for SaaS providers.

Within the paper, we depict considerations that enable
SaaS providers to succeed in balancing outgoing costs for
the PaaS/IaaS resources and ingoing revenue from tenants
to operate economical business. We motivate why it is
necessary to monitor the detailed costs per each tenant in a
more fine-granular manner. We focused on Microsoft
Azure and came up with reasoning for multi-tenancy and
discussed features of the Azure infrastructure. Until now,
SaaS providers receive monthly bills from Azure about the
past resource usage by its tenants. This is insufficient
because no precise and in time tracking of tenant-specific
costs is available. Although some tenant-specific costs can
be determined with more or less effort, they might be
expensive and lead to additional costs for the SaaS
provider. Anyway, for multi-tenant SaaS providers some
uncertainty about costs remains and their challenge is still
to observe how much a tenant uses of a specific resource
type in order to achieve high profitability.

As future work, we plan to also analyze other Cloud
platforms such as Amazon IaaS/PaaS regarding its
support to trace costs by each tenant. Further, we want to
conduct experiments and analyze the corresponding data
to give some concrete suggestions how to integrate
tenant-specific billing in new and even already existing
applications. We will also investigate and compare multi-
tenant application built upon a PaaS Cloud and an IaaS
platform in order to give an even more precise insight in
cost factors. We think the PaaS version will produce more
expensive bills, but will also decrease development costs
than the IaaS version. Moreover, we work on adequate
possibilities for application-specific logging. All this work
should finally lead to a consumption-monitoring system.

REFERENCES

[1] A. Dubey and D. Wagle, “Delivering software as a
service,” In: The McKinsey Quarterly, 2007, pp. 1-12.

[2] C. Guo, et al., “A framework for native multitenancy
application development and management,” Proc. on
Enterprise Computing, E-Commerce and E-Services, 2007,
pp. 551-558.

[3] B. Wilder, “Cloud Architecture Patterns: Using Microsoft
Azure,” Sebastopol: O'Reilly Media Inc., 2012, pp. 77-79.

[4] R. Buyya, C. S. Yeo, and S. Venugopal, “Market-oriented
clouds: Vision, hype, and reality for delivering IT services
as computing utilities,” Proc. on HPC, 2008, pp 5-13.

[5] http://apprenda.com/library/software-on-demand/saas-
billing-pricing-models [retrieved: March 2013]

[6] S. Walraven, E. Truyen, and W. Joosen, “A middleware
layer for flexible and cost-efficient multi-tenant
applications,” Proc. 12th Middleware, 2011, pp. 370-389.

[7] S. Walraven, E. Truyen, and W. Joosen, “Towards
performance isolation in multi-tenant SaaS apps,” Proc. on
Middleware for Next Generation Internet, 2012, pp.1-6.

[8] M. Lindner, F Galán, and Clovis Chapman, “The cloud
supply chain: A framework for information, monitoring,
accounting and billing,” Proc. on Cloud Computing, 2010.

[9] I. Ruiz-Agundez, Y.K. Penya, and P. Bringas, "A flexible
accounting model for clouds," SRII, 2011, pp. 277 - 284.

[10] U. Hohenstein, R. Krummenacher, L. Mittermeier, and S.
Dippl, “Choosing the right cloud architecture - A cost
perspective,” Proc. on Cloud Computing and Services
Science (CLOSER), 2012, pp.334-344.

[11] S. Seetharaman, “Energy conservation in multi-tenant
networks through power virtualization,” Proc. on Power
aware computing and systems, USENIX, 2010, pp. 1-8.

[12] Azure Pricing, 2013, www.windowsazure.com/en-us/
pricing/details [retrieved: March 2013]

[13] B. Calder, “Windows Azure Storage billing,” http://blogs.
msdn.com/b/windowsazurestorage/archive/2010/07/09/und
erstanding-windows-azure-storage-billing-bandwidth-
transactions-and-capacity.aspx [retrieved: March 2013]

[14] A. Schwanengel, U. Hohenstein, and M. Jäger, “Automated
load adaptation for cloud environments in regard of cost
models,” Proc. on CLOSER, 2012, pp.562-567.

[15] J. Haridas, M. Atkinson, and B. Calder, “Azure Storage
metrics,” http://blogs.msdn.com/b/windowsazurestorage/ar
chive/2011/08/03/windows-azure-storage-metrics-using-
metrics-to-track-storage-usage.aspx [retrieved: Mar. 2013]

[16] J. Schroeter, S. Cech, S. Götz, C. Wilke, and U. Aßmann,
“Towards modeling a variable architecture for multi-tenant
SaaS applications,” Proc. on Variability Modelling of
Software-Intensive Systems, 2012, pp. 111-120.

[17] U. Hohenstein and M. Jaeger, “Using Aspect Orientation in
Industrial Projects: Appreciated or Damned?”, Proc. on
Aspect-Oriented Software Development, 2009, pp.213-222.

[18] Designing Multitenant Applications on Windows Azure:
http://msdn.microsoft.com/en-us/library/windowsazure/hh6
89716.aspx [retrieved: March 2013]

[19] C. Fehling, F. Leymann, and R. Mietzner, “A Framework
for Optimized Distribution of Tenants in Cloud Appli-
cations,” Proc. on Cloud Computing, 2010, pp. 252-259.

[20] M. Jensen, J. Schwenk, N. Gruschka, and L. Iacono, „On
technical security issues in cloud computing,” Proc. on
Cloud Computing, 2009 pp. 109-116.

[21] T. Kwok and A. Mohindra, “Resource calculations with
constraints, and placement of tenants and instances for
multi-tenant SaaS applications,” Proc. on Service-Oriented
Computing, 2008, pp. 633-648.

[22] D. Westermann and C. Momm, "Using software
performance curves for dependable and cost-efficient
service hosting," Proc. on Quality of Service-Oriented
Software Systems (QUASOSS), 2010, pp. 1-6.

[23] C. Osipov, G. Goldszmidt, M. Taylor, and I. Poddar,
“Develop and deploy multi-tenant web-delivered solutions
using IBM middleware: Part 2: Approaches for enabling
multi-tenancy,” In: IBM’s technical Library, 2009.

[24] C. Momm and R. Krebs, “A qualitative discussion of
different approaches for implementing multi-tenant SaaS
offerings,” Proc. Software Engineering 2011, pp. 139-150.

[25] M. Armbrust, et al., “A view of cloud computing,”
Communications of the ACM, 53(4), April 2010, pp. 50-58.

[26] X. Cheng, Y. Shi, and Q. Li, “A multi-tenant oriented
performance monitoring, detecting and scheduling
architecture based on SLA,” Proc. on Joint Conferences on
Pervasive Computing (JCPC) 2009, pp. 599-604.

[27] C. Bezemer and A. Zaidman, “Multi-tenant SaaS apps:
Maintance dream or nightmare,” In: Technical Report of
Delft Uni. of Technology, TUD-SERG-2010-031, 2010.

[28] C. Bezemer, A. Zaidman, B. Platzbeecke, T. Hurkmans,
and A. Hart, “Enabling multitenancy: An industrial
experience report,” In: Technical Report of Delft Uni. of
Technology, TUD-SERG-2010-030, 2010.

42Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

