
A Study of Cloud Mobility in a Mobile Cloud

Network based on Future Internet Approach

Dongha Kim, Hyunjun Kim, Gijeong Kim, Sungwon Lee

Department of Computer Engineering

Kyung Hee University

Young-in, South Korea

{dongha, kimhyunjun, kimgijeong, drsungwon}@khu.ac.kr

Abstract— In this paper, we extend the limited functionality of

the GENI Cloud project as follows. First, we use the

OpenStack cloud platform instead of the Eucalyptus cloud

platform used in the GENI Cloud. Second, we develop the

FiRST Cloud aggregate manager (AM) based on GENI AM

Application Programming Interface (API) for the federation

between a future internet test-bed and the OpenStack cloud

platform. Third, we develop a Cloud Mobility Server and

Client for mobile cloud management in order to control the

zero-client service. Thus, we confirm that the proposed FiRST

Cloud AM is feasible through zero-client mobile cloud service.

Keywords-cloud; mobile cloud; cloud mobility; future

internet; FiRSTCloud AM.

I. INTRODUCTION

Since 1974, when the Internet was first proposed, the
Internet has become a global network. Since 2000, however,
rapid change of communication environments and various user
requirements trigger numerous researches for Future Internet to
overcome conventional Internet’s problems [1].

A new trend of these Future Internet research is
harmonization between the conventional Future Internet and
cloud computing. Disadvantages of current cloud computing
include limited bandwidth and highly variable latency due to
the conventional Internet limitations is able to complemented
by Future Internet concept [1].

Cloud computing includes aspects such as grid computing,
utility computing, thin-client based computing. Cloud
computing requirements for client hardware and software are
continually being simplified. Mobile handheld devices are able
to take special advantage of these simplified requirements.

An optimized, robust network is needed for cloud
computing, along with an optimized protocol for
communication between the client device and the cloud server.
Researchers are studying projects which use cloud computing in
large-scale global test-beds.

In this paper, we develop zero-client based mobile cloud
service with open-source cloud platform, Openstack [8].
Furthermore, to improve this service, we develop cloud
mobility server, client and FiRST cloud Aggregate Manager
(AM).

First, cloud mobility server and client support a client for
receives service not from ‘local site’ but from ‘remote site’.
Local site is an original server that has client’s data and remote
site is a closest cloud server to the client.

Second, FiRST Cloud AM is an API based on GENI AM
API to interwork with Future Internet test-bed.

As a result, we develop a Cloud Mobility server and client
for mobile cloud management to support the zero-client cloud
service and to confirm the feasibility of the proposed FiRST
Cloud AM with a zero-client mobile cloud service.

This paper organized as follows: related works are
introduced in following section. After that section, detailed
information about proposed cloud mobility and interaction with
future Internet are described. Next section presents result data
of performance evaluation. Finally, conclusion and future work
is presented

II. RELATED WORK

A. Future Internet Test-bed: GENI

The Global Environment for Network Innovations (GENI)
[3] is designed to support experimental research in network
science and engineering. This research challenges us to
understand networks broadly and at multiple layers of
abstraction, from physical substrates through architecture and
protocols to networks of people, organizations, and societies.
The intellectual space surrounding this challenge is highly
interdisciplinary, ranging from new research in networking and
distributed system design to understanding the theoretical
underpinnings of network science, policy, communication
networks and economics,. Such research may generate new
knowledge about the structure, behavior, and dynamics of the
most complex systems – networks of networks – with
potentially huge social and economic impacts [2][3].

B. GENI AM API

The GENI Aggregate Manager API is a common API for
reserving disparate resources from multiple GENI aggregates.
Prior to this API, each control framework specified a unique
interface between aggregates and experimenters.

The GENI Aggregate Manager API specifies a set of
functions for reserving resources and describes a common
format for certificates and credentials to enable compatibility
across all aggregates in GENI. The aggregate is an abstract
concept represents set of resources. This API has been
implemented in multiple control frameworks, and will serve as
the basis for ongoing integration among GENI control
frameworks and tools. Using this document, new GENI-
interoperable aggregate managers, tools, and clearinghouses
may be constructed [4].

146Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

C. Eucalyptus Cloud Platform

Eucalyptus [9] stands for ‘Elastic Utility Computing
Architecture Linking Your Programs To Useful Systems’ and is
an open source platform in the Infrastructure as a Service
(IaaS)-style based on Linux. Eucalyptus is software available
under GPL that helps in creating and managing a private or
publicly accessible cloud. It provides an EC2-compatible cloud
computing platform and a S3-compatible cloud storage
platform [9].

D. Openstack Cloud Platform

OpenStack is a global collaboration of developers and
cloud computing technologists aiming to produce a ubiquitous
open source cloud computing platform for public and private
clouds. The project aims to deliver solutions for all types of
clouds with simplicity, ease of implementation, scalability, and
feature selection.

Founded by Rackspace Hosting and NASA, OpenStack has
become a global software community of developers who
collaborate on a standard and massively scalable open source
cloud operating system. All of the code for OpenStack is freely
available under the Apach e 2.0 license, and anyone can run it,
add to it, or submit changes back to the project. An open
development model is the only way to foster badly needed
cloud standards, remove the fear of proprietary lock-in for
cloud customers, and create a large ecosystem that spans cloud
providers.

The current OpenStack project has been divided into two
kinds of software. The first, OpenStack Compute (Nova), is
cloud management software used to operate and manage the
infrastructure for large-scale provisioning of virtual machines.
Second, OpenStack Object Storage (Swift) is storage system
software that offers the reliable distribution of a store of
objects.

E. GENICloud

GENICloud’s goal is to allow the federation of
heterogeneous resources like those provided by Eucalyptus, an
open-source software framework for cloud computing, to
coexist with GENI. Under the federation of Eucalyptus and
GENI, a more comprehensive platform is available to users;
for example, development, computation and data generation
can be completed within the cloud, and deployment of the
applications and services can be conducted on the overlay (e.g.,
PlanetLab).

By taking advantage of cloud computing, GENI users can
not only dynamically scale their services on GENI depending
on demand, they can also benefit from other services and uses
of the cloud. GENICloud is complementary to Future Internet
test-bed by federating heterogeneous resources, for example, a
cloud platform with PlanetLab. Both PlanetLab and Eucalyptus
architectures offer some insights into some of the similarities
between the two seemingly disparate systems. PlanetLab
comprises nodes scattered around the globe, and Eucalyptus
consists of clusters. Both PlanetLab and Eucalyptus start out
with some computing resources, namely, physical machines
that can be provisioned to users [7].

F. PlanetLab

To provide a more realistic platform for researchers,
PlanetLab is a test-bed for exploring disruptive technologies on
a global scale. Testing distributed applications and network

services on a global scale has always been difficult because
deploying such applications and services could have adverse
effects on the Internet. Also, PlanetLab is built as an overlay
network to be positioned over the Internet. [5]

PlanetLab defines the treatment of a set of distributed
virtual machines as a single, compound entity called a slice.
The concept comes from the fact that, whenever a service is
running on PlanetLab, it receives a slice (virtual machines
running on different nodes) of the PlanetLab overlay network.
An individual virtual machine within a slice is called a sliver.
GENICloud has expanded the concept of slices to include
Eucalyptus virtual machines and, in the future, storage
capability. Therefore, a slice in GENICloud can have both
PlanetLab resources and virtual machines from a Eucalyptus
cloud. The users can log into individual slivers in a GENI
Cloud slice to conduct their experiments.

G. Eucalyptus Aggregate Manager

Most of the implementation effort of GENICloud is
concentrated on implementing the aggregate manager over
Eucalyptus. In addition, a resource specification format is
formulated for Eucalyptus.

The aggregate manager acts as a mediator between
PlanetLab and a Eucalyptus cloud. The manager manages the
creation of Eucalyptus instances for the slice and maintains a
map of the slices and instances so when the users query the
sets of resources allocated for their slices, the information is
readily available.

H. Resource Specification (RSpec)

The resource specification is an XML document that can be
used by the aggregate manager to return information to the
users. The users can then use the specification to send
information to the aggregate manager. Since the resource
specification is in XML format, the format of the RSpec for a
specific network is completely open for the network to define.
With such openness, the RSpec can encompass many different
types of resources and different network topologies. As a result,
many networks (e.g., PlanetLab, VINI, ProtoGENI) have
different RSpec formats [4][7].

GENICloud defined an RSpec for Eucalyptus, so that its
resources and requests from users can be expressed in XML
format. During the workflow, users interact with the slice
manager using RSpec devised for Eucalyptus.

I. Definition of the Problem

Mobile cloud service has problems like packet loss, low
bandwidth, bandwidth fluctuation, and delay fluctuation based
on broadband communication and delay based on WAN. These
problems obstruct users who want to use mobile cloud services.
GENI Cloud supports interaction among heterogeneous
resources on the Future Internet and Eucalyptus cloud
computing platform. It provides better communication
circumstance. However, the GENI Cloud project provides
limited functionality, which includes few features of cloud
computing capabilities.

III. CLOUD MOBILITY CONTROL FOR A MOBILE CLOUD

A. Key Features of Cloud Mobility Control

Mobile cloud service has problems like Packet loss, lower
bandwidth, bandwidth fluctuation and delay fluctuation based

147Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

on broadband communication and delay because of the WAN
area. To solve problems with mobile cloud service, we
proposed software which has a remote control function to
improve cloud service. Followings are explained based on
Eucalyptus as a cloud platform because of our first cloud
mobility concept is established using Eucalyptus. In fact, it’s
more easy and clear to explain our concept of cloud mobility
using Eucalyptus. However, the Openstack is very similar with
Eucalyptus; it’s very easy to apply this concept from
Eucalyptus to Openstack.

B. Cloud Platform Based on Remote Cloud Mobility

Control

In the mobile cloud platform based on a remote cloud, the
mobile cloud provides an on-demand/pre-reserved virtualized
service by incorporating the cloud server into the
telecommunications and wireless carrier networks rather than
using the server outside of the WAN, as shown in Figure 1.

Remote cloud’s environment-information managing
function is able to provide cloud service environment-
information (which is originally at the ‘local’ cloud server on
the outside of WAN) to cloud server in ‘remote’ mobile
operator network. When user requests cloud service, Cloud
Controller (CLC) determines the location of the new Virtual
Machine (VM) to create. If service is requested through a
mobile operator, CLC requests user environment-information
from the remote cloud server and uses the information to create
a VM. If service is terminated, CLC returns the user
environment-information to the cloud server. Both the local
cloud and the remote cloud provide mobile cloud services
which use proxy server software based on the Eucalyptus
cloud platform. It is simple software shown as ‘Remote
Launcher’ and ‘Local Launcher’ in Figure 1. Each launcher
substantially controls cloud mobility as explained in the next
sections.

C. Design of Cloud Mobility Control

We establish a design based on a remote cloud system for
the proposed cloud mobility control. Table I represents the
common message header for cloud mobility control. First, we
divide local and remote cloud systems into categories based on
‘Kind of cloud system.’ In addition, we should be able to
support seamless mobility control by including ‘Type of

component,’ ‘Type of message-passing,’ ‘Message order,’ and
‘Source and Destination IP addresses’ in the header.

We propose a design for cloud mobility control software
based on the following four basic functions for controlling
local and remote cloud systems.

D. Cloud Computing Mobility Environment Configuration

Local launcher is a gateway for administering the local
cloud system in a remote cloud architecture environment. Each
cloud system (local and remote) exchanges environment-
information with another cloud system and utilizes the
appropriate information from service requests and
communicates with another.

Fig. 1. The concept of proposed remote cloud based on mobile cloud architecture

TABLE I. COMMON MESSAGE HEADER FOR CLOUD MOBILITY

CONTROL

Component
Size

(Octet)
Default Meaning

Kind of

cloud system
1 0x00

0x00
Local cloud

system

0x01
Remote cloud

system

Source

component

type

1 0x00

0x00
Default(App

launcher)

0x01
CLC(Cloud
controller)

0x02
CC(Cluster

controller)

0x03
SC(Storage
controller)

0x04 Walrus

0x05
NC(Node

controller)

Type of

message

passing

1 0x00

0x00 Default

0x01 Request

0x02 Response

Message

order
1 0x00 Message order

Source IP 4 0x00000000
Source IP address of a

message

Destination

IP
4 0x00000000

Destination IP address of a

message

148Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

E. Mutual Recognition and Authentication between Cloud

Systems

The cloud systems also process mutual recognition and
authentication. If a remote user makes a request to the cloud
system, the local cloud exchanges authentication information
for remote cloud service between the local cloud and the
remote cloud. By exchanging authentication information, the
connection setting is established.

Each cloud system checks for available components on its
own system. CLC shows the process for periodically checking
for system components through Eucalyptus API to CC, SC,
Walrus, and NC. The remote launcher and local launcher return
information about the available system to CLC using a query.

F. Activation of the Remote Cloud Server

The remote cloud server’s activation function shows
remote cloud activation in the cloud environment. If a remote
user requests cloud service from the cloud system, the local
cloud system activates the remote cloud service function. After
a recognition step between the local cloud and the remote
cloud, each cloud’s connection settings are established, and the
remote cloud system activates cloud service. Connection is
established between the user and the remote cloud system.
Users can utilize cloud service in the remote cloud system.

If the user requests a service, the local cloud launcher uses
the user network. After that, the system request to the remote
cloud system regarding OS image information, the remote
cloud and local cloud synchronize the image list and transfer
image files. The local cloud system requested information from
the remote cloud system about the user requested application.

The user’s operating information consists of a kernel,
ramdisk, and image file. The remote application launcher
registers on the eucalyptus cloud system. If operating
information is registered on the system, the system returns the
ID values of EKI (Eucalyptus Kernel Image), ERI (Eucalyptus
Ramdisk Image), and EMI (Eucalyptus Machine Image).

If the operating image file completes registration on the
Eucalyptus system, the remote application launcher creates a
keypair with a key value for communication with each
Openstack instance. After creating the keypair, the remote
application launcher requests creation of an instance on the
Eucalyptus cloud system.

During generation of the instance, the Eucalyptus system
uses the appropriate needed parameters like key-pair’s name,
EMI ID and VM type. Upon completion of instance creation,
the Eucalyptus system returns the ID of the instance for
registration.

If the instance is normally driven on the cloud system, the
application launcher periodically checks the status of the
instance. In this process, the remote application launches a
connection with the instance and transfers the user’s
application. After this, the remote application launcher returns
an IP address for the instance from the local application
launcher to receive cloud services. A user re-requests the cloud
service based on the IP address, which returns the remote
application launcher.

Each cloud’s application launchers check the CPU usage,
RAM usage, and HDD usage for status information in order to
manage resources.

G. Deactivation of the Remote Cloud Server

If usage of cloud resources is low, the local cloud system is
deactivated from the remote cloud system, and the user requests
cloud service termination. After this, the instance in operation is
stopped on the remote cloud system, and the user’s image and
instance information is transferred to the local cloud system.

IV. FIRSTCLOUD FOR FUTURE INTERNET

A. Key Features of FiRSTCloud

In this section, we propose the FiRST Cloud AM based on
GENI AM API for the cloud computing platform to extend the
limited functionality of GENI Cloud project [4][6][7].

FiRST Cloud AM acts as a moderator between the
OpenStack cloud and the future internet test-bed. Also, FiRST
Cloud AM manages mapping from an instance to the slice
when a user queries about resource allocation on the slice.
Therefore, FiRST Cloud AM maintains this mapping
information between an instance and a slice. To moderate
between instance and slice, FiRST Cloud AM creates a
database of openstack instances and slice information, as in
Table II.

FiRSTCloud AM provides six APIs (all except
RenewSliver()) using GENI AM API: GetVersion(),
ListResource(), CreateSliver(), DeleteSliver(), SliverStatus()
and Shutdown(). Additional features may exist depending on
the existing API.

FiRSTCloud AM defines the RSpec which is submitted by
the user to describe instance-specific information and resource
information. RSpec is managed differently depending on the
items after parsing. The RSpec contains items such as cloud
image information that includes image id and state, key-pair,
instance and vm information.

B. GetVersion() API of FiRSTCloud AM

FiRST Cloud AM returns the version of the GENI
Aggregate Manager API supported by this aggregate. Version
information includes the OpenStack cloud version.

TABLE II. DB TABLE OF SLICE AND INSTANCE

Slice

Name Type Key

ID INTEGER PRIMARY KEY

Slice urn TEXT

Openstack Insatance

Name Type Key

ID INTEGER PRIMARY KEY

Instance ID TEXT

Kernel ID TEXT

Image ID TEXT

Ramdisk ID TEXT

Instance type TEXT

Key pair TEXT

Slice ID INTEGER
REFERENCES

Slice(ID)

149Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

C. CreateSliver() API of FiRSTCloud AM

FiRST Cloud AM is able to allocate resources to a slice.
Also, this operation is expected to asynchronously activate the
allocated resources after the operation has been successfully
completed.

Callers can check on the status of the resources using
SliverStatus API.

To connect with OpenStack Cloud, first, use the boto
library which is compatible with the EC2 proceeds. Then,
initialize the database information of instance and slice. Create
a new instance from RSpec by parsing the image information,
virtual machine type, and keypair information. Finally, return
the id of the created instance by creating a new RSpec.

D. ListResources() API of FiRSTCloud AM

FiRST Cloud AM returns information about available
cloud resources or resources allocated to a slice. To connect
with OpenStack Cloud, use the boto library which is
compatible with the EC2 to connect. Then, request the
available zone information, registered image information, and
keypair information; instances of OpenStack Cloud AM are
returned in the form of a list of values. Finally, return the cloud
information by creating a new RSpec.

E. DeleteSliver() API of FiRSTCloud AM

FiRST Cloud AM is able to stop sliver and delete if the
sliver is running. AM search instance information occurs in the
DB which is mapped to slices to be deleted. If AM finds an
instance, it can be terminated using the boto library, followed
by a DB update.

F. SliverStatus() API of FiRSTCloud AM

FiRST Cloud AM is given the status of a sliver.
Additionally, AM requests the connection to the OpenStack
Cloud that verifies the status of the instance as well as the
sliver. Returned status information is based on the instance
information for the corresponding slice_urn (uniform
resource name). Based on this instance information, the
final status of the sliver is determined and returned to the
client as in ListResources() API.

G. Shutdown() API of FiRSTCloud AM

FiRSTCloud performs an emergency shutdown of a
sliver. This operation is intended for administrative use. In
addition, this API is obtained from a database associated
with slice_urn and the instance, then terminates and
manages the instance.

V. PERFORMANCE EVALUATION AND ANALYSIS

A. Key Features of the Mobile Zero-Client

In this paper, we proposed the mobile zero-client based on
cloud mobility control and FiRSTCloud AM. For mobile cloud
service, we used Virtual Networking Computing (VNC) which
includes a graphic desktop share system through a Remote
Frame Buffer (RFB). Zero-client means end user device has no
local storage and just has weak process power to communicate
with server. Following evaluations, however, zero-client is
substituted by common laptop running VNC viewer only. On
the cloud server, there is a Linux OS installed instance to run
VNC server application.

Figure 2. System environment for proposed mobile zero-client.

150Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

B. Performance Analysis of the Mobile Zero-Client

Network topology is constructed for mobile zero-client
performance analysis as in Figure 2. In this performance
analysis, we want to present mobile zero-client on mobile
cloud performs better than normal mobile device.

There are two hypotheses before analyze performance of
our proposal. First, we assume that the cloud mobility server
and client are well operated. Therefore whole information and
data in local site downloaded to remote site already.

Second, we did not consider about interworking with
Future Internet test-bed in performance analysis. It’s for
comparison with normal mobile device and for convenience of
experiment.

The performance analysis is operated by receiving a file
from FTP server.

There are two different traffic cases. In the first case, no
traffic is generated on the network. In the second case, another
mobile device generates traffic at the second static AP. The
second mobile device also downloads the same file from the
FTP server. In these two network environments, the mobile
device downloads a 700MB video file using 802.11n WLAN.
Downloading occurs in two ways, through the use of a mobile
device to download directly from the FTP server and connects
to Openstack instance using VNC client as a mobile zero-client.
When using mobile zero-client, the mobile device does not
download from the ftp server but from an Openstack cloud to
which the mobile zero-client is connected.

Table III shows the result of performance evaluation. There
are four scenarios, and each row represents a scenario.
Scenario 1 means the data transfer rate of mobile devices when
downloading a video file from an FTP server with no traffic on
the network. In this scenario, data transfer rate is unstable
because of the wireless network environment. The average data
transfer rate measured 29.75 Mbps. Scenario 2 means the data
transfer rate of the mobile zero-client download video file from
an FTP server with no traffic on the network environment.
Data transfer rate is stable because the mobile zero-client
received the data through OpenStack cloud instance (VM).
Average data transfer rate measured 67.65 Mbps. When using a
mobile zero-client, we achieve a similar performance to that of
a wired network user in our wireless network environment.
Scenario 3 means the data transfer rate of the mobile device
when it is directly downloading a video file from the FTP
server. In addition, this and next scenario correspond to the
second traffic case which is mentioned. Therefore the data
transfer rate little bit decreased when wireless AP was shared
with another client, producing an average data transfer rate of

27.19 Mbps. Scenario 4 means the data transfer rate of a
Mobile Zero-Client downloading a video file from the FTP
server with traffic using another mobile device. The average
data transfer rate measures 65.89 Mbps.

VI. CONCLUSION AND FUTURE WORK

Future Internet research emphasizes harmonization of the
conventional system with Future Internet research, network
virtualization, and cloud computing. Providing high bandwidth
and low delay is possible, but computationally intensive
services or computing operations cannot be performed. A cloud
computing platform can perform many service and
computation operations. Its disadvantages include limited
bandwidth and highly variable latency.

Researchers have begun to test cloud computing
environments in large-scale global test-bed systems. In this
paper, we developed cloud mobility for mobile communication
between a device and the cloud server. Second, we developed
the FiRST Cloud aggregate manager (AM) based on GENI AM
API for interaction between the future internet test-bed and the
OpenStack cloud platform. Third, we developed a Cloud
Mobility Client/Server for mobile cloud management in order
to control the zero-client service. We confirmed that the
proposed FiRSTCloud AM works with zero-client mobile
cloud service.

Through this work, mobile cloud service was shown to
have a consistent quality regardless of mobile device
performance or wireless environment.

ACKNOWLEDGMENT

This research was supported by Basic Science Research
Program through the National Research Foundation of
Korea (NRF) funded by the Ministry of Education, Science
and Technology (2012R1A1A1006620).

REFERENCES

[1] M. K. Shin, “Trend on the Future Internet Technologies and
Standardization,” Electronics and Telecommunications
Trends, vol. 22, no.6, pp.116-128, Dec. 2007.

[2] K. H. Nam, S.J. Jeong, M. K. Shin and H. J. Kim,
“Technology and Trends of GENI Control Framework,”
Electronics and Telecommunications Trends, vol. 25, no.6,
pp.157-166, Dec. 2011.

[3] GENI white paper, “GENI at a glance”, [Online]
http://www.geni.net/wp-content/uploads/2011/06/GENI-at-a-
Glance-1Jun2011.pdf, <link> 07.16.2012.

[4] GENI API wiki page,
http://groups.geni.net/geni/wiki/GeniApi, <link> 07.16.2012.

[5] PlanetLab, http://www.planet-lab.org, <link> 07.16.2012.
[6] S. W. Lee, S. W. Han, J. W. Kim, S. G. Lee, “FiRST: Korean

Future Internet Testbed for Media-Oriented Service Overlay
Network Architecture,” Journal of Internet Technology, vol.
11, no. 4, pp. 553-559, Jul. 2010.

[7] M. Yuen, “GENI in the Cloud”, University of Victoria, 2010.
[8] Openstack official homepage, [Online]

http://www.openstack.org, <link> 07.16.2012.
[9] Eucalyptus official homepage, [Online]

http://www.eucalyptus.com/, <link> 07.16.2012

TABLE III. AVERAGE DATA RATE ON 4 SCENARIOS

 Traffic load Client type
Average data rate

(Elapsed time)

Scenario 1 N/A Normal client
29.75 Mbps

(193.26 sec)

Scenario 2 N/A Zero-client
67.65 Mbps
(84.92 sec)

Scenario 3 Another device Normal client
27.19 Mbps
(211.40 sec)

Scenario 4 Another device Zero-client
65.89 Mbps

(87.23 sec)

151Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

http://www.eucalyptus.com/

