
Towards a Domain-Specific Language to Deploy Applications in the Clouds

Eirik Brandtzæg
University of Oslo

SINTEF IKT
Oslo, Norway

eirik.brandtzaeg@sintef.no

Parastoo Mohagheghi
NTNU

SINTEF IKT
Trondheim, Norway

parastoo@idi.ntnu.no

Sébastien Mosser
Networked Systems and Services

SINTEF IKT
Oslo, Norway

sebastien.mosser@sintef.no

Abstract—The cloud-computing paradigm advocates the use
of virtualised resources, available “in the clouds”. Applications
are now developed in order to be cloud-aware. Unfortunately,
the deployment of such applications is still manually done, or
relies on home-made shell script. In this paper, we propose to
model cloud applications using a component-based approach.
It leverages the existing deployment descriptors into a high-
level domain-specific language. The language is then illustrated
through the modeling of a prototypical application used to
teach distributed programming at the University of Oslo.

Keywords-Cloud-computing; Modeling; Deployment.

I. INTRODUCTION

Cloud Computing [1] was considered as a revolution.
Taking its root in distributed systems design, this paradigm
advocates the share of distributed computing resources des-
ignated as “the cloud”. The main advantage of using a cloud-
based infrastructure is the associated scalability property
(e.g., elasticity). Since a cloud works on a pay-as-you-go
basis, companies can rent computing resources in an elastic
way. A typical example is to temporary increase the server-
side capacity of an e-commerce website to avoid service
breakdowns during a load peak (e.g., Christmas period).
However, there is still a huge gap between the commercial
point of view and the technical reality that one has to face
in front of “the cloud”.

A company that wants to deploy its own systems to the
cloud (i.e., be part of the cloud revolution) has to cope with
existing standards. The Cloud-Standard wiki [2] lists dozens
of overlapping standards related to Cloud Computing. They
focus on infrastructure modeling or business modeling.
These standards do not provide any support for software
modeling or deployment. Thus, the deployment of a cloud-
based system is a difficult task, as it relies on handcrafted
scripts. It is not possible to reason on the deployment, nor
to assess it with respect to (w.r.t.) to cloud business policies.

The Cloud-computing paradigm emphasizes the need for
automated deployment mechanisms, abstracted from the
underlying technical layer. As cloud-computing considers
that the number of resources available in the cloud is not
limited, it triggers new challenges from a deployment point
of view. Even if several approaches consider the deployment
target as “open” (i.e., new host machines can be added in the

environment), the “virtually unlimited” dimension provided
by the cloud-approach is not taken into account.

Our contribution in this paper is to propose a component-
based approach [3] to model software deployment in the
clouds. This approach is provided as a Domain-Specific
Language (DSL), which is given to the software designer.
The language is based on a reduced component meat-model,
and support the modeling of the deployment relationship
between components. For the sake of concision, we only
focus in here on the description of the cloud deployment
language usage, and we do not address in this paper the
run-time enactment. This work is done in the framework
of REMICS [4], an European project dedicated to the mi-
gration of legacy application into cloud-based applications.
Section II discusses related works, and Section III illustrates
the challenges on a running example. Section IV describes
the language meta-model, Section V describes its usage, and
finally, Section VI concludes this paper.

II. RELATED WORKS

We propose here to analyze the state of the art about
software deployment, identifying good practices to be reused
in our own solution, dedicated to cloud-computing. The
cloud model always assume that the software to be deployed
will be running on an host machine, virtualised in the cloud.
Thus, its deployment depends on a lot of characteristics
provided by the host, e.g., IP address, operating system,
available remote protocols. The deployment might also de-
pends on the software to be deployed, e.g., implementation
language, configuration capabilities.

A. Deployment Models

Several approaches were proposed to abstract the user
from the underlying platform w.r.t. the deployment point of
view. These approaches propose to model the deployment of
a software in a generic way, using the concepts described in
a meta-model. In this domain, the two main approaches are
(i) the UML Deployment Diagrams [5] and (ii) the OMG
D&C meta-model [6]. These approaches are complemented
by academic approaches like ORYA [7] and GADE [8].

213Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

UML Deployment Diagrams: using the UML Deploy-
ment Diagram approach, one can use artifacts to model
the physical elements involved in the deployment (e.g., a
compiled executable to be copied on the host machine).
Artifacts follows a composite pattern (i.e., an artifact can be
composed by others), and are expressive enough to model
complex software dependencies. These elements are bound
to physical devices to model which software artifact must be
deployed on which machine. The infrastructure is modeled
thanks to the definition of communication path between
different devices.

OMG D&C meta-model: D&C means “Deployment
and Configuration”. It was built to tackle the challenges
encountered while standardizing the deployment of CORBA
components. This meta-model defines (i) meta-data to be
used during the deployment process (e.g., configuration in-
formation for a given package) and (ii) a target model relying
on these meta-data to describe the deployment process. The
approach is extremely verbose, and suffers from the number
of concepts to be used to model a deployment, even in front
of a simple case. Another weaknesses is its close relationship
with CORBA: the meta-model is too close to the one defined
by CORBA, and existing work based on OMG D&C focus
on the deployment of CORBA components [9], [10].

Academic approaches: We consider here two proto-
typical examples. ORYA is similar to the UML deployment
diagram approach, as it provides a purely descriptive meta-
model to describe a deployed system. ORYA also provides
concepts to model administrative and legal issues in the
deployed system. But it suffers from the same drawback,
i.e., its lack of a clear semantics (or a least a reference
implementation) to properly support the deployment in an
automated and reproducible way. GADE is the complete
opposite, as it concretely targets the deployment of software
components in grid-computing environment. It focus on
the capture of the grid domain, supporting the user in the
deployment of processes to be executed on the grid. This
approach emphasizes the need for a deep understanding of
the domain while modeling a deployment meta-model.

B. State of Practice: Cloud-based solution

Cloud providers have already understood that deployment
is crucial while talking about clouds. Thus, they provide
mechanisms to support the user during the deployment of
applications. This support can be textual (e.g., Amazon
Cloud Formation [11]), graphical (e.g., Applogic [12]). But
it immediately suffers from the “vendor lock-in” syndrome.
Thus, several libraries can be found (e.g., libcloud [13],
jclouds [14], δ-cloud [15]) to abstract these providers.

Amazon Cloud Formation: it is a service provided by
Amazon from their popular Amazon Web Services (AWS). It
give users the ability to create template files, which they can
load into AWS to create stacks of resources. This is mainly
meant for users that want to replicate a certain stack, with

the ability to provide custom parameters. Once a stack is
deployed it is only maintainable through the AWS Console,
and not through template files. The structure and semantics
of the template itself is not used by any other providers
or cloud management tooling, so it can not be considered a
multi-cloud solution and enforce a vendor lock-in syndrome.

Applogic: it is a proprietary model-based application
for management of private clouds. This interface let users
configure their deployments through a diagram with famil-
iarities to component diagrams with interfaces and assembly
connectors. They also provide an Architecture Deployment
Language (ADL) to enforce properties on the modeled
deployment. But this solution is only made for private clouds
running their own controller, this can prove troublesome for
migration, both in to and out of the infrastructure.

Application Programming Interface (API): Libcloud
and jcloud are APIs that aim to support the largest cloud
providers through a common API. Libcloud have solved
the multi-cloud problem in a very detailed manner, but the
complexity is therefore even larger. The δ-cloud approach
has a similar procedure as jclouds and Libcloud, but with a
web-service approach (introducing a bottleneck).

C. Conclusions

The deployment models available in the state of the art
demonstrate that a descriptive modeling of deployment is el-
egant and well understood by the end user. Such an approach
must stay simple and focused, to avoid the multiplication of
concepts. The approach must also be tailored to address its
target domain, i.e., cloud-computing in our case. The avail-
able tools analyzed from the state of practice demonstrate
that the heterogeneity of the different underlying platforms
needs to be abstracted. Anyhow, the current approaches
are available at the code level, and does not provide an
abstraction layer to be used by the application designer to
properly model a cloud-based application to be deployed.

III. RUNNING EXAMPLE & CHALLENGES

We consider here a simple application, sufficient to un-
derline the intrinsic complexity of cloud–application deploy-
ment modeling. This application is called BankManager,
and is used at the University of Oslo to teach distributed
systems, based on the very classical “bank account man-
agement” case study. It consists of the two following parts:

• A back-end that contains a Database, used to store
information about customers and accounts,

• A front-end that implements a web-based application,
used to access to the different accounts and transfer
money between accounts.

From a software architecture point of view, this applica-
tion simply consists of a relational database to support the
back-end, and java-based servlets bundled in a WAR archive
to support the front-end. The front-end must hold a reference
to the back-end to address the proper database. But when

214Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

confronted to the “cloud-computing” domain, the following
points needs to be also considered:

• Clouds implement open environments. As a conse-
quence, we do not know where the application will be
deployed. Thus, establishing the link between the front–
end and the back–end requires a particular attention.

• Clouds provides different mechanisms to support ap-
plication deployment. Where infrastructure cloud (IaaS)
mainly provides low-level (e.g., SSH, FTP) connectivity
to the virtual machines, platform clouds (PaaS) pro-
vides deployment protocols dedicated to the technology
they implement (e.g., WAR deployment).

• Clouds work on a pay-as-you-go basis. Thus, one
can consider to deploy both back-end and front-end
artifacts on the same virtual machine, to reduce costs
during development. Another alternative is to deploy
these two artifacts on two different virtual machines. In
concrete case, the variability of deployment possibilities
is humongous.

• Clouds emphasizes reproducibility. Thus, a given de-
ployment descriptor should be easily re-usable as–is,
in the same context or in a new one.

• Clouds support scalability through replication and load-
balancing. The deployment descriptor should be easily
replicable to support the on-demand replication of
computation-intensive artifacts.

Our goal is to provide a meta-model that supports the
application designer while deploying a cloud application.

IV. A DSL TO SUPPORT DEPLOYMENT IN CLOUDS

We named the language Pim4Cloud DSL, as it is a
Platform Independent Model dedicated to Clouds. The key
idea of the Pim4Cloud DSL is to support the deployment
of application in the cloud. An overview of the approach
is depicted in Figure 1. Using the DSL, the application
designer models the software to be deployed. In parallel, the
infrastructure provider describes the available infrastructure
to be used by the application. From a coarse-grained point
of view, it means that the designer requires “computation
nodes” (e.g., virtual machines) from the cloud, and the
infrastructure provider describes such nodes (based on its
own catalog). An interpreter is then used to identify which
resources have to be used in the infrastructure to fulfill
the requirements expressed by the application designer. The
interpreter then do the provisioning, and actually deploys the
modeled application. It returns as feedback to the designer
a living model of its application, annotated with run-time
property bound to each modeled artifact (e.g., the public IP
address associated to a given virtual machine).

Based on the points previously described, we propose to
use a component-based approach to model the deployment
of cloud applications. This approach was successfully used
by the DEPLOYWARE framework in the context of adaptive

Pim4Cloud DSL
descriptor

Infrastructure
descriptor

InterpreterApplication
Designer

Infrastructure
Provider

Figure 1. Pim4Cloud DSL overview

component system [16], [17], and we propose to transpose
its core idea to cloud deployment.

To achieve this goal, we use a reduced component meta-
model, described in Figure 2. This meta-model is expressive
enough to support the modeling of both infrastructure and
applicative artifacts in an endogenous way. Components can
be scalars or composite, i.e., containing sub-component in-
side their boundaries. A Component may offer one or more
deployment Services, i.e., deployment protocols one can
used to deploy other components onto this one (e.g., a servlet
container will offer a WAR service to support the deployment
of java-based web applications). Obviously, it may require
one Service if it aims to be deployed on another one (e.g.,
a WAR artifact will require a WAR service). Components
are connected among others through Connectors. A com-
ponent can offer and expects Property, e.g., a database
component may expect both username and password, and
provide an url to be remotely accessed. These elements
are used at run-time (asked in a deployment descriptor,
or filled using the feed-back obtained from the underlying
cloud infrastructure). In a Composite, one can express
bindings between properties, that is, a formal link be-
tween an expected and an offered property. These links
(RuntimeBinding) are used at run-time to properly transfer
the expected information.

Implementation: This meta-model is intended to be
specialized according to user’s needs, as its intrinsic sim-
plicity makes it easy to introduce in user’s code. We provide
a reference implementation of this approach using the Scala
language, exposed as an internal domain-specific language
to support the usage of this meta-model in JVM-based

Component Service
owner

offers

expects
0..*

0..1

Composite Scalar

containeds

0..1

0..*

Connector

from to

containeds

+data: T
Property[T]

offers
0..*

expects
0..*

0..*

0..*
promotes

RuntimeBinding source
target

bindings
0..*

Figure 2. Modeling cloud components: a generic meta-model

215Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

languages. The DSL is designed in a modular way, and
implements several constructions (e.g., “offering a service”,
“containing a component”) as independent modules, imple-
mented as traits. This design support the evolution of the
DSL, as adding a new syntactic construct is assimilated as
the mix of a new trait.

V. USING THE LANGUAGE

Based on this internal DSL, one can model a cloud-based
software to be deployed.

A. Modeling a Simple Component

We represent in Figure 3 a graphical representation of a
WarContainer model, using standard graphical notation for
component assemblies. This container is used to host WAR-
based artifacts. It is made as the composition of (i) a virtual
machine obtained from a IaaS provider and (ii) a Jetty server
used to actually support the hosting of WAR artifacts:

• The virtual machine is modeled as a component named
vm, typed as a SmallVM. This component does not re-
quire any other, and is therefore considered in the mod-
els as an element obtained from an external provider
(outside of the scope of the modeled system). It offers
a ssh service, and one can use this protocol to interact
with the component at run-time. This can be considered
as the IaaS layer of this example

• The WAR hosting artifact is modeled as a component
named container, typed as a Jetty server. It offers
a war service, and one can use it to deploy WAR-based
application. This component relies on the APT package
system to be properly deployed. Replacing the hosting
server (e.g., from Jetty to Tomcat) only means to
replace this component by another one.

• The final component (WarContainer) composes the
ones previously described as the following: it (i) pro-
motes the war port of the container component, and
(ii) binds the apt requirement of the container to
the ssh offering provided by the vm one.

As the language relies on Scala, the declaration of a scalar
component is assimilated to the declaration of a class, that
extends the concepts previously described. Thus, the user
is completely free in such a class to write all the code
he/she thinks necessary. The DSL is only used to support
the user when dealing with its system from a deployment
point of view. Internal DSLs immediately benefit from the

<<SmallVM>>
vm

<<WarContainer>>

war:WAR

apt:APT

ssh:SSH
<<Jetty>>
container

war:WAR

Figure 3. WarContainer: component diagram representation

mechanisms of the hosting language, e.g., variable visibility
and scoping mechanisms. We describe in Listing 1 the code
necessary to model this system with the DSL.

class WarContainer
extends CompositeComponent with WarOffering {

private[this] val container = instantiates[Jetty]
private[this] val vm = instantiates[SmallVM]
override val war = promotes(container.war)
this deploys container.apt on vm.ssh

}

Listing 1. WarContainer code

The WarComponent class extends the Composite-
Component concept (it is able to contains other compo-
nents), and mixes the WarOffering trait (statically inform-
ing other components that it offers a war port). It instantiates
two internal sub-components: (i) a Jetty component named
container to host the servlets applications and (ii) a virtual
machine of type SmallVM. It promotes the war service of-
fered by the container sub-component, and finally deploys
the servlet container on the virtual machine.

B. Multiple Topologies for BankManager

Based on the previously described mechanisms, we can
now model several version of our initial example, the
BankManager. This software is implemented in Java, and
requires the two following elements: (i) a database for its
back-end and (ii) a web server able to host WAR-based
software. We represent in Figure 4 different deployment
configuration for such a system.

• Figure 4(a). In this version, the front-end and the back-
end are deployed on the same virtual machine. This is

<<BankManager>>

<<SmallVM>>
vm

<<Jetty>>
container

<<WarApp>>
bankApp

<<MySQL>>
dbwar:WAR

ssh:SSH
apt:APT

apt:APTwar:WAR

url: String
dbRef: String

(a) BankManager, virtual machine sharing

<<BankManager>>

<<SmallVM>>
vm

<<Jetty>>
container

<<WarApp>>
bankApp

<<MySQL>>
dbwar:WAR

ssh:SSH

apt:APT

apt:APT

war:WAR

url: String

dbRef: String

<<SmallVM>>
vm'ssh:SSH

(b) BankManager, independent virtual machines

<<BankManager>>

<<SmallVM>>
vm

<<WarContainer>>
container

<<WarApp>>
bankApp

<<MySQL>>
dbwar:WAR

ssh:SSH

apt:APT

war:WAR

url: String

dbRef: String

(c) BankManager, re-using WarContainer

Figure 4. BankManager deployment variability

216Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

typical for test purpose, where the idea is to minimize
the cost of the rented infrastructure during development.
The database component exposes a property named
url. This property will be filled at run-time by the
deployment engine associated to the Pim4Cloud DSL
(out of the scope of this paper). The bankApp compo-
nent expects a property named dbRef, and a binding
is expressed at the composite level to specify that this
property will be set based on the value obtained from
db at run-time.

• Figure 4(b). In this version, two virtual machines are
used. This is the main difference when compared to the
previous one. This separation allows the replication of
the container component, ensuring elasticity through
horizontal scalability.

• Figure 4(c). This versions demonstrates the strength of
the component approach when applied to this domain.
It is immediately possible to re-use the previously de-
scribed WarContainer. As a component is considered
as a black-box, the end-user will not care about hos it
works internally from an infrastructure point of view.
It will simply re-use a given component that provides
the needed deployment services.

We give in Listing 2 the DSL code that models
these different topologies. First, we define our application
(MyCloudApp) as an abstract class: it factorizes shared
elements, and each concrete topology will extends this
class to refine its content. The top-level class instantiate
a BankManager component (the WAR file that contains
the application), as well as a MySQL database. It defines
an abstract container, with the assumption that this sub-
component will offer WAR deployment (it is typed as
WarOffering). The bank manager application is then de-
ployed on this container. The database property required by
the application is filled with the url provided by the database.

We then present in Listing 3 the three different compo-
nents that actually implements such deployment topologies.
The first one (VirtualMachineSharing) instantiates a
single virtual machine and deploys both the container and
the database on it. The second component (Independent-
VirtualMachine) deploys the servlet container and the
database on different virtual machines (vm1 and vm2). Fi-
nally, the last component (UsingWarContainer) reuse the

abstract class MyCloudApp extends CompositeComponent {
private[this] val bankApp = instantiates[BankManager]
protected val db = instantiates[MySQL]
protected val container: WarOffering
this deploys bankApp.war on container.war
this sets bankApp.dbRef using db.url

}

Listing 2. BankManager: Abstract class to model MyCloudApp

class VirtualMachineSharing extends MyCloudApp {
override val container = instantiates[Jetty]
private[this] val vm = instantiates[SmallVM]
this deploys container.apt on vm.ssh
this deploys db.apt on vm.ssh

}

class IndependentVirtualMachine extends MyCloudApp {
override val container = instantiates[Jetty]
private[this] val vm1 = instantiates[SmallVM]
private[this] val vm2 = instantiates[SmallVM]
this deploys container.apt on vm1.ssh
this deploys db.apt on vm2.ssh

}

class UsingWarContainer extends MyCloudApp {
override val container = instantiates[WarContainer]
private[this] val vm = instantiates[SmallVM]
this deploys db.apt on vm.ssh

}

Listing 3. Multiple deployment topologies for BankManager

<<BankManager>>

<<SmallVM>>
vm

<<WarContainer>>
container

<<WarApp>>
bankApp

<<MySQL>>
db

war:WAR

ssh:SSH

apt:APT

war:WAR

url: String

dbRef: String

dbUrl: String

<<Platform>>

war:WAR

Figure 5. Deploying the BankManager on a PaaS

WarContainer component defined in Listing 1 to host the
servlet container.

C. Modeling Platform as a Service Artifacts

The DSL allows us to model in an endogenous way IaaS
and PaaS. Building a PaaS becomes as simple as modeling a
software stack on top of virtual machines (Figure 5). In this
case, we modeled a Platform, which exposes a war port
for service hosting and a dbUrl property for persistence.
This platform is then used to deploy the bank application,
but can also be used to host any application implemented as
a War and requiring a database.

From a DSL point of view, one can imagine a library
of available platforms. In Listing 4, we describe a platform
named AGivenPlatform, provided by AGivenProvider
(modeled as a package). Then, one can use this platform by
simply importing it in its component, and using it like any
other. The UsingPaaS component in Listing 4 shows how
it can be done with the DSL.

package AGivenProvider {
class AGivenPlatform extends CompositeComponent with

WarOffering {
private[this] val db = instantiates[MySQL]
private[this] val vm = instantiates[SmallVM]
private[this] val container =

instantiates[WarContainer]
override val war = promotes(container.war)
val dbUrl = externalize(db.url)
this deploys db.apt on vm.ssh

}
}

217Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

class UsingPaaS extends CompositeComponent {
import AGivenProvider.AGivenPlatform
private[this] val bankApp = instantiates[BankApp]
private[this] val platform =

instantiates[AGivenPlatform]
this deploys bankApp.war on platform.war
this sets bankApp.dbRef using platform.dbUrl

}

Listing 4. Modeling a Platform as a Service using Pim4Cloud DSL

VI. CONCLUSION & PERSPECTIVES

We described how the Pim4Cloud DSL can be used to
support the application designer while modeling an ap-
plication to be deployed in the clouds. We also describe
how the DSL is implemented, using Scala as a hosting
language. We showed on a prototypical example how the
DSL is used to properly model the deployment. Application
deployment can be modeled in an agnostic way w.r.t. the
targeted cloud provider. The approach support the definition
of static analysis (e.g., type consistency), as well as the
reuse of components from a deployment to another one (i.e.,
architectural patterns can be reified as cloud components).
This approach also support the endogenous modeling of both
Paas and Iaas.

This work is currently pursued, including a standardiza-
tion effort at the OMG in the context of the REMICS project.
Short terms perspectives of this work includes the two
following axis: (i) “models@run.time” and (ii) verification.
The feed-back returned to the user is for now reduced to its
minimum, that is, the IP of virtual machines provisioned in
the cloud. With regard to the large amount of data available
from cloud providers (e.g., load average, cost), one of our
objective to enhance this feed-back to take into account more
information. We plan to achieve this goal with a “Mod-
els@run.time” approach. Instead of returning a set of IP
addresses, the Pim4Cloud interpreter will return a model of
the running system, available at run-time. It will maintain the
link between the running system and the models, providing
a model-driven way of querying the cloud–based application
(e.g., about its status, its load). From the verification point
of view, the current mechanisms included in the DSL are
static for now, and intensively rely on the type system: the
engine assumes that a static model (i.e., a model that can be
compiled) will always be properly deployed in the cloud. We
plan to use a transactional approach coupled to the action-
based mechanism previously described. Thanks to the acidity
of the transactional model, the action interpreter will be able
to recover when an error will be encountered during the
deployment process.

ACKNOWLEDGMENTS

This work is partially funded by the EU Commission
through the REMICS project (FP7-ICT, Call 7, contract
number 257793, www.remics.eu)

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H.
Katz, A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin,
I. Stoica, and M. Zaharia, “Above the Clouds: A Berkeley
View of Cloud Computing,” EECS Department, University
of California, Berkeley, Tech. Rep. UCB/EECS-2009-28,
Feb 2009. [Online]. Available: http://www.eecs.berkeley.edu/
Pubs/TechRpts/2009/EECS-2009-28.html

[2] CloudStandard, “The Cloud Standards Coordination Wiki,”
http://cloud-standards.org/, [retrieved: 05, 2012].

[3] C. Szyperski, Component Software: Beyond Object-Oriented
Programming, 2nd ed. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2002.

[4] REMICS, http://remics.eu/, [retrieved: 05, 2012].

[5] O. Object Management Group, “UML 2.0 Superstructure
Spec.” Object Management Group, Tech. Rep., Aug. 2005.

[6] ——, “Deployment and Conf. of Component-based Dis-
tributed App. Spec., Version 4.0,” Tech. Rep., Apr. 2006.

[7] P.-Y. Cunin, V. Lestideau, and N. Merle, “ORYA: A Strategy
Oriented Deployment Framework,” in Component Deploy-
ment, ser. Lecture Notes in Computer Science, A. Dearle and
S. Eisenbach, Eds., vol. 3798. Springer, 2005, pp. 177–180.

[8] S. Lacour, C. Pérez, and T. Priol, “Generic Application
Description Model: Toward Automatic Deployment of Ap-
plications on Computational Grids,” in GRID. IEEE, 2005,
pp. 284–287.

[9] G. Deng, D. C. Schmidt, and A. S. Gokhale, “CaDAnCE: A
Criticality-Aware Deployment and Configuration Engine,” in
ISORC. IEEE Computer Society, 2008, pp. 317–321.

[10] J. Dubus and P. Merle, “Applying OMG D&C Specification
and ECA Rules for Autonomous Distributed Component-
Based Systems,” in MoDELS Workshops, ser. Lecture Notes
in Computer Science, T. Kühne, Ed., vol. 4364. Springer,
2006, pp. 242–251.

[11] A. AWS, “Amazon Cloud Formation Language,” http://aws.
amazon.com/en/cloudformation/, [retrieved: 05, 2012].

[12] CA, “Applogic CA,” http://www.ca.com/us/products/detail/
CA-AppLogic.aspx, [retrieved: 05, 2012].

[13] Apache, “Apache Libcloud, a Unified Interface to the Cloud,”
http://libcloud.apache.org, [retrieved: 05, 2012].

[14] JClouds, “JClouds,” http://www.jclouds.org/, [retrieved: 05,
2012].

[15] Apache, “δ-cloud: Many Clouds. One API. No problems.”
http://deltacloud.apache.org/, [retrieved: 05, 2012].

[16] A. Flissi, J. Dubus, N. Dolet, and P. Merle, “Deploying on
the Grid with DeployWare,” in CCGRID. IEEE Computer
Society, 2008, pp. 177–184.

[17] J. Dubus, “Une démarche orientée modèle pour le
déploiement de systèmes en environement ouverts distribués,”
Ph.D. dissertation, Université des Sciences et Technologies de
Lille, Lille, France, Oct. 2008.

218Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

