
Moonstone: A Framework for Accelerating Testing of Software

Atsuji Sekiguchi, Tomohiro Ohtake, Toshihiro Shimizu,

 Yuji Hotta, Taichi Sugiyama, Takeshi Yasuie and Toshihiro Kodaka

Cloud Computing Research Center

FUJITSU LABORATORIES LIMITED

Kawasaki, Japan

e-mail: {sekia, ohtake.tomohiro, shimizut, yhotter, sugiyamataichi, yasuie.takeshi, and tkodaka}@jp.fujitsu.com

Abstract—Enterprises must speed up software development

and releases so that they can quickly verify business ideas. We

have developed a framework called “Moonstone” that can be

used to speed up the testing that is included in a release

operation. Moonstone has the following two functions to

support testing. 1) Function to construct test environment: this

function is used to automatically construct test and production

environments on a cloud platform. This function uses hint

information of a system configuration included in source code

and configuration files, and templates of system configurations.

2) Function to prepare and execute test: this function is used to

automatically create and run test scenarios by replaying

captured network packets. Because testing in a release

operation phase can be done efficiently with these functions,

the time required for a release operation can be reduced. We

used Moonstone in a trial environment and obtained the

following results: 1) a reduction of more than 80% of the time

required for the construction of a test environment, 2) a

reduction of 33% of the time required for the testing.

Keywords-continuous delivery; software development;

software test; cloud platform; traffic replay

I. INTRODUCTION

Global business competition has been intensifying with
the spread of Internet and cloud computing [1]. Enterprises
must therefore realize business ideas as products and services
and then improve them so that they can survive this
competition.

Lean Startup [2] describes a method of carrying out
product development by verifying business ideas
(hypothesis) quickly in the market. In this method, the
effects of each hypothesis are quantitatively measured while
verifying one hypothesis at a time in the market. An
enterprise can learn which hypothesis is effective because the
method can individually measure the effect of each
hypothesis. Because one hypothesis is verified in the market
in a certain period, the amount of development needed to
prove the hypothesis decreases, and development can be
sped up. Moreover, because the product or service can be
quickly released to the market with this method, the
enterprise can change its business direction according to the
result of the verification.

However, there is the following problem in practicing
“lean startup” in software development and release. The
release operation contains testing and deployment processes

[3]. Testing is done to inspect software, configurations, and
environments from functional [4] and non-functional [5]
aspects (such as execution time, performance, quality of
service, and security). Deployment is carried out to distribute
software and configurations to test and production
environments. Even if the system will be slightly changed,
testing of the entire system is required to confirm that the
changed system will run correctly. Thus, the release
operation imposes a constant workload, which is not in
proportion to the amount of development. If the amount of
development is not changed, the workload increases when
the number of releases increases. Thus, the hypothesis cannot
be verified quickly.

Therefore, we have developed a framework called
“Moonstone” to speed up the release operation. Moonstone
has the following two functions to support testing. 1)
Function to construct a test environment: this function is
used to automatically construct test and production
environments on a cloud platform. This function uses hint
information of a system configuration included in source
code and configuration files, and templates of system
configurations. 2) Function to prepare and execute a test: this
function is used to automatically create and run test scenarios
by replaying captured network packets. Because testing in a
release operation phase can be done efficiently with these
functions, the time required for the release operation can be
reduced. Furthermore, reproducibility of testing can be
increased.

The rest of this paper is organized as follows. First, we
describe the Moonstone architecture in Section II. Next, we
explain the method and result of an evaluation in a trial
experiment that uses Moonstone in an environment on a
cloud platform in Section III. In Section IV, we discuss
related work. Finally, we end with the conclusion and future
work in Section V.

II. MOONSTONE ARCHITECTURE

To support phases from development to release of
applications, Moonstone can cooperate with various
functions such as an issue tracker (Redmine [6]) for
development task management, a version control system
(Subversion [7] or git [8]) for management of an
application's source code, and a continuous integration [10]
tool (Jenkins [9]) as shown in Figure 1. In addition, to speed
up the testing, Moonstone has two functions: a function to
construct a test environment, and a function to prepare and

31Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

Moonstone

Application

developer
Continuous integration

(Jenkins)

Task management

(Redmine)

Version control system

(Subversion/git)

A. Function to construct

test environment

B. Function to prepare

and execute test

Cloud platform

Production

environment

Test

environment

Figure 1. Moonstone architecture

1. Application

characteristics extraction

2. System template

selection

3. System construction

System templates

System construction

scripts

Cloud platform

Environment

Application characteristics

Selected templates

Configuration

information

Source code / configuration files Function to construct

test environment

Extraction patterns

Figure 2. Function to construct test environment

execute a test. Moonstone can realize continuous delivery
[11] with these cooperative actions and functions.

A. Function to construct test environment

Application developers generally develop their
application in consideration of the characteristics of a system
(such as a web server type, an application server type, a
database server type, or their connectivity), but they cannot
change configurations of the system without permission
(such as changing the configuration of a database server
from one server to a master-slave configuration). System
construction operators are responsible for changing the
system. To cooperate with the system construction operators,
the application developers must make many preparations
such as documentation. Thus, system configuration cannot
be changed quickly when a change of system configuration
is needed because of the growth of the application.

We have developed a function that extracts the
characteristics of an application from its source code and
configuration files, and automatically constructs a system by
using the most suitable template for the characteristics. The
proposed function enables the system to be changed quickly
because the application developers can change the system by
themselves without needing to have cooperation from the
system construction operators.

We will explain the flow of processing on the basis of
Figure 2.

1. Application characteristics extraction: In this process,
the proposed function extracts the characteristics of an
application from its source code and configuration files by
using extraction patterns. In many cases, when middleware is
used in a system, descriptions for the middleware exist in the
source code and the configuration files (e.g., if JDBC (Java
Database Connectivity) [12] and MySQL [13] is used in the
system, the name of JDBC driver for MySQL appears in the
source code or the configuration files, such as
“com.mysql.jdbc.Driver”). So, to detect the used middleware,
we wrote a pattern beforehand to detect the middleware as an
extraction pattern (e.g., detection of “com.mysql.jdbc.Driver”
in the source code or the configuration files). As a result, the
proposed function can detect the characteristics of
middleware composition such as a mail server, a message
queuing server, and a cache server. Moreover, we wrote hint
information in the source code beforehand for the

characteristics that could not be detected by the above-
mentioned process. The proposed function only supports the
Java language currently. In Java, the function utilizes some
of the annotations [14] in the source code as hint information.
For instance, the hint information is described as the ratio of
reading and writing in a class that operates the database, such
as “@ReadWriteRatio”. The proposed function extracts the
middleware used and the hint information as characteristic
information of the application.

2. System template selection: We defined system
configuration patterns (such as AWS Cloud Design Pattern
[15]) on a cloud platform as “system templates” beforehand.
Each system template contains its characteristic information.
In this process, this function selects a template that matches
the characteristics of the application. For instance, when a
name of a database is detected from the configuration files,
the proposed function selects a template that installs and sets
up the database (e.g., “MySQL”). When hint information
such as “@ReadWriteRatio (value = 5.0)” (means “the
reading frequency of the database is five times the writing”)
is extracted from the source code, the proposed function
decides on a template of a composition that suits such
purpose (e.g., a database template for a master-slave
configuration).

3. System construction: The proposed function constructs
a system on the basis of the selected system template. In each
system template, we associated the template with scripts that
automatically construct the system beforehand. We wrote
construction scripts for each server type such as Web,
application, and database using Chef [16]. For example, in a
case of Web server, our construction script prepares virtual
machines (VMs) through the cloud platform's API, and
deploys Web server program (e.g., httpd) and contents to
each VM.

This function is useful not only for constructing a test
environment for confirming an application behavior but also
for constructing a production environment. Furthermore, this
function can increase the recyclability of the automation
scripts because the function calls the scripts to suit the
application’s characteristics.

32Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

1. Packet capture

Captured packets

Function to prepare

and execute testTranslation rules

Cloud platform

Production

environment

Test

environment

3. Result comparison

Clients

2. Traffic replay Translated packets

Response message

Figure 3. Function to prepare and execute test

B. Function to prepare and execute test

A system that has begun providing services for customers
should be stable. When an application or its system will be
changed, the correctness of the behavior of the application
should be checked (tested). To test operations in the entire
system, load test tools [17] or devices [18] are usually used
to run a test efficiently. The test contains two steps:
preparation and execution. In the preparation step, these tools
or devices require preparation of test scenarios. In the
execution step, the test is executed on the basis of the test
scenarios, and success or failure is judged from the results of
the test scenarios. The test scenario consists of definitions
such as access patterns to the system, request messages for
access to the system, and response messages that the system
should make in response to the requests. There is a problem
that making test scenarios requires a great deal of skill and
much time.

Therefore, we have developed a function that automates
the test scenario making and the test execution [19]. In the
preparation step, a module of this function captures network
packets of the request/response messages that are exchanged
between clients and servers in the production environment.
The request/response messages and their access timing are
used as the test scenarios. In the test execution step, the
proposed function replays the request messages in the
captured packets and compares response messages between
the captured packets and the test environment. While
replaying, the proposed function translates
network/application data of the packets from data in the
original environment to data in the test environment. Thus,
because the test scenario can be made without a need for
much skill or time, the test can be sped up. We implemented
the proposed function as a C program on Linux.

We will explain the flow of processing on the basis of
Figure 3.

1. Packet capture: In this process, the proposed function
captures packets between clients and servers of the system
using a packet capture tool (such as Wireshark [20]). At this
time, the environment of servers is the production or the test.
Users of IaaS (Infrastructure as a Service) [1], which is one
of the cloud platforms, cannot capture the packet in the
network layer because the network layer is usually hidden in

IaaS. Thus, the proposed function captures the packets in
each server and collects them. The packet capture tool can
capture packets on various networks (such as Ethernet or
Infiniband) because it captures packets OS obtained.

2. Traffic replay: The proposed function generates access
loads for the test in the test environment. The access loads
are generated based on the test scenario that consists of the
request/response messages and their access timing on the
captured packets. While sending the packets, the proposed
function translates the packets from environment-dependent
data in the captured packets to data for the test environment.
The translation is based on translation rules. This rule is a
definition of how to rewrite data. The data are of the network
layer such as Ethernet/IP headers, TCP connections, and
HTTP headers, and of the application layer such as session
information and authentication tokens. When a response of a
server contains session information, the proposed function
dynamically rewrites sending packets with the information.
We made rules beforehand to match the captured packets to
the test environment.

3. Result comparison: The proposed function compares
two response messages of the test environment and the
response messages in the captured packets. The function
regards the test as a success when these responses are the
same, and regards the test as a failure when these responses
are different. The function can also compare both of access
timing of the response messages, and can regard the test as a
success when the response time of the test response is less
than a threshold time.

When these two functions are combined, the test can be
executed on demand. Thus, when testing is needed, the
proposed functions construct the test environment on a cloud
platform, execute the test, and return the environment after
finishing the testing.

III. EVALUATE

To evaluate the two functions described in Section II, we
tried these functions in the following environment.

A. Evaluation environment

This environment is a system on a cloud platform to
provide a service for consumers through the Internet. The
system was constructed for starting the service. The system
uses FGCP/S5 (Fujitsu Global Cloud Platform) [21], which
is one of IaaS. The system is a typical three-tier one that
consists of tens of VMs such as Web servers, application
servers, database servers, and load balancers.

B. Evaluation method

To examine the proposed function described in II.A, we
constructed a test environment of the same composition as a
production environment with the proposed function and via
manual operation respectively, and measured the respective
elapsed times. Manual operation was executed by experts,
who are the system construction operators. We calculated the
reduction time and reduction rate by using the proposed
function from the result. The construction targets were Web
servers, application servers, and databases. Strictly, installed
software and settings of each server were a little different

33Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

TABLE I. SERVER CONSTRUCTION TIME, REDUCTION TIME, AND
REDUCTION RATE

Server

type

Elapsed

time

(manual)

[A]

Elapsed

time (trial)

[B]

Reduction

time

[A−−−−B]

Reduction

rate

[(A−−−−B)/A]

Web 5h 40m 1h 7m 4h 33m 80%

Applicati
on

10h 46m 1h 48m 8h 58m 83%

Database 8h 17m 0h 55m 7h 22m 89%

TABLE II. ELAPSED TIME OF TEST, REDUCTION TIME, AND
REDUCTION RATE

Operatio

n type

Elapsed

time

(manual)

[A]

Elapsed

time (trial)

[B]

Reduction

time

[AB]

Reduction

rate

[(A−−−−B)/A]

Test

scenario
making

40h 16h 24h 60%

Test

execution
32h 32h 0h 0%

Total 72h 48h 24h 33%

from each other. Then, we grouped the tens of servers to
three types with the rough role such as Web. Constructing
these servers involves starting VMs, making settings for an
OS, installing and making settings for middleware such as
HTTP server, Java EE server and database server, and
installing Web contents and applications. We measured the
elapsed time of construction in each type of server. We
calculated the average value for the same type of server. The
elapsed time of the system was calculated from the type of
server and each number.

To examine the proposed function described in II.B, we
made and ran the test with the function and via manual
operation respectively, and measured the respective elapsed
times. Manual operation was also executed by the experts.
We calculated the reduction time and reduction rate by using
the proposed function from the result. The test contained
many test scenarios to confirm the correctness of software,
configurations, and environments from functional [4] and
non-functional [5] aspects (such as execution time, quality of
service, security, usability, and safety). For the manual
operation, we made the test scenarios for JMeter [17]. To use
the proposed function, the function makes it possible to
make the test scenarios automatically by capture and replay
of the traffic between clients and servers in the production
environment. However, in this trial, we made the test
scenarios as follows to clarify a comparison in these two
cases: we manipulated a Web browser through each test
scenario in manual operation, captured packets through the
manipulation, and treated the packets as each test scenario.

C. Evaluation result

The results of the evaluation of II.A are shown in Table I.
“Server type” means the type of server such as Web,
application, or database. “Elapsed time (manual) [A]” means
the elapsed time in the case of manual operation. “Elapsed
time (trial) [B]” means the elapsed time in the case of using
the proposed function. “Reduction time” is the difference
between the elapsed time (manual) and the elapsed time

(trial), and is calculated as A−B. “Reduction rate” is the ratio
of the reduction time to the elapsed time (manual), and is

calculated as (A−B)/A.
An elapsed time of 80% or more was able to be reduced

in any server type as shown in Table I. The reduction time of
one server was between 4.5 and 9 hours. Because the
environment consisted of tens of servers, we were able to
reduce the elapsed time of hundreds of hours in total.

The result of the evaluation of II.B is shown in Table II.

“Operation type” means an operation of the test such as test
scenario making and test execution, and also contains their
total. “Elapsed time (manual)”, “Elapsed time (trial)”,
“Reduction time” and “Reduction rate” mean the same as
those in Table I.

An elapsed time of 60% (24 hours) was able to be
reduced in the making of test scenarios. The elapsed time of
the test execution was the same as the manual operation, and
the reduction rate was 0%. As a result, the elapsed time of
33% (24 hours) was able to be reduced in total.

IV. RELATED WORK

Continuous integration [10] is the practice of enhancing
the quality of source code by automatically integrating,
compiling, and testing the source code every day during
development. Continuous delivery [11] is a practice that
automates deployment of the application in addition to
continuous integration. Tools that support these practices
exist [9][22]. However, activities such as constructing a test
environment and making a test scenario are not being offered
by those tools.

There are several approaches to constructing an
environment. Tools to support automation of the
construction exist [16][23], and a method to automatically
construct an environment from a policy-based environment
definition is also known [24]. Those approaches require a
great deal of skill and much time, because the user has to
describe the definition of the composition of the environment
correctly. Our method detects the characteristics of the
application by using information on system configuration
contained in source code and configuration files, and hint
information written in the source code as annotations [14].
Then, the method determines the most suitable system
template for the characteristics, and automatically constructs
an environment based on the selected template. In the case of
our method, the user does not need to describe the definition
of the composition of the environment.

An approach of the abstraction of clouds' API [25], and
an approach of the definition of common data model [26]
exist. Though we used the cloud's own API and data model,
these approaches can be helpful for portability.

Tools to help automate the making of the contents of the
testing exist [17][27][28]. These require a great deal of skill
and much time to create a test scenario for the automation.
Moreover, it is difficult to imitate real clients’ traffic load
patterns. Therefore, because some problems are often

34Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

overlooked, serious troubles occur when the application runs
on the production environment. Traffic replay is an approach
that captures packets in the production environment and uses
the captured packets for testing [29][30][31][32][33].
However, it is not easy to conduct traffic replay in an ad hoc
test environment on a cloud platform. Because the test
environment is different from the environment in which the
packets are captured, various parameters such as MAC
addresses, IP addresses, or TCP port numbers are different.
Packets cannot reach servers if the captured packets are
simply replayed. In the case of testing an application,
application-specific information such as HTTP session IDs
and timestamps should be also adjusted to the environment
and the time of the testing. Our method can test a long
transaction by carrying out a traffic replay with a packet
conversion by using not only the difference between these
environments but also application-specific information.

V. CONCLUSION AND FUTURE WORK

We have developed a framework called “Moonstone” for
speeding up testing that is included in a release operation.
Moonstone has two functions: 1) a function to construct a
test environment, and 2) a function to prepare and execute a
test. In our trial, we confirmed that these functions make it
possible to reduce the elapsed time for the testing.

We will tackle the following problems in the future. In 1),
when a production environment has a lot of servers, a long
elapsed time is required to construct a test environment that
is similar to the production environment. In 2), when the
proposed function replays captured packets, we must
synchronize databases of the test environment beforehand.
When the size of the databases is large, the synchronization
requires a long elapsed time.

REFERENCES

[1] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M.
Lindner, "A break in the clouds: towards a cloud definition",
ACM SIGCOMM Computer Communication Review, Vol.
39 Issue 1, Jan. 2009, pp. 50-55.

[2] E. Ries, “The Lean Startup: How Today's Entrepreneurs Use
Continuous Innovation to Create Radically Successful
Businesses”, Crown Business, 2011.

[3] Cabinet Office, "ITIL Service Transition 2011 Edition (Best
Management Practices)", The Stationery Office, 2011.

[4] W. E. Howden, "Functional Program Testing", Software
Engineering, IEEE Transactions on, Vol. SE-6, Issue 2, Mar.
1980, pp. 162-169.

[5] W. Afzal, R. Torkar, and R. Feldt, "A systematic review of
search-based testing for non-functional system properties",
Information and Software Technology, Vol. 51, Issue 6, Jun.
2009, pp. 957-976.

[6] Redmine, Available: http://www.redmine.org/, retrieved: Mar.
2013.

[7] Subversion, Available: http://subversion.apache.org/,
retrieved: Mar. 2013.

[8] git, Available: http://git-scm.com/, retrieved: Mar. 2013.

[9] Jenkins, Available: http://jenkins-ci.org/, retrieved: Mar. 2013.

[10] P. M. Duvall, S. Matyas, and A. Glover, “Continuous
Integration: Improving Software Quality and Reducing Risk”,
Addison-Wesley Professional, 2007.

[11] J. Humble and D. Farley, “Continuous Delivery: Reliable
Software Releases through Build, Test, and Deployment
Automation”, Addison-Wesley Professional, 2010.

[12] JDBC (Java Database Connectivity), Available:
http://www.oracle.com/technetwork/java/javase/jdbc/index.ht
ml, retrieved: Mar. 2013.

[13] MySQL, Available: http://dev.mysql.com/, retrieved: Mar.
2013.

[14] Java Annotations, Available:
http://docs.oracle.com/javase/1.5.0/docs/guide/language/annot
ations.html, retrieved: Mar. 2013.

[15] AWS Cloud Design Pattern, Available:
http://en.clouddesignpattern.org/, retrieved: Mar. 2013.

[16] Chef, Available: http://www.opscode.com/chef/, retrieved:
Mar. 2013.

[17] JMeter, Available: http://jmeter.apache.org/, retrieved: Mar.
2013.

[18] Avalanche, Available:
http://www.spirent.com/Products/Avalanche/Avalanche_Late
st_Release, retrieved: Mar. 2013.

[19] T. Sugiyama, T. Yasuie, and Y. Nomura, “A Study for
System Verification with Captured Packets” [in Japanese],
Proc. of the Society Conference of IEICE 2011
Communication (2), Aug. 2011, p.392.

[20] Wireshark, Available: http://www.wireshark.org/, retrieved:
Mar. 2013.

[21] FGCP/S5 (Fujitsu Global Cloud Platform), Available:
http://welcome.globalcloud.global.fujitsu.com/, retrieved:
Mar. 2013.

[22] IBM SmaterCloud Continuous Delivery, Available:
http://www-
142.ibm.com/software/products/us/en/continuousdelivery/,
retrieved: Mar. 2013.

[23] Puppet, Available: https://puppetlabs.com/puppet/puppet-
open-source/, retrieved: Mar. 2013.

[24] A. Sahai, S. Singhal, R. Joshi, and V. Machiraju, "Automated
Policy-Based Resource Construction in Utility Computing
Environments", Proc. of Network Operations and
Management Symposium, Vol. 1, Apr. 2004, pp. 381-393.

[25] Deltacloud, Available: http://deltacloud.apache.org/,
retrieved: Mar. 2013.

[26] Cloud Infrastructure Management Interface (CIMI) Model
and RESTful HTTP-based Protocol, Available:
http://dmtf.org/sites/default/files/standards/documents/DSP02
63_1.0.1.pdf, retrieved: Mar. 2013.

[27] JUnit, Available: http://junit.org/, retrieved: Mar. 2013.

[28] Selenium, Available: http://seleniumhq.org/, retrieved: Mar.
2013.

[29] Tcpreplay, Available: http://tcpreplay.synfin.net/, retrieved:
Mar. 2013.

[30] S. Hong and S. Wu, “On Interactive Internet Traffic Replay”,
Proc. Eighth International Symposium on Recent Advances in
Intrusion Detection, Sept. 2005, pp. 247-264.

[31] IBM Rational Test Virtualization Server, Available:
http://www-01.ibm.com/software/rational/products/rtvs/,
retrieved: Mar. 2013.

[32] CA LISA, Available:
http://www.ca.com/us/products/detail/CA-LISA.aspx,
retrieved: Mar. 2013.

[33] Oracle Enterprise Manager: Application Quality
Management, Available:
http://www.oracle.com/technetwork/oem/app-quality-
mgmt/index.html, retrieved: Mar. 2013.

35Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

